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Abstract 

 During the process of aircraft landing, the control manners of carrier-based aircraft 

are always used to study. This is one of the important ways to avoid pilot-aircraft adverse 

coupling. In order to keep the accuracy of landing, this paper presents an improved 

asymmetric variable universe adaptive landing fuzzy controller with Safe Flight Area 

during approach for carrier-based aircraft. By means of universe-conversion factors and 

contraction–expansion factors, universe of discourse can be modified online, and fuzzy 

rules can reproduce automatically to adapt to the modified universe of discourse. The 

model simulation results indicate the better performance of the new method in 

comparison with the traditional controller with more accuracy and practicability. 
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1. Introduction 

To ensure landing on angled-deck of carrier safely and quickly during manual 

landing process, the pilot of carrier-based aircraft should be control flight path and 

attitude precisely. Landing on an aircraft carrier is usually considered by pilots as 

one of the most difficult exercise, complicated by visibility conditions, carrier 

dynamics and small landing area [1]. 

Considering the nonlinear, complexity and fuzziness of Landing Signal Officer, 

traditional control manner is not fit for “LSO-pilot-aircraft” system [2-4]. To 

improve control efficiency, a variable universe adaptive landing fuzzy controller 

should be presented. It establishes an asymmetric one as upward and downward 

boundaries of Safe Flight Area. 

The rest of this paper is structured as follows: next section we first analyse 

asymmetric variable universe adaptive fuzzy controller. Section 3 designs the Safe 

Flight Area during approach. Multiple loading conditions simulation results show 

that corrective strategies is in line with the actual situation of  carrier-based aircraft 

landing in Section 4. 

 

2. Asymmetric Variable Universe Adaptive Fuzzy Controller 
 

2.1. Design Universe-conversion Factors 

Definition 1. Suppose XI is a standard universe, where XI with symmetric unit range 

XI=[-1,1]. 

Definition 2. Since XI is a standard universe, function : XI X  ， ( )xi x xi   is a 

universe-conversion factor of the standard universe XI, if it satisfies the following 

axioms: 
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(1) Negative weighting: xi XI  , if 0xi  , then 1( ) ( )x xi C xi  . 

(2) Positive weighting: xi XI  , if 0xi  , then 2( ) ( )x xi C xi  . 

Where ( ) , ( 1,2)j jC xi C xi j   is converted function which adopted multiple 

weighted ways, and an ordinary universe 
1 2( ) [ , ]X XI C C    could be obtained 

from a standard one with universe-conversion factor. 

Definition 3. Suppose an ordinary universe 1 2[ , ]X C C  , we call it is a symmetric 

universe where 
1 2C C ; else an asymmetric one. 

If 1 2/ 1C C  , X is a negative asymmetric universe; 

If 1 2/ 1C C  , X is a positive asymmetric universe; 

If 1 2/ 1C C  , X is a symmetric universe. 

Definition 4. Suppose an ordinary universe 1 2[ , ]X C C  , we call   is universe 

ratio item, which is indicated as: 

1 2

1, 0
( )

/ , 0

x
x

C C x



 


                                                (1) 

Then  

( )[ , ] [ ( ) , ( ) ] [ ( ) , ]I I I I I IX x C C x C x C x C C                    (2) 

Where IC  is standard universe range of 1 2[ , ]X C C  . 

 

2.2. Design Contraction-expansion Factors 

Generally speaking, a function : [0,1]X  , ( )x x is called a universe 

contraction-expansion factor on ordinary universe [ , ]I IX C C  , if it satisfies the 

following axioms: 

(1) Ratio duality: x X  ， ( ( ) ) ( ( ) )x x x x     ; 

(2) Zero kept: (0)  ; 

(3) Monotonicity: ( )x is strictly monotonically increasing on [0, ]IC , 

decreasing on [ ,0]IC ; 

(4) Compatibility: x X  ， | | ( ( ) )( )Ix x x C   ; 

(5) Normality: ( ) ( ) 1I IC C       . 

Where   is positive number with enough small, generally min[ , ] /1000I IC C  . 

Denote sample steps to be k = 0,1,2,. . .,Contraction-expansion factor of the 

universe is: 

1,

( )
/ ( ) ,

k
i i k

i i I

x
x x C


 




 


   
0

0

k

k




                                      (3) 
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Where (0,1)  . If [ , ]X E E   is a symmetric universe, contraction-expansion 

factor could be denoted by  

1,

( )
/ ,

k
i i k

i

x
x E







 


   
0

0

k

k




                                         (4) 

And the structure of a variable universe adaptive fuzzy controller is expressed in 

Fig.1 [5-8].  
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Figure 1. Variable Universe Fuzzy Controller 

2.3. Design Control Algorithm of Asymmetric Variable Universe Fuzzy System 

Let 
0 [ , ]i Ii IiU C C   be initial input universe of controller on the moment 0k  , 

0 [ , ]I IV Y Y   be initial output universe. 

Variable universe is the universe of 
k
iU  and 

kV  varies with the change of xi and 

y. 

