
Journal of Human-centric Science and Technology Innovation 

Vol.1, No.1 (2021), pp.43-48 

http://dx.doi.org/10.21742/jhsti.2021.1.1.01 

 

 

JHSTI 

Copyright ⓒ 2021 Global Vision Press (GV Press) 

IoT Malware Static and Dynamic Analysis System 
 

 

Sungwon Lee1, HyeonKyu Jeon2, GiHyun Park3, JiHun Kim4, Jonghee M. Youn5 

1,5Dept. Of Computer Engineering, Yeungnam Univ., 280 Daehak-Ro, Gyeongsan, 

Gyeongbuk, Republic of Korea 
2Korea Appraisal Board, 291, Innovalley-ro, Dong-gu, Daegu, Republic of Korea 
3Korea Institute of Arboretum Management, 10, Jeongbu 2cheongsa-ro, Sejong-si, 

Republic of Korea 
4Daegu Gyeongbuk Institute of Science and Technology, 333, Techno jungang-daero, 

Hyeonpung-eup, Dalseong-gun, Daegu, Republic of Korea 
1noke15@ynu.ac.kr, 2in2etv@in2e.tv, 3shwo8713@gmail.com, 4f13521@naver.com, 

5youn@yu.ac.kr 

Abstract 

As the spread of IoT systems increases, security of IoT systems has become very important 

for individuals and companies. IoT malware has been increasing exponentially since the 

emergence of Mirai in 2016. Since the IoT system environment is diverse, IoT malware also 

has various environments. In the case of the existing analysis system, there is no environment 

for dynamic analysis by running IoT malware of various architectures. It is inefficient in time 

and cost to construct an environment one by one to analyze numerous malicious codes and 

proceed with analysis. There are so many IoT malware to be analyzed that an efficient 

method of analysis is required. The goal of this paper is to improve the problems and 

limitations of the existing analysis system and provide a variety of analysis environments. In 

this paper, we build a system that automatically analyzes basic IoT malware. It provides an 

analysis environment by constructing a static analysis and dynamic analysis system suitable 

for various IoT malware. In the text, the analysis system is applied to the actual collected 

malicious code to check whether it is analyzed and to derive statistics. It describes the 

advantages of the designed system and the improvement of existing limitations through 

comparison with the most commonly used automation analysis tools. 
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1. Introduction 

After Mirai malware [1], which occurred in 2016 and attacked IoT devices around the world, 

interest in the IoT security has been continuously increasing. Since the emergence of Mirai 

malware, malicious codes and variants targeting IoT devices have increased [2][3]. 

The present study is intended to propose methods to efficiently analyze those pieces of IoT 

related malware that appear in exponential quantities as such and utilize the relevant results to 

contribute to the IoT security industry with an ultimate goal of effectively responding to IoT 

malware. 
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Since the IoT system environment is diverse, IoT malware also has various environments. 

In the case of the existing analysis system, there is no environment for dynamic analysis by 

running IoT malware of various architectures. The analysis system designed in this paper 

supports various architectural environments to analyze IoT malware, and automatically 

analyzes IoT malware through dynamic analysis after static analysis. 

The goal of this paper is to improve the problems and limitations of the existing analysis 

system and provide a variety of analysis environments. 

 

2. Related works 

Since most IoT devices are based on the Linux operating system following recent 

development of the IoT industry [4], the risk of those pieces of Linux malware that target 

those IoT devices for attacks is coming to the fore. In order to respond to security threats, 

research on various IoT malware analysis systems for efficient analysis is ongoing [5][6]. 

[7] proposes an automated analysis tool for Linux malware pieces. [7] fabricated the tool to 

enable the user to identify the results of various analyses on one report using Python scripts 

for many analysis tools used in Linux. It enables the analyses of various script files In 

addition to Elf file types and enables various analyses ranging from basic static analysis to 

dynamic analysis such as network analysis and memory analysis. However, some of the 

analysis tools used in focus only on x86 elf. Therefore, they have limitations in light of the 

fact that IoT devices use embedded system-based architectures. 

