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Abstract 

In the present age, the amount of malware is growing very rapidly, and the kinds and 

behaviors of malware are becoming very diverse. This poses social security threats such as 

data loss, leakage of personal and financial information, system damage, and the destruction 

of IT infrastructures. Unlike existing malicious codes, modified or new types of malicious 

codes are being identified, and it is very inefficient for analysts to manually analyze one by 

one from the beginning. Malware analysts to solve these problems are analyzed and studied 

effective way to reduce the time and cost of analysis. In this paper, we propose a way to 

express the characteristics by using the API Sequence for malware detection and 

classification. It compares and analyzes several existing expression methods and verifies the 

efficiency through actual malicious code samples. Using the expression method proposed in 

the paper, we detected four malicious behaviors: DLL Injection, Downloader, Key Logger, 

and Anti debugging. As a result, it was detected more than the conventional detection method, 

and it can be seen that the more complex the malicious behavior, the higher the detection 

efficiency. In addition, although static analysis was adopted as the main method, the flow of 

malicious behavior can be analyzed because it searches for execution condensation. 
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1. Introduction 

Recently, with the rapid development of network and ICT technologies, the amount of 

malware has been increasing exponentially. In addition, malware variants that are made by 

altering existing malware have also been increasing rapidly, and the forms of malware attacks 

are also becoming quite diverse [1]. To prevent and respond to such security threats, analysts 

and anti-virus program producers are trying to maximize the efficiency of malware analysis 

using various analysis methods. 

In general, malware analysis is performed in two formats, static analysis and dynamic 

analysis. In this paper, we propose a method of expressing malware characteristics using 

static analysis-based execution path search to maximize the efficiency of malicious behavior 

detection. Since the process is performed at the code level, it is based on static analysis, but 

you can expect the effect of dynamic analysis because it tracks the binary execution path to 

understand the behavior. 
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The composition of this paper is as follows. In Chapter 2, the methods of malicious 

behavior detection in previous studies are introduced and the limitations of those methods are 

mentioned. In Chapter 3, the method proposed in this paper is introduced. In Chapter 4, 

experiments are conducted based on the proposed method, the results are verified, and the 

efficiency of the method is mentioned and in Chapter 5, this paper is finished with 

conclusions. 

 

2. Related works 

Previous binary code based static analysis studies have been carried out by extracting the 

features of attributes in codes. Statistical algorithms were generally grafted on such studies 

and utilized for analysis. Such statistics are mainly utilized for comparison with normal 

programs. For instance, the statistics of op codes or strings extracted from the malware code 

sections are compared with those of general normal pro-grams for utilization in analysis. 

These methods simply collect signatures and identify malicious behaviors by extracting 

information on the structures of executable files. The most basic methods among the 

sequence-based malicious behavior identification methods mentioned above are those that list 

the sequences of op codes or the sequences of strings. These studies have been developed to 

carry out studies that identify malicious behaviors by using the n-gram technique [2], which 

cuts the information in the file according to a certain standard and processes the cut pieces of 

information. In addition, studies intended to express the byte sequences for binary codes with 

n-grams with a view to classifying malware were also carried out [3]. Such methods of 

collecting signatures for the internal structure of a file can be defined with the unique DNA of 

the file [4] and are used for similarity and classification of malware based on the foregoing. A 

clear and definite basis for judging malicious behaviors is the discovery of the functions used 

by malware. Previous studies have attempted to identify or classify malware by processing 

such APIs within programs. [5] First, methods that list the sequences of APIs, or collect log 

information on the use of APIs to determine malicious behaviors are representative. Since 

APIs are functions used when the program is executed, such APIs are either statically 

collected [6] or dynamically monitored [7]. In addition to the methods that simply list the 

APIs, there are methods that extract the features of malware according to the frequency of use 

of the APIs inside the file [8]. The above studies are statistical methods that have advantages 

such as not so large amounts of data to be stored, small amounts of operation, and high speed. 

