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Abstract 

An FPGA based audio signal processing system is designed and implemented through an 

input and output circuit created on the breadboard, a Vivado project and an SDK application 

program involving the Zedboard, and a C# GUI application for the serial port 

communication with the Zedboard. In the SDK application development, we use the Matlab 

filter designer tool for an FIR LPF design and generated the filter coefficients file for the 

SDK programming. The filtering is designed by the convolution operation and implemented 

through C/C++ programming. A modified mean normalization algorithm is proposed to 

apply to the filtered data samples. Finally, the integrated system is tested through a mixed 

music and interference tone signal. Experiment results verified the successful implementation 

of the audio signal processing system on FPGA (Zedboard). This paper provides hands-on 

experience in FPGA based embedded system design and implementation through Xilinx 

Vivado and SDK tools as well as C# GUI programming. 

 

Keywords: FPGA, Vivado, SDK, Zedboard, C/C++, C# GUI, FIR Filter, Convolution, 

Normalization 

 

1. Introduction 

An audio signal is a representation of sound using either continuous analog signals or 

binary numbers of digital signals. Audio signal processing is a method where intensive 

algorithms and techniques are applied to audio signals. It is used to convert between analog 

and digital formats, cut or boost selected frequency ranges, remove unwanted noise, add 

effects, and obtain many other desired results [1]. The frequency range of audio signals is 

between 20 Hz to 20 kHz, which is the lower and upper bound that humans can hear. 

An audio processor is a processor that is optimized to process sound. It often leverages 

ARM-based processor architecture and has components like analog-to-digital converters 

(ADCs), Digital-to-Analog Converters (DACs), multiple digital microphone inputs, hardware 

accelerators like FPGAs, and various interfaces. An audio processor is normally bundled with 

software or firmware designed to perform certain echo cancellation or noise reduction 

functions. 
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Filters are considered the most basic circuit in any signal processing including audio signal 

processing. It removes unwanted noise, echo, and distortion, and allows the filtered data to 

pass through it. Typically, there are four types of filters: Low-pass Filter (LPF), High-pass 

Filter (HPF), Band-pass Filter (BPF), and Band-stop Filter (BSF). LPFs allow the frequencies 

below the selected cut-off frequency to pass and reject the frequencies above it. HPFs are the 

opposite of LPFs. HPFs pass the frequencies that are higher than the cut-off frequency and 

attenuate the frequencies that are lower than it. BPFs allow only the signals within a certain 

range of frequencies and reject all others. BPF circuits can be designed by combining the 

properties of low-pass and high-pass into a single filter. BSFs, also called band rejection 

filters or notch filters, are the opposite of BPFs. They remove frequencies in a specified 

frequency band and allow frequencies below the low cut-off point or above the high cut-off 

point to pass. 

Field-programmable Gate Arrays (FPGAs) [2] are programmable logic devices that 

inherently contain parallel processing and pipelining features and allow flexible 

reconfigurable computing. FPGA has applications in many areas such as telecommunication 

systems [3], medical electronics [4], audio processing [5], image & video processing [6][7], 

and high-performance computing [8]. Combining an audio processor with an FPGA creates 

an ideal division of labor for many tasks in unique industrial communications and control 

applications. 

For audio signal processing in practical applications such as acoustic detection, audio 

synthesis, music processing, noise cancellation, and speech recognition, researchers and 

engineers have conducted extensive research and experiments on FPGA based hardware 

accelerators due to their hardware- and software-level re-configuration and massively parallel 

processing capabilities. In [9], a low-complexity FPGA-based prototype was described to 

compute and visualize acoustic intensity images in real-time. In [10], an FPGA-based 

hardware platform was proposed to accelerate an audio tracking method. The accelerator was 

implemented in a Xilinx Virtex-5 device and the experimental results showed that it has 

achieved significant speedup compared with the software implementation of the tracking 

method. In [11], the authors presented an audio signal processing system based on FPGA, 

where FPGA is used as the high-speed signal processor to realize volume adjustment and 

audio effect control. In [12], an audio enhancement technique using digital FIR filters was 

implemented on FPGA to separate signal components based on their frequency contents so 

that the signal can be enhanced with the desired frequency components using a bandpass 

digital filter. In [13], a Wave Digital Filter (WDF) emulation system suitable for audio 

applications was implemented on an FPGA. The WDF emulations were validated by 

measuring the signals from the FPGA I/O modules with a data acquisition system. 

