
Journal of Human-centric Science and Technology Innovation

Vol.1, No.1 (2021), pp.43-48

http://dx.doi.org/10.21742/jhsti.2021.1.1.01

JHSTI

Copyright ⓒ 2021 Global Vision Press (GV Press)

IoT Malware Static and Dynamic Analysis System

Sungwon Lee1, HyeonKyu Jeon2, GiHyun Park3, JiHun Kim4, Jonghee M. Youn5

1,5Dept. Of Computer Engineering, Yeungnam Univ., 280 Daehak-Ro, Gyeongsan,

Gyeongbuk, Republic of Korea
2Korea Appraisal Board, 291, Innovalley-ro, Dong-gu, Daegu, Republic of Korea
3Korea Institute of Arboretum Management, 10, Jeongbu 2cheongsa-ro, Sejong-si,

Republic of Korea
4Daegu Gyeongbuk Institute of Science and Technology, 333, Techno jungang-daero,

Hyeonpung-eup, Dalseong-gun, Daegu, Republic of Korea
1noke15@ynu.ac.kr, 2in2etv@in2e.tv, 3shwo8713@gmail.com, 4f13521@naver.com,

5youn@yu.ac.kr

Abstract

As the spread of IoT systems increases, security of IoT systems has become very important

for individuals and companies. IoT malware has been increasing exponentially since the

emergence of Mirai in 2016. Since the IoT system environment is diverse, IoT malware also

has various environments. In the case of the existing analysis system, there is no environment

for dynamic analysis by running IoT malware of various architectures. It is inefficient in time

and cost to construct an environment one by one to analyze numerous malicious codes and

proceed with analysis. There are so many IoT malware to be analyzed that an efficient

method of analysis is required. The goal of this paper is to improve the problems and

limitations of the existing analysis system and provide a variety of analysis environments. In

this paper, we build a system that automatically analyzes basic IoT malware. It provides an

analysis environment by constructing a static analysis and dynamic analysis system suitable

for various IoT malware. In the text, the analysis system is applied to the actual collected

malicious code to check whether it is analyzed and to derive statistics. It describes the

advantages of the designed system and the improvement of existing limitations through

comparison with the most commonly used automation analysis tools.

Keywords: Automated analysis, IoT malware classification, IoT malware analysis

1. Introduction

After Mirai malware [1], which occurred in 2016 and attacked IoT devices around the world,

interest in the IoT security has been continuously increasing. Since the emergence of Mirai

malware, malicious codes and variants targeting IoT devices have increased [2][3].

The present study is intended to propose methods to efficiently analyze those pieces of IoT

related malware that appear in exponential quantities as such and utilize the relevant results to

contribute to the IoT security industry with an ultimate goal of effectively responding to IoT

malware.

Article history:

Received (September 29, 2020), Review Result (October 30, 2020), Accepted (December 12, 2020)

IoT Malware Static and Dynamic Analysis System

44 SungwonLee, HyeonKyuJeon, GiHyunPark, JiHunKim, Jonghee M. Youn

Since the IoT system environment is diverse, IoT malware also has various environments.

In the case of the existing analysis system, there is no environment for dynamic analysis by

running IoT malware of various architectures. The analysis system designed in this paper

supports various architectural environments to analyze IoT malware, and automatically

analyzes IoT malware through dynamic analysis after static analysis.

The goal of this paper is to improve the problems and limitations of the existing analysis

system and provide a variety of analysis environments.

2. Related works

Since most IoT devices are based on the Linux operating system following recent

development of the IoT industry [4], the risk of those pieces of Linux malware that target

those IoT devices for attacks is coming to the fore. In order to respond to security threats,

research on various IoT malware analysis systems for efficient analysis is ongoing [5][6].

[7] proposes an automated analysis tool for Linux malware pieces. [7] fabricated the tool to

enable the user to identify the results of various analyses on one report using Python scripts

for many analysis tools used in Linux. It enables the analyses of various script files In

addition to Elf file types and enables various analyses ranging from basic static analysis to

dynamic analysis such as network analysis and memory analysis. However, some of the

analysis tools used in focus only on x86 elf. Therefore, they have limitations in light of the

fact that IoT devices use embedded system-based architectures.

[8] also statistically and dynamically analyzed Linux malware pieces to compile the

characteristics of the results. It analyzed not only X86-64 but also diverse CPU architectures

such as MIPS and ARM through QEMU and compiled the statistics of the results of analyses

of more than 10,500 pieces of malware thereby enabling users to identify the statistics of the

malicious behaviors of Linux malware. [8] is very interesting since there studies related to the

statistics of analyses of massive Linux malware and the characteristics were not actively

conducted in the past. The method in [8] has very similar directivity to that of the purpose

pursued by the present study, but the present study has differences in that it focuses further on

the features of malware pieces running on IoT devices beyond the statistics of Linux malware.