However, they cannot respond to malware in real time and cannot accurately judge diverse 

malware behaviors because they are based on simple statistics. To compensate for the 

foregoing, some studies carried out recently grafted various algorithms onto the statistical 

properties as such to detect malicious behaviors. The eigenvalues of op code based graph 

images can calculated by measuring the distances between the nodes based on the K Nearest 

Neighbor Algorithm (KNN Algorithm), which is one of the machine learning algorithms [9]. 

In addition, the processed strings can be reprocessed with the Logistic Common Subsequence 

(LCS) algorithm to measure the eigenvalues of the strings [10]. In the studies introduced 

above, static analysis-based methods collect signatures or list the signatures in sequence, but 

cannot identify the accurate features of behaviors because they are based on code-based 

feature extraction. To compensate for this this problem, dynamic analysis is adopted as the 

main detection method [11] or a mixture of static and dynamic analyses is adopted [12]. 

However, since dynamic analysis is a method that directly executes malware for analysis, it 

has disadvantages of energy efficiency and analysis time [13]. In this paper, a method that is 

based on static analysis but tracks the execution flow will be proposed so that the effect of 
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dynamic analysis can be expected to compensate for studies in which static and dynamic 

analyses are mixed. 

 

3. Proposed method 

The core of the static execution path search in this paper is that the instruction set and 

subroutine are divided into true and false ones according to the branch instruction before they 

are searched. As for the branch point, comparison instructions such as cmp and test that occur 

before the branch instructions are issued are made through logical operation instructions such 

as xor. We divide true and false marks according to the branch instructions to search all 

instruction sets and subroutines. 

The codes on the left of [Figure 1] are binary codes for showing static execution path 

searches. After CMP instruction in the fourth line, the binary code loc_401460 is branched 

into the instruction sets of loc_40148 due to the JNZ in the eighth line, which is a branch 

instruction. If the result of the comparison is true, the binary code will be branched into 

loc_401488, and if false, into loc_401484. To summarize finally, loc_401460 is a binary code, 

which is branched into loc_401488 when it is true and into loc_401488 when it is false. The 

binary code in Figure 1 is visualized as shown in the figure on the right. This mechanism is 

applied equally even when there are subroutines in the instruction set. 

 

Figure 1. Example of static execution path exploration 

In this study, malicious behaviors are detected based on Windows APIs. In previous 

studies, pieces of malware API information were simply collected based on signatures or 

simply listed as with n-grams to detect the similarity and behaviors of malware. These 

methods are efficient for simple classification of pieces of malware and the detection of the 

variants of the relevant pieces of malware because they simply list the APIs but they have a 

shortcoming that they cannot accurately detect the behaviors of malware. 

The proposed method can detect malicious behavior based on API information found in 

binary execution path search. However, there is a problem that the number of APIs is too 

large to make the APIs into nodes. To solve such problems, the APIs will be reclassified into 

25 upper categories through the functions of the APIs so that behaviors can be clearly judged 

and the temporal efficiency can be enhanced. For instance, Create File and Create Process are 

APIs that performs functions related to 'files' or 'processes' and APIs such as Get System 

Time and Get Local Time have the function to collect information on 'time' in the system. 

1 loc_401460 :   

 

2  mov eax,[esp+argc] 

3  sub esp,44h 

4  cmp eas,2 

5  Push ebx 

6  push ebp 

7  push ebi 

8  jzn loc_401488 

9 loc_401484:   

10  xor eax,eax 

11  jmp short loc_40148D 

12 loc_401488:   

13  sbb eax,eax 

14  sbb eax,0FFFFFFFFh 
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Previous API sequence based static analysis studies had a shortcoming of being unable to 

accurately understand malware behavior because they simply listed or collected APIs. 

However, the method proposed in this study enables the understanding of the interactions 

between APIs because it uses execution path searches despite that it is a static analysis so that 

the effects of dynamic analysis can be expected.  

As a representative example, when the malicious behavior of Trojan.Graftor.D4C56B has 

been analyzed by the method proposed in this paper, the graphic image shown in [Figure 2] 

appears. 