In [14], an open FPGA platform was developed for the speech, hearing, and acoustics 

research communities to implement low-latency high-performance signal processing with 

deterministic latencies. A Simulink model was developed to implement audio processing and 

from it, the VHDL code was generated. The VHDL code was then implemented in FPGA 

which functions as a real-time signal processor. In [15], an open audio processing platform on 

Zync7000 FPGA was presented for collecting analog frequency signals through a microphone 

and sending a data set of frequencies and amplitudes to a UART interface. The platform was 

verified by a design on a real-time Automatic Music Transcription (AMT) system. In [16], an 

FPGA based embedded system was implemented for audio signal alignment, where a custom 

accelerator was designed for the Xilinx PYNQ board and the programmable logic (PL) of the 

Zynq SoC (system on chip) was used to accelerate the audio application. In [17], an audio 

signal processing implementation was presented on two FPGA development boards (Zybo 



Journal of Smart Technology Applications 

Vol.3, No.1 (2022), pp.1-20 

 

 

eISSN: 2652-9807 JSTA            3 

and Zedboard). A Least Mean Square (LMS) adaptive filtering algorithm was implemented 

on FPGA and some performance measures were studied in both Zybo and Zedboard for 

comparison. 

In this paper, we develop an FPGA based audio signal processing system on the Zedboard 

[18]. A Vivado [19] project and an SDK [20] application program are developed for hardware 

and software implementation. A C# GUI application is written via Visual Studio [21] and 

runs on a laptop for serial port communication with the Zedboard. In the SDK application 

development, The Matlab filter designer tool [22] is used for designing an FIR LPF and 

generating the filter coefficients file, which is used for the SDK programming. The filtering is 

designed by the convolution operation and implemented through C/C++ programming. A 

modified mean normalization algorithm is proposed to apply to the filtered data samples. 

Finally, we test the integrated system with a mixed music and interference tone input signal 

and provide the experiment results for verification. 

The remainder of the paper is organized as follows: Section 2 describes the audio system 

and related theory for audio processing; Section 3 details the design and implementation of 

the proposed audio system including the external input and output circuit, the Zedboard 

hardware, and software (Vivado project and SDK application program), and a GUI 

application; Section 4 provides the experiment results; Finally, Section 5 concludes the paper. 

 

2. System Description and Theory 

The audio signal processing system to be implemented includes three parts: the external 

input and output circuit, the Zedboard involving both Processing System (PS) and 

Programmable Logic (PL) parts, and a Graphical User Interface (GUI) program running on a 

laptop, as shown in [Figure 1]. The input circuit receives a mixed audio and interference tone 

signal and amplifies it and sends it to the XADC port on the Zedboard. The Zedboard samples 

the mixed signal by Analog to Digital Converter (ADC) and processes it through a Finite 

Impulse Response (FIR) Low Pass Filter (LPF), which is implemented by the XADC IP 

wizard [23] on FPGA and the SDK application program. The processed signal is then sent out 

to the output circuit that contains a Digital to Analog Converter (DAC) ladder and an op-amp, 

which is connected to a speaker. A simple GUI program is developed for the user to control 

the signal processing through a Universal Asynchronous Receiver-Transmitter (UART) serial 

port.  

The input audio plus interference signal from any source is first amplified through an op-

amp circuit and then sent to the Audio Signal Processor (ASP) via the XADC interface on the 

Zedboard for processing. Note that the user can choose to add or not to add the noise signal to 

the audio signal for input.  

The ASP is functionally comprised of the XADC IP and a Software Development Kit 

(SDK) application program. The XADC IP wizard is an analog mixed-signal module 

developed by Xilinx to configure the on-chip XADC to ADC block in 7 series FPGAs. The 

combination of the ADC with Programmable Logic (PL) enables a broad range of analog data 

acquisition and monitoring requirements. In Vivado, the XADC Wizard can be found under 

the IP Catalog. The wizard is a GUI that allows users to select the required block I/O and 

initialize the control registers for the required operation. The SDK application program is to 

implement an FIR digital filter. The filter samples are at 16 kHz (however, it is measured at 

14 kHz in the experiment). The input signal sampling process is done through timer interrupt 

control in the system to be implemented by a Vivado project. The output of the filter is 
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normalized before it is passed to the 10-bit DAC output circuit. The digital filter coefficients 

will be generated by the Matlab filter designer tool. 

