About this Journal  |  Author Guidelines  |   Submit a Manuscript     

International Journal of Smart Business and Technology

Volume 6, No. 1, 2018, pp 19-38
http://dx.doi.org/10.21742/ijsbt.2018.6.1.04

Abstract



Fintech Credit Scoring Techniques for Evaluating P2P Loan Applications – A Python Machine Learning Ensemble Approach



    Rekha Ramesh Shenoy1, Sabah Mohammed2, Jinan Fiaidhi3
    123Department of Computer Science, Lakehead University, ON, Canada
    1rshenoy@lakeheadu.ca, 2mohammed@lakeheadu.ca, 3jfiaidhi@lakeheadu.ca

    Abstract

    Financial Technology (fintech) has been widely recognized as one of the most important innovations in the financial industry and is seen to evolving at a very rapidly. It holds the promise of reshaping the financial industry by creating a diverse financial landscape by providing stability, improving quality and most importantly reducing costs. One such fintech tool is the “Peer to Peer Lending” (also known as “P2P Lending”), which refers to companies that match lenders and borrowers without the use of the traditional banking systems. They are intermediaries that are usually online investment platforms that offer identity verification, proprietary credit models, loan approval, loan servicing and legal and compliance. This can be an attractive alternative for a borrower as loans can be applied for online, anonymously, and in a timely fashion. It is also beneficial for borrowers that do not have any previous credit history to be shown. Fintech develops a credit scoring model based on the credit risk evaluation. This model establishes itself in the use of online data sources, alternative credit models and variety of machine learning and data analytics techniques to estimate risks involved in the lending process and to minimize the operating costs. In this paper, we propose a stacking ensemble of machine learning classifiers that combines data preprocessing with different learning algorithms. We then compare the results of the bare bone classifiers with our stacking ensemble classifier The ensemble model developed gives a better performance than each of single classifiers that constitute the process of credit scoring.


 

Follow Us

Contact Us

  • PO Box 5074, Sandy Bay Tasmania 7005, Australia
  • Phone: +61 3 9028 5994