[Figure 2] shows that the malware uses APIs such as String, System Information, Module, 

and Process. In particular, a detailed analysis of the red shaded API behaviors is as follows. In 

light of the fact that the relevant APIs use processes such as Open Process, Process32Next, 

Write Process Memory, and Virtual AllocEx and APIs used for manipulation of dlls, the API 

behaviors can be confirmed as DLL injection that inserts code into the remote process of 

calling Load Library to forcibly make the DLL to be loaded into the context of the relevant 

process. With regard to the behaviors shown in [Figure2], the existing simple API collection 

and listing method, the API Monitor based dynamic analysis, and the method proposed in this 

paper are compared as shown in [Table 1]. 

 

 

Figure 2. Trojan. Graftor.D4C56B’s malicious behavior 

Table 1. Comparison with dynamic analysis 

API Sequence 

listing method 

….LoadLibrary VirtualAllocEx lstrcmpA … OpenProcess  GetCurrentProcessID 

Process32Next … GetModuleHandleA GetProcAddress getCurrentProcess … 

CreateRemoteThread … 

Dynamic  

analysis 

… NtCreateMutant … Process32Next OpenProcess VirtualAllocEx GetProcAddress 

WriteProcessMemory CreateRemoteThread … NtClose … 

Proposed 

method 

...OpenProcess → (True)VirtualAllocEx, → (True)WriteProcessMemory → 

(Normal)GetModuleHandleA → (Normal) CreateRemoteThread … 

 
4. Results and discussion 
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The test set is 1236 pieces of randomly generated malware and all of them include an IAT 

(Import address Table) because the method proposed in this paper analyzes the interactions 

between APIs. First, through the identified common behavior graphs, each malicious behavior 

was analyzed based on the data set consisting of 1,236 pieces of malware. 

 

  

DLL Injection Downloader 

 
 

Key Logger Anti debugging 

Figure 3. Comparison of malicious Behavior detection 

[Figure 3] shows graphs of comparison between the method proposed in this study and the 

existing detection methods. It can be seen that the proposed methods show larger numbers of 

detection of the malicious behaviors, DLL injection and Anti Debugging when compared to 

the existing detection methods. However, it can be seen that the method proposed in this 

study shows very similar numbers of detection of other malicious behaviors such as 

Downloader and key logger when compared to the existing detection methods. In other words, 

the two malicious behaviors, Downloader and Key Logger are composed of two nodes, and 

the marks of the intermediate lines that show the interactions are True, so that only one 

sequence of each of the relevant behaviors is identified. This means that the structure of the 

sequence is too simple to detect malicious behaviors, which is the reason why the ccuracy of 

detection is lowered. However, it can be seen that the more complex malicious behavior, the 

higher the detection efficiency. 

[Figure 4] is a graph showing the detection efficiencies according to the behavior 

complexity. The relevant efficiencies shown in the graph are the efficiencies of the method 

proposed in this paper in comparison with the highest efficiencies shown in the existing 

studies. The complexity of malicious behaviors in this study paper may also be regarded as 

the complexity of sequences. The efficiency of the method proposed in this paper was shown 
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to be 105% compared to existing studies when the complexity of sequences was low because 

the grounds for detection are reduced when the complexity decreases. On the contrary, the 

efficiency of the method proposed in this paper was shown to be 158% compared to existing 

studies when the complexity of sequences was high because the grounds for detection 

increase when the complexity increases. This means that the more complex the malicious 

behaviors, the higher the efficiency of detection. 

 

Figure 4. Detection efficiencies according to behavior complexity 

5. Conclusions 

Although static analysis is the main analysis, the method proposed in this paper enables 

analyzing the flow of behaviors because it searches execution paths. This means that although 

static analysis is adopted as a main method, the advantages of dynamic analysis that directly 

executes APIs to analyze the APIs are applied to method proposed in this paper. In this study, 

execution flows were analyzed according to branch instructions and the interactions of APIs 

collected during the flows were analyzed.  

In future studies, the frequencies of behaviors will be added to prepare grounds for 

judgment of detailed behaviors. The utilization of such numerical data can be extended to 

apply machine learning and various statistics-based algorithms, and based on such data, 

malware will be visualized and malware similarity will be calculated. 
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