 

 

Figure 1. The block diagram of the proposed audio signal processing system 

The filter designer tool is a quick way to design digital filters by setting filter performance 

specifications. It just needs to type filterDesigner at the Matlab command prompt for starting. 

When the digital LPF design is completed, we need to export the filter coefficients as signed 

16-bit integers to a C Header file, which is stored in a local folder and will be used by the 

SDK application program.  

Before writing the SDK application program, one needs to create a Vivado project by the 

IP Integrator in the Vivado Design Suite [19]. The Vivado project is used to support the 

hardware and software co-design. The detailed implementation procedure of the Vivado 

project will be addressed in the next section. Once the Vivado project is completed, one needs 

to export the hardware and launch the SDK. From the SDK window, one can start to write the 

filter application program, which involves two theoretical concepts about the sampled digital 

signal: convolution operation and normalization processing. 

1. Convolution Operation 

Convolution is the most important concept in Digital Signal Processing (DSP). Without 

convolution, the digital filter used in this system implementation would not be possible. 

Convolution in the time domain is multiplication in the frequency domain and vice versa. The 

standard mathematical expression for convolution is as follows [24]: 

 [ ]   [ ]   [ ]  ∑  [ ] [   ]   
          (1) 

where  [ ] is the input signal with N points from the index of 0 to N-1,  [ ] is called the 

impulse response of the digital filter system (also called the filter kernel) with M points from 

0 to M-1, and  [ ] is the output signal with N+M-1 points from 0 to N+M-2. The index n 

determines which sample in the output signal is being calculated. The programming 

implementation of the convolution operation can be a loop that makes n run through each 

sample in the output signal. To calculate one of the output samples, the index k is used. When 
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k runs through 0 to M-1, each sample in the impulse response h[k] is multiplied by the proper 

sample from the input signal x[n-k]. All these products are added to produce the output 

sample being calculated. A detailed implementation will be introduced in the next section. 

2. Normalization Processing 

Normalization is an important concept in the implementation of our audio processing 

system. Since the filter coefficients are fixed points and are saved as 16-bit integers, which 

means that the coefficients may be very large or very small within the range from -32768 to 

+32767. The processed samples will be sent to a 10-bit DAC output circuit. Hence, the 

desired output is within 0 to 1023. Commonly used normalizations in DSP are min-max 

normalization [25], mean normalization [26], and others [27][28]. Here we use modified 

mean normalization for the digitalized input. The corresponding formula is given as follows:  

      
   

         
             (2) 

where       represents the normalized data sample in a data set,  s is the current data point 

to be normalized,   is the mean of the data set, which has a minimum value      and 

maximum value     . This formula can be implemented in programming by the following 

algorithm: 

Step 1: Calculate the mean   of the data set including all the input samples. 

Step 2: Search the data set to find the minimum value      and maximum value     .  

Step 3: Calculate the normalized value       for the current data point using the formula. 

Step 4: Repeat the above step for the next data point until all data points are calculated. 

The processed signal (or specifically, the data set) will be sent to the external output circuit 

through the PMOD interface on Zedboard. The output circuit includes an R-2R DAC ladder, 

an op-amp circuit, and a speaker.  

A simple GUI panel is developed through Visual Studio for some controlling operations 

such as turning on the LPF, turning off the LPF, do normalization. The GUI is communicated 

with the Zedboard through a UART serial port.   

 

3. System Design and Implementation 

In this section, we discuss the detailed design and implementation issues for the audio 

signal processing system according to individual components: External input and output 

circuit, Zedboard hardware and software (Vivado project and SDK application program), and 

GUI.   

 

3.1. External input and output circuit 

[Figure 2] shows the input and output circuit diagrams. The input circuit is fed by a mixed 

audio and interference signal, which is amplified through the op-amp LM386 [29]. This is the 

input mixed signal that is usually adjusted to be very small to reduce the additive ambient 

noise.  