[8] also statistically and dynamically analyzed Linux malware pieces to compile the 

characteristics of the results. It analyzed not only X86-64 but also diverse CPU architectures 

such as MIPS and ARM through QEMU and compiled the statistics of the results of analyses 

of more than 10,500 pieces of malware thereby enabling users to identify the statistics of the 

malicious behaviors of Linux malware. [8] is very interesting since there studies related to the 

statistics of analyses of massive Linux malware and the characteristics were not actively 

conducted in the past. The method in [8] has very similar directivity to that of the purpose 

pursued by the present study, but the present study has differences in that it focuses further on 

the features of malware pieces running on IoT devices beyond the statistics of Linux malware. 

 

3. IoT malaria analysis system 

In this study, to analyze IoT malware and check the results, a new automated malware 

analysis system was designed and implemented, and using the system, a massive Linux 

malware analysis environment was constructed. The malware analysis system proposed in the 

present paper is an automated analysis tool that can use both static analysis methods and 

dynamic analysis methods in an integrated manner. 

The overall structure of the analysis environment is as shown in [Figure 1]. It consists of 

an analysis framework in which actual analysis tasks are managed, a front-end for user 

designation to determine detailed settings of the framework and task contents, a VM manager, 

agents, and analyzer scripts. The front-end is an execution file that refers to the framework, 

and is a component that specifies various environment settings for analysis and starts analysis 

tasks. It can be implemented in diverse forms as needed by the user, such as CLI and GUI 

applications or web applications. 
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Figure 1 Structure of analysis environment 

To support dynamic analysis of systems that use i386, amd64, and diverse other 

architectures, the VM manager and VM agent were implemented based on QEMU, which is 

virtualization software with the full-system emulation function. The VM manager and VM 

agent support parallel execution by the task scheduler of the analysis framework for smooth 

progression of analyses of a larger number of file sets and can analyze file sets consisting of 

multiple architectures by designating tag strings to individual VM profiles. 

In the local system of the VM exist an agent and analyzer scripts as components that 

receive commands from the sandbox host and actually carry out analyses. In the VM, the 

agent receives commands from the sandbox host, downloads the actual analysis information 

and the latest analyzer script, and starts the analysis. It also uses the SMB protocol to transmit 

analysis result files and inform the current state of the VM to the host. Since the analyzer 

scripts are newly downloaded every time through the agent, analysis codes can be flexibly 

revised even without changing the VM snapshot and detailed analysis options including the 

trace mode divided into strace and ltrace are set through the parameters received through the 

agent. 

The analysis system is an assembly that includes a static analyzer that uses the existing 

analysis tools for Linux, a newly designed dynamic analyzer, and diverse task objects for 

handling and processing of data at various points before and after analysis tasks and was 

implemented as a DLL that operates on .NET Core Runtime. The dynamic analyzer, where 

malware is actually analyzed, conducts primary analysis using the tools basically provided by 

Linux and several open source based tools, and classifies the results of analysis into five 

categories; trace, state monitoring, network, process, and others. A list of the tools used 

internally can be found in [Table 1]. 

Table 1. List of tools used in analysis 

Category Tool 

Trace strace, ltrace 

State monitoring pstree, lsof, service, netstat, lastlog, procfs, etc. 

Network tcpdump, tshark 

Memory volatility 

Static analysis MinGW(ldd, file, readelf, strings), upx 
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Figure 2 Entire analysis pipeline 

The entire analysis pipeline was built using the analysis environment. The analysis pipeline 

contains various elements separately implemented for high-level data analysis for our analysis 

tasks, which consist of sets of report generation tasks and report summarization tasks and a 

set of Yara rules newly prepared for classification of Linux malware. Our analysis pipeline is 

as shown in [Figure 2]. 

The submitted malware samples underwent a static analysis stage, dynamic analysis stage, 

and analysis result interpretation stage and the malware was finally classified thereafter. In 

the static analysis stage, static analysis was conducted using the static analysis tools 

mentioned in Table1 to recognize file types, identify ELF headers, check whether packed or 

not, and extract character strings. When dynamic analysis had been judged possible through 

the static analysis, dynamic analysis was attempted using the prepared VM. In the dynamic 

analysis, changes in the process was identified using pstree and service commands, and the 

lost of loaded libraries was extracted using the lsof command. Network behaviors were 

identified using netstat and tcpdump. In addition, additional information such as the records 

of the shell commands, login records, and mount information was identified. 