3. IoT malaria analysis system

In this study, to analyze IoT malware and check the results, a new automated malware

analysis system was designed and implemented, and using the system, a massive Linux

malware analysis environment was constructed. The malware analysis system proposed in the

present paper is an automated analysis tool that can use both static analysis methods and

dynamic analysis methods in an integrated manner.

The overall structure of the analysis environment is as shown in [Figure 1]. It consists of

an analysis framework in which actual analysis tasks are managed, a front-end for user

designation to determine detailed settings of the framework and task contents, a VM manager,

agents, and analyzer scripts. The front-end is an execution file that refers to the framework,

and is a component that specifies various environment settings for analysis and starts analysis

tasks. It can be implemented in diverse forms as needed by the user, such as CLI and GUI

applications or web applications.

Journal of Human-centric Science and Technology Innovation

Vol.1, No.1 (2021), pp.43-48

Copyright © 2021 Global Vision Press (GV Press) 45

Figure 1 Structure of analysis environment

To support dynamic analysis of systems that use i386, amd64, and diverse other

architectures, the VM manager and VM agent were implemented based on QEMU, which is

virtualization software with the full-system emulation function. The VM manager and VM

agent support parallel execution by the task scheduler of the analysis framework for smooth

progression of analyses of a larger number of file sets and can analyze file sets consisting of

multiple architectures by designating tag strings to individual VM profiles.

In the local system of the VM exist an agent and analyzer scripts as components that

receive commands from the sandbox host and actually carry out analyses. In the VM, the

agent receives commands from the sandbox host, downloads the actual analysis information

and the latest analyzer script, and starts the analysis. It also uses the SMB protocol to transmit

analysis result files and inform the current state of the VM to the host. Since the analyzer

scripts are newly downloaded every time through the agent, analysis codes can be flexibly

revised even without changing the VM snapshot and detailed analysis options including the

trace mode divided into strace and ltrace are set through the parameters received through the

agent.

The analysis system is an assembly that includes a static analyzer that uses the existing

analysis tools for Linux, a newly designed dynamic analyzer, and diverse task objects for

handling and processing of data at various points before and after analysis tasks and was

implemented as a DLL that operates on .NET Core Runtime. The dynamic analyzer, where

malware is actually analyzed, conducts primary analysis using the tools basically provided by

Linux and several open source based tools, and classifies the results of analysis into five

categories; trace, state monitoring, network, process, and others. A list of the tools used

internally can be found in [Table 1].

Table 1. List of tools used in analysis

Category Tool

Trace strace, ltrace

State monitoring pstree, lsof, service, netstat, lastlog, procfs, etc.

Network tcpdump, tshark

Memory volatility

Static analysis MinGW(ldd, file, readelf, strings), upx

IoT Malware Static and Dynamic Analysis System

46 SungwonLee, HyeonKyuJeon, GiHyunPark, JiHunKim, Jonghee M. Youn

Figure 2 Entire analysis pipeline

The entire analysis pipeline was built using the analysis environment. The analysis pipeline

contains various elements separately implemented for high-level data analysis for our analysis

tasks, which consist of sets of report generation tasks and report summarization tasks and a

set of Yara rules newly prepared for classification of Linux malware. Our analysis pipeline is

as shown in [Figure 2].

The submitted malware samples underwent a static analysis stage, dynamic analysis stage,

and analysis result interpretation stage and the malware was finally classified thereafter. In

the static analysis stage, static analysis was conducted using the static analysis tools

mentioned in Table1 to recognize file types, identify ELF headers, check whether packed or

not, and extract character strings. When dynamic analysis had been judged possible through

the static analysis, dynamic analysis was attempted using the prepared VM. In the dynamic

analysis, changes in the process was identified using pstree and service commands, and the

lost of loaded libraries was extracted using the lsof command. Network behaviors were

identified using netstat and tcpdump. In addition, additional information such as the records

of the shell commands, login records, and mount information was identified.

In the result interpretation stage, the information extracted in the static analysis and

dynamic analysis stages was used to synthetically judge through which paths the malware

actually approaches, what kind of network behaviors it conducted, what kind of

vulnerabilities it utilizes, and which attack surfaces it aims at. Therefore, there were many

problems in applying those rule data to the result interpretation stage. In addition, in the case

of those pieces of malware that were targeting Linux, there were difficulties in obtaining the

information necessary for malware classification because previous studies were insufficient

compared to Windows malware. Consequently, the task to construct the entire analysis

pipeline was carried out through repetitive trials and errors, and the framework was gradually

improved so that the tasks to reprocess and reinterpret the generated reports could be carried

out independently.