It is worth noting that a voltage divider should be added at the output of the op-amp. The 

output of the LM386 can be close to 5 V (maximum), while the XADC interface on Zedboard 

requires a nominal analog input range from 0 V to 1 V (the maximum value is 1.5 V) [18]. 

Therefore, the voltage divider must be used, otherwise, the XADC interface can be damaged! 
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The amplified input biased signal by the voltage divider will be connected to the VP terminal 

of the XADC interface, and the VN terminal is connected to the ground, as shown in [Figure 

3]. 

The processed data samples will be sent to the R-2R DAC ladder, which has ten terminals 

connecting to the PMOD interface. The Zedboard has five PMOD compatible headers. Four 

headers (JA to JD) interface to the PL-side of the Zynq-7000 AP SoC and connect to Bank 13 

(3.3V) from the Zedboard Schematic [30]. One header, JE, connects to the PS-side on MIO 

pins [0, 9-15] in MIO Bank 500 (3.3V) [30]. Each PMOD interface includes eight users I/Os 

plus two 3.3V and ground signals, as shown in [Figure 4].  

Our DAC has 10 bits so we need two PMOD headers. In the experiment, we assign 8 bits 

on the JC header and 2 bits on the JD header. The output of the DAC ladder becomes an 

analog signal, which is connected to the input of the output op-amp LM386 for amplification. 

The amplified signal is sent to the speaker. [Figure 5] shows the implementation of the input 

and output circuit on the breadboard. 

 

 

Figure 2. The external input and output circuit diagrams 

 

Figure 3. The XADC interface is to be connected to the voltage divider 
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Figure 4. The PMOD interface is to be connected to the DAC ladder 

 

 

Figure 5. The implementation of the input and output circuit on the breadboard 

3.2. Zedboard hardware and software  

When the XADC interface receives the mixed audio signal from the external circuit, the 

Zedboard will take over the main work for the proposed system. This will involve the 

Zedboard hardware itself, a Vivado project that implements the FPGA design for the 

proposed system, and an SDK application program that can create a software environment to 

enable the interaction between the completed hardware architecture exported from the Vivado 

project and the physical components on the Zedboard. 

1. Xilinx Vivado Block Design 

Vivado [19] is an integrated hardware development tool for creating a Verilog or VHDL 

design and converting the design into a configuration file so that it can be programmed to the 

Xilinx FPGA. The hardware design allows one to specify which microprocessors, memory 

blocks, and other peripheral IPs to use, how the different IPs are interconnected, the memory 

map (i.e., addresses for memory mapped IO/peripherals), and how the different I/O signals 

map to actual pins on the FPGA and thus the development board (e.g., Zedboard). The output 

from Vivado is the FPGA configuration file that describes the hardware of the system. 
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For our proposed system, we first create a Vivado project select and select the Zedboard as 

our default board. Then Vivado projects select and select the Zedboard as our default board. 

Then we create a block design in the IP Integrator and add the necessary IPs into the design 

work environment. [Figure 6] shows the complete Vivado block design, which is composed 

of the ZYNQ7 Processing System and XADC Wizard IPs. Note that during the IP connection 

process, we have used the function of “Run Connection Automation” and the IP Integrator 

automatically instantiates two further IP blocks: 

 

 

Figure 6. The complete block design diagram of the Vivado project for the proposed system  

a) Processor System Reset IP - provides customized resets for an entire processing 

system, including the peripherals, interconnect, and the processor itself. 

b) AXI Interconnect IP - provides an AXI interconnect for the system, allowing 

further IP and peripherals in the PL to communicate with the processing system. 

In the following, we briefly introduce the IPs and their configurations for the proposed 

system.   

 ZYNQ7 Processing System 

The Zynq7 PS IP is the software interface around the Zynq-7000 Processing System, 

providing a logical connection between the PS and the PL while assisting the user to integrate 

custom and embedded IPs with the processing system using the Vivado IP integrator. The key 

features include enabling/disabling I/O peripherals, PL clocks and interrupts, and 

configurations of multiplexed IO (MIO), extended MIO (EMIO), DDR, and security.  

How to configure the PS IP to fit into the proposed system?  