In the result interpretation stage, the information extracted in the static analysis and 

dynamic analysis stages was used to synthetically judge through which paths the malware 

actually approaches, what kind of network behaviors it conducted, what kind of 

vulnerabilities it utilizes, and which attack surfaces it aims at. Therefore, there were many 

problems in applying those rule data to the result interpretation stage. In addition, in the case 

of those pieces of malware that were targeting Linux, there were difficulties in obtaining the 

information necessary for malware classification because previous studies were insufficient 

compared to Windows malware. Consequently, the task to construct the entire analysis 

pipeline was carried out through repetitive trials and errors, and the framework was gradually 

improved so that the tasks to reprocess and reinterpret the generated reports could be carried 

out independently. 

 

4. Results and discussion 
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The number of data samples analyzed for IoT malware is 3,098 in total and mainly those 

files that have Linux-based ELF formats were collected.  Among the 3,098 Linux-based ELF 

format files, those files that satisfy the conditions are classified into IoT malware judging that 

they are operable in IoT systems even if they were not originally intended for IoT systems. 

Table 2 Classification of the architectures of collected samples 

 samples Percentage 

Intel 80386 1,784 57.59 

AMD 64 181 5.84 

ARM 737 23.79 

AArch64 29 0.94 

MIPS 148 4.78 

SuperH 41 1.32 

PowerPC 46 1.49 

Sparc 58 1.87 

MC68000 21 0.68 

ARCompact 1 0.03 

Tilera TILE-Gx 49 1.58 

Intel MCU 1 0.03 

Unknown 2 0.06 

total 3,098 100 

 

As can be seen in Table 2, the 3,098 samples can be classified into 12 architectures except 

for two samples with unknown architectures that cannot be classified. There are 332 (10.71%) 

packed files and 18 (0.58%) files for VM detection among the collected samples. When 

analyzing the files in the analysis environment, those packed files that cannot be easily 

analyzed statically can be analyzed dynamically and those VM detection files that cannot be 

easily analyzed dynamically can be analyzed statically. The ideal situation aimed at is to 

analyze all 3,098 malwares with 12 architectures identified through the designed analysis 

automation system, but the malware actually analyzed is 2,896 files with 5 architectures of 

Intel 80386, AMD64, ARM, MIPS, and PowerPC. By analysis, 93.48% of malicious code 

files were analyzed. 

Network behavior classification and vulnerability classification, which are part of the 

analysis results, are summarized in [Tables 4] and [Table 5]. The percentages were prepared 

based on the entire number of the malware samples, which is 3,098. 

Table 3. Network based statistics 

Networking Information Samples Percentage 

Browser Info 154 4.97% 

Network Command 1087 35.09% 

Network Info 738 23.82% 

Network Strings 631 20.37% 

SSL 109 3.51% 

Web Access 602 19.43% 
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Improvements are confirmed through comparison with other systems mentioned in related 

works. Limon Sandbox [7] is easy to use and well implemented in basic analysis functions. 

But basically, only 63.42% of 1,965 individuals can analyze 3,098 malwares because only 

two architectures of Intel 80386 and AMD64 can be analyzed using VMware virtual 

machines.  

Padawan analysis system [8] is limited to 30 analysis per day, and it takes a total of 103 

days to analyze 3,098 malwares. In addition, since it is not an open code system, but a system 

that can only check and receive specified data, if the user does not have the desired data, the 

analysis environment is meaningless or the analysis must be performed directly. 

Table 4 Vulnerability based statistics 

Attack Surface Samples Percentage 

Command Injection 693 22.37% 

SQL Injection 73 2.36% 

XSS 4 0.13% 

XXE 24 0.77% 

 
5. Conclusion 

In this paper, we built a system to analyze IoT malware. It was designed with the aim of 

reducing analysis time by providing basic analysis and providing various analysis 

environments. To analyze IoT malware, it goes through static and dynamic analysis steps, and 

uses existing open source tools. 

Existing automated analysis systems have improved limitations and limitations in 

analyzing IoT malicious codes, and as a result of analyzing actual malicious codes, it was 

possible to provide various analysis environments and obtain and process various data. 
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