4. Results and discussion

Journal of Human-centric Science and Technology Innovation

Vol.1, No.1 (2021), pp.43-48

Copyright © 2021 Global Vision Press (GV Press) 47

The number of data samples analyzed for IoT malware is 3,098 in total and mainly those

files that have Linux-based ELF formats were collected. Among the 3,098 Linux-based ELF

format files, those files that satisfy the conditions are classified into IoT malware judging that

they are operable in IoT systems even if they were not originally intended for IoT systems.

Table 2 Classification of the architectures of collected samples

 samples Percentage

Intel 80386 1,784 57.59

AMD 64 181 5.84

ARM 737 23.79

AArch64 29 0.94

MIPS 148 4.78

SuperH 41 1.32

PowerPC 46 1.49

Sparc 58 1.87

MC68000 21 0.68

ARCompact 1 0.03

Tilera TILE-Gx 49 1.58

Intel MCU 1 0.03

Unknown 2 0.06

total 3,098 100

As can be seen in Table 2, the 3,098 samples can be classified into 12 architectures except

for two samples with unknown architectures that cannot be classified. There are 332 (10.71%)

packed files and 18 (0.58%) files for VM detection among the collected samples. When

analyzing the files in the analysis environment, those packed files that cannot be easily

analyzed statically can be analyzed dynamically and those VM detection files that cannot be

easily analyzed dynamically can be analyzed statically. The ideal situation aimed at is to

analyze all 3,098 malwares with 12 architectures identified through the designed analysis

automation system, but the malware actually analyzed is 2,896 files with 5 architectures of

Intel 80386, AMD64, ARM, MIPS, and PowerPC. By analysis, 93.48% of malicious code

files were analyzed.

Network behavior classification and vulnerability classification, which are part of the

analysis results, are summarized in [Tables 4] and [Table 5]. The percentages were prepared

based on the entire number of the malware samples, which is 3,098.

Table 3. Network based statistics

Networking Information Samples Percentage

Browser Info 154 4.97%

Network Command 1087 35.09%

Network Info 738 23.82%

Network Strings 631 20.37%

SSL 109 3.51%

Web Access 602 19.43%

IoT Malware Static and Dynamic Analysis System

48 SungwonLee, HyeonKyuJeon, GiHyunPark, JiHunKim, Jonghee M. Youn

Improvements are confirmed through comparison with other systems mentioned in related

works. Limon Sandbox [7] is easy to use and well implemented in basic analysis functions.

But basically, only 63.42% of 1,965 individuals can analyze 3,098 malwares because only

two architectures of Intel 80386 and AMD64 can be analyzed using VMware virtual

machines.

Padawan analysis system [8] is limited to 30 analysis per day, and it takes a total of 103

days to analyze 3,098 malwares. In addition, since it is not an open code system, but a system

that can only check and receive specified data, if the user does not have the desired data, the

analysis environment is meaningless or the analysis must be performed directly.

Table 4 Vulnerability based statistics

Attack Surface Samples Percentage

Command Injection 693 22.37%

SQL Injection 73 2.36%

XSS 4 0.13%

XXE 24 0.77%

5. Conclusion

In this paper, we built a system to analyze IoT malware. It was designed with the aim of

reducing analysis time by providing basic analysis and providing various analysis

environments. To analyze IoT malware, it goes through static and dynamic analysis steps, and

uses existing open source tools.

Existing automated analysis systems have improved limitations and limitations in

analyzing IoT malicious codes, and as a result of analyzing actual malicious codes, it was

possible to provide various analysis environments and obtain and process various data.

Acknowledgements

This research was supported by the Yeungnam University Research Grant and the National

Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)

(No.2018R1D1A1B07050647).

References

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, and D. Kumar, “Understanding

the mirai botnet,” security symposium, USENIX, pp.1093-1110, (2017)

[2] M. Kuzin, Y. Shmelev, and V. Kuskov, “New trends in the world of IoT threats,” Kaspersky, Sep (2018)

[3] E. Bertino, and N. Islam, “Botnets and internet of things security,” Computer, pp.76-79, (2017)

[4] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDOS in the IoT: Mirai and other botnets,” Computer,

vol.50, pp.80-84, (2017)

[5] Q.D. Ngo, H.T. Nguyen, L.C. Nguyen, and D.H. Nguyen, “A survey of IoT malware and detection methods

based on static features,” ICT Express, (2020)

[6] A. Costin, and J. Zaddach, “IoT malware: Comprehensive survey, analysis framework and case studies,”

BlackHat USA Security Conference, (2018)

[7] K. Monnappa, “Automating Linux malware analysis using limon sandbox,” Black Hat Europe, (2015)

[8] Cozzi, and Emanuele, et al. “Understanding Linux malware,” 2018 IEEE Symposium on Security and

Privacy (SP), IEEE, (2018)