Double click on the "ZYNQ7 Processing System" IP and navigate to the "MIO 

Configuration" page on the pop-out "Re-customize IP" window, then find the "EMIO GPIO 

(Width)" option under the "I/O Peripherals" and set it to be 10 (as our system uses a 10 bit 

DAC). Click OK to close the window. Now we can see a "GPIO_0[9:0]" port appears on the 

PS IP. Right-click on the port and select "Make External" to add an output terminal and 

change its name to "myDAC", as shown in Figure 6.  
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 AXI Interconnect IP 

The AXI Interconnect IP connects one or more AXI memory-mapped master devices to 

one or more memory-mapped slave devices. The AXI interfaces conform to the AMBA AXI 

version 4 specifications from ARM [x], including the AXI4-Lite control register interface 

subset. This IP uses well-defined master and slave interfaces that communicate via five 

different channels: Read address, Read data, Write address, Write data, and Write a response.  

An AXI Interconnect manages the AXI transactions between AXI masters and AXI slaves, 

allowing multiple AXI masters to communicate with multiple AXI slaves. It can contain a 

few different digital components such as arbiters, decoders, multiplexers, protocol converters, 

register slices, and clock converters.  

 XADC Wizard IP 

The XADC Wizard IP [23] provides an easy way to configure the on-chip XADC analog 

to digital converter block in 7 series FPGAs to the user's desired mode of operation with a 

graphical interface. The graphical interface generates an HDL wrapper with all the needed 

configuration attribute settings, providing an easy way to integrate the XADC block into the 

HDL design.  

The key features include easy configuration of required modes and parameters (ADC 

conversion rate, calibration settings, dynamic reconfiguration port (DRP) interface, etc.), 

simple interface for channel selection and configuration, ability to select/deselect alarm 

outputs and to set alarm limits for temperature and voltage levels, calculating all required 

parameter settings and register values from user inputs. 

How to configure the XADC Wizard IP to fit into the proposed system?  

Double-click on the XADC Wizard IP and the "Re-customize IP" window pops out, which 

includes five tabs: Basic, ADC Setup, Alarms, Single Channel, and Summary. In the "Basic" 

tab, keep all settings as default. However, in the "ADC Setup" tab and "Alarms" tab, uncheck 

all that is checked (One will find a few ports have disappeared from the IP icon on the work 

environment). In the "Single Channel" tab, make sure to select the channel as "Vp Vn". 

Finally, we can see a summary of all our settings in the "Summary" tab, as shown in [Figure 

7]. 

 

 

Figure 7. The configuration summary of the XADC Wizard IP  
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Click OK to close the "Re-customize IP" window and go back to the system block design 

diagram. Right-click on the Vp_Vn port of the XADC Wizard IP and select "Make External" 

to add an input terminal with the name "Vp_Vn_0", as shown in [Figure 6]. 

After the connection is done, click the validation checkbox to get a “Validation 

Successful” message. Then go to the "Sources" pane and right click on the block design file 

name and select "Create HDL Wrapper" to add the top-level HDL wrapper around the block 

design because a block design source cannot be synthesized directly. 

Before running synthesis for the block design, we need to add a constraints file with the 

suffix XDC to the Vivado project. Our constraints file is displayed in Figure 8. Note that the 

name used in the constraints file must be the same as that name shown in the block design 

diagram (i.e., myDAC[9:0]) for mapping it to the real package pin name on the Zedboard 

(i.e., PMOD JC and JD pins). 

Now it is ready to run synthesis, implementation, and generate the bitstream. A bitstream 

includes the description of the hardware logic, routing, and initial values for both registers 

and on-chip memory.  
 

 

Figure 8. The constraints file for the proposed system  

2. Xilinx SDK Software Development 

After the bitstream file is successfully generated, we can export the hardware and launch 

SDK [20]. The Vivado project’s new SDK workspace will pop out with a folder named 

design_1_wrapper_hw_platform_0 generated as shown in [Figure 9], which contains the 
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bitstream and hardware spec exported from Vivado. Now it is ready to start our SDK 

application program.  