[ ( ), ( )]k k k
i Ii i i Ii i iU C x C x                                               (5) 

[ ( ), ( )]k k k
I IV Y y Y y                                                 (6) 

The linguistic variables are varying together with the varying of the universe, as 

shown in Fig2. The variable universe adaptive landing fuzzy systems can be written 

as shown: 

0

0

0

1 11

1 1

( )
( )

( ) ( )

( )
( )

ij

ij

knm
i

j A k
j i i ik k k

knm
i

A k
j i i i

x
y

x
y f y

x

x









 

 

 

 



x                                    (7) 

With the operation of ( )k
i ix  and ( )ky , the input variable universe 

k
iU  and the 

output variable universe 
kV  shrink or expand, and the shape of membership 

functions 0

ijA
  becomes narrow or wide, as shown in Fig. 2 [9-18].  
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Figure 2. Shrinkage and Expansion of Universe 

3. Safe Flight Area of Carrier-based Aircraft 

Considering the distribution of touchdown points and hook-to-ramp clearance, 

Safe Flight Area envelope at different reference points will be established. In order 

to expound the method, IC point should be an example [3-4].  

For the simulation, we consider aircraft position from the carrier is equal to 463 

meters (IC point), desired velocity and angle of attack are respectively equal to 

69.96 meters per second and 8.1 degrees. Preliminary glideslope deviations are 

varied in the range of ±16 meters. 32 groups of the flight trajectories and touchdown 

points distribution are represented on Fig. 3.  

As presented in Fig. 3, According to the distribution of four cables, we directly 

obtain the longitudinal safe rectangle area on deck of carrier: [ 18,30]DeckW   m. 

There is a risk when touchdown point is out of the Safe Rectangle Area, so 

preliminary deviations should be counted by the range of touchdown points as 

presented in Fig. 4. The longitudinal Safe Flight Area at IC point is equal to: 

[ 15.2,11.9]pICz   m. To ensure the least clearance being 3 meters, the preliminary 

deviation at IC position is equal to: 15.1pICz   m. Considering the distribution of 

touchdown and hook-to-ramp clearance, the longitudinal Safe Flight Area at IC 

point is equal to: [ 15.1,11.9]pICz   m. 
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Figure 3. Flight Trajectories on IC Position and Distributions of Touchdown 
Points 
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Figure 4. Relationship of Touchdown Points/ Hook-to-ramp Clearances and 
Deviations 

Similar schemes are applied to the other reference points (X, IM, AR) as 

presented in Table 1.  

Table 1. Safe Flight Area on Reference Positions 

Reference points Down envelope Up envelope Ramp Clearance SFA boundary 

X(3/4nm) -43.5m 39.6m >-42.8m [-42.8,39.6]m 

IM(1/2nm) -29.2m 24.4m >-27.7m [-27.7,24.4]m 

IC(1/4nm) -15.2m 11.9m >-15.1m [-15.1,11.9]m 

AR(80m) -1.7m 2.6m >-1.9m [-1.7,2.6]m 

 

4. Model Simulation 

To improve the tracking precision of aircraft’s trajectory, it designs Single-Input 

and Double-Output asymmetric variable universe adaptive fuzzy landing control 

system as shown in Fig.5. 
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Figure 5. Variable Universe Fuzzy Trajectory Controller of Carrier-based 
Aircraft 

The control process could be realized for some steps as follow: 

Step 1. Initial universe of fuzzy control system: As safe flight area for carrier-based 

aircraft, FSAS =[-27.7, 24.4]m at reference point IM. It makes that universe ratio 

item 27.7 / 24.4 1.135   , and the universe of 
0e  is 

0 [ 27.7,  24.4]eX   , the 
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universe of 
0ec  is 

0 [ 5,5] [ 5.675,5]ecX      , the universe of 
0  is 

0 [ 3,  3]Y   , 

Step 2. Fuzzy division of control system: 
0

1 ( 1, 2,...,6)jx j   where fuzzy peak points 

on 
0e  are divided at -27.7，-17.28，-6.86，3.56，13.98，24.4; 

0
2 ( 1, 2, ..., 6)jx j   

where fuzzy peak points on 
0ec  are divided at -5.675，-3.54，-1.405，0.73，2.865

，5. 

Step 3. Membership functions: Using triangle membership functions, we define 

0

1

( 1, 2,...,6)
jA

j   for 
0
eX  as follows: 

0

11

0
0 ( 17.28) / ( 27.7 17.28)

( )
0

A

e
e

   
 


 

027.7 17.28e

else

   
                  (8) 
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                       (10) 
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Step 4. Contraction-expansion factors:  
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 
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/ 3 0.01
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Step 5. Fuzzy Controller is defined as follow:  

0 0
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                 (17) 

Fig.6-10 are the response curves of flight path, height deviation, longitudinal sick, 

gliding angle and velocity for different control patterns.  

From Fig.6-10, the approximation error of system is 0.2  m at the moment 

3.8s under the asymmetric variable universe adaptive fuzzy landing control system, 

and it achieves the same error at the moment 12.3s under the traditional landing 

control system. It has the superiority complex on approximation error for the 

asymmetric variable universe adaptive fuzzy landing control system we designed. 
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Figure 6. Response Curve of Flight Path 
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Figure 7. Response Curve of Deviation    Figure 8. Response Curve of Stick 
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  Figure 9. Response Curve of                   Figure 10. Response Curve of 

                       Gliding Angle                                           Velocity 
 

6. Conclusion 

This paper has presented an improved control manner for landing approach to 

perform manual landing on aircraft carrier. This asymmetric variable universe 

adaptive landing fuzzy controller with Safe Flight Area is established with universe-

conversion factors and contraction-expansion factor. The simulation results show 

that compared with the traditional control manner, the fuzzy method with the SFA 

envelope has better evaluation result for pilots, which means more accuracy and 

dynamic.  
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