First of all, we must create a new application project (i.e., my_true_adc) so we can start 

writing code to drive our hardware, which will generate two additional folders, as shown in 

Figure 9: my_true_adc and my_true_adc_bsp. The former one is the actual application folder, 

where our main program will be written here in C/C++ programming language. The latter is 

the Board Support Package (BSP), which is a collection of libraries and drivers that form the 

lowest level of the software application stack. 

Next, we discuss our design and implementation in the main program (i.e., main.c). The 

main program implements the FIR LPF. It is sampling at 16 kHz (it is measured at 14 kHz in 

the experiment). Therefore, the sampling rate of the FIR LPF is designed using 14 kHz. We 

use Matlab Filter Designer to design the FIR LPF and generate the required filter coefficients 

for convolution calculation. In the programming, the sampling of the 16-bit ADC is done 

through timer interrupt control. The output of the filter is normalized before it is passed to the 

10-bit DAC. The 10-bit DAC is controlled by using the two PMOD headers, i.e., the JC 

header connecting to the first 8 bits and the JD header connecting to the last 2 bits. The main 

program also communicates with the GUI via a serial port to turn on/off the filter and do 

normalization operations. The GUI implementation will be introduced in the next subsection. 

 

 

Figure 9. The launched SDK workspace for application development 

 LPF Coefficients Generation 

The FIR LPF is designed using the Matlab filter designer tool [22]. In our experiment, we 

use the window method (i.e., Blackman window) with 100 taps (however, when it is exported 

to a C header file, there will be 101 taps). The cutoff frequency is set to 6 kHz and the 

sampling frequency is 14 kHz. The LPF configuration is shown in Figure 10. The filter 

coefficients file is exported as a signed 16-bit integer and used by an array in the main 

program. The array will be used in the convolution calculation with the sampled input data.  
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Figure 10. The FIR LPF design by the Matlab filter designer tool 

 Programming Implementation for Convolution  

The filter processing is implemented by the convolution operation. From Equation (1), the 

convolution algorithm is performed between two data sets (input data x[n] and impulse 

response h[n]); in our real-time application, a circular buffer of length 100 (the same length as 

the number of coefficients) is used to implement the convolution between the sampled data 

and the obtained coefficients by Matlab. 

Since this circular buffer has a finite number of lengths, the main program will initialize a 

data array of size 101 with all zeros and start to sample the input signal and store the sampled 

data in the array, which is combined with the coefficients array for convolution calculation. 

Note that for every sampled data in the circular buffer, the convolution is performed to 

produce filtered output data. It will continue until all the sampled data in the circular array are 

finished. After that, the next new sampled data will replace the oldest sample to start a new 

round of operation. 

The specific code implementation for the convolution operation is done by a timer 

Interrupt Service Routine (ISR), as shown in [Figure 11]. When the ISR starts, the program 

will first read the ADC module. By default, the variable counter holds the value of 0. For 

every sampled data read, there needs an accumulator to loop 101 times for the multiplication 

between the sampled data and the filter coefficients. It also checks if the variable 

current_position is 0. If it is 0 then the program assigns it to start at 100; otherwise, it will 

decrement until it reaches 0. Outside the for-loop, the variable counter counts in ascending 

order. Once it is larger than 100, it will be reset to 0.  
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Figure 11. The code implementation for the convolution operation 

 Programming Implementation for Normalization 

The normalization algorithm is implemented based on Equation (2). The input is the filter 

output (which is to be normalized); the normalized output is sent to the DAC. A code snippet 

of the normalization is shown in [Figure 12].  
 

 

Figure 12. A code snippet of the normalization  
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Besides the above key implementation, other code blocks are needed for the SDK 

application, such as UART serial port initialization, interrupt initialization, timer 

initialization, ADC initialization, etc. They are not discussed here due to space limitations. 

However, a flowchart of the overall SDK application program is provided in Figure 13. 

After the SDK application program is done, we can program FPGA from the SDK menu to 

run the program on the hardware architecture designed earlier. This is emulated on the FPGA 

on the Zedboard, which means that the FPGA will be configured to make the software and 

hardware work. Specifically, we select “Program FPGA” from the Xilinx Tools menu to open 

a dialog box and make sure the bitstream file generated earlier appears there. Click the 

“Program” button to program FPGA. Before running the Launch on Hardware (GDB)”, we 

need to open the C# GUI application, which is implemented in the next subsection.  
 

 

Figure 13. The flowchart of the SDK application program 

3.3. GUI application 

A simple C# GUI application is developed through Visual Studio [21] for the user to 

control the FIR LPF. It has three functions: Turn On LPF, Turn Off LPF, and Do 

Normalization. They are implemented by three buttons. When a button is clicked, a 

corresponding command character will be sent to the SDK application program. Specifically, 

the button “Turn On LPF” sends character “f”, the button “Turn Off LPF” sends character 

“n”, and the button “Do Normalization” sends character “N”. The GUI panel is shown in 

Figure 14, where the menu “Serial Port Settings” is used to trigger another form for serial port 

configuration.   
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Figure 14. The C# GUI panel and the serial port configuration  

4. Experimental Results 

By putting it all together, we are now ready to run the whole audio processing system. This 

includes adding +5 V power to the external input and output circuit, programming FPGA and 

running the Launch on Hardware (GDB) from the SDK platform, running the C# GUI from 

the Visual Studio, and turning on a digital oscilloscope for signal measurement. The real 

experiment setting is shown in [Figure 15].  

Our audio signal is randomly picked from music on Youtube, and the interference signal is 

picked from an online tone generator website (e.g., https://www.szynalski.com/tone-

generator/). The music plus interference signal is fed into the input circuit from the laptop 

through an audio cable. The output signal is checked through a speaker. We can also use a 

digital oscilloscope with an FFT display function for watching the signal spectral 

characteristics. When running the C# GUI application, make sure to connect the serial port 

successfully through the “Serial Port Settings” menu. After running the Launch on Hardware 

(GDB), the system is ready to take commands from the GUI over the serial port. Some 

experiment results measured from the oscilloscope are studied as follows. 
 

 

Figure 15. The audio signal processing experimental system   
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[Figure 16] shows an input mixed signal (music + interference tone) before the FIR LPF is 

performed. The tone frequency is set to 6.8 kHz as our LPF cutoff frequency is 6 kHz (we 

want to check the effectiveness of the designed LPF). In Figure 16, we also use the FFT 

function of the oscilloscope to watch the spectral characteristics of the input signal. It is seen 

the interference tone signal there. Then, we click the “Turn On LPF” and “Do Normalization” 

buttons to do filtering and normalization for the input signal. In [Figure 17], we can observe 

the normalized signal in the time domain and its spectral characteristics. The interference tone 

has been filtered.  

Now we use another FIR LPF in the experiment. We first use the Matlab filter designer 

tool to design an FIR LPF with a cutoff frequency of 4 kHz and other parameters the same as 

before. Then we get the filter coefficients file and use it in the SDK main program. Figure 18 

shows an input mixed signal (music + interference tone) in the time domain and its FFT 

display. At this time we set the interference tone to 5 kHz. After the input mixed signal is fed 

into the new LPF and the normalization is performed, we can see the normalized signal in the 

time domain and its spectral characteristics in [Figure 19]. As expected, the interference tone 

has also been filtered. 
 

 

Figure 16. The audio signal processing experimental system 

 

Figure 17. The audio signal processing experimental system   
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Figure 18. The audio signal processing experimental system   

 

Figure 19. The audio signal processing experimental system   

5. Conclusion 

We developed an FPGA based audio signal processing system on the Zedboard. The 

system includes external input and output circuit created on the breadboard, a Vivado project 

for hardware implementation and an SDK application program for software implementation, 

and a C# GUI application for the serial port communication with the Zedboard. In the SDK 

application development, we used the Matlab filter designer tool for an FIR LPF design and 

generated the filter coefficients file for the SDK programming. The filtering was designed by 

the convolution operation and implemented through C/C++ programming. A modified mean 

normalization algorithm was proposed to apply to the filtered data samples. Finally, the 

integrated system was tested through a mixed music and interference tone signal as the input, 
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ADC processing, LPF processing, and DAC processing to a speaker. We also used a digital 

oscilloscope to watch the input and output signals in the time domain and frequency domain. 

Experiment results verified the successful implementation of the audio signal processing 

system on FPGA (Zedboard). This paper provided hands-on experience in FPGA based 

embedded system design and implementation through Xilinx Vivado and SDK tools as well 

as C# GUI programming.   
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