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Abstract 

Bayesian calibration has been used to transform the prior distributions of unknown 

inputs inherited in a building energy simulation model into the trustworthy posterior 

distributions. It obtains the posterior distributions using a joint distribution composed of 

a likelihood function and prior distributions of unknown inputs in the Bayesian paradigm. 

In other words, it provides higher benefits in terms of a stochastic approach than the 

deterministic calibration and the feasibility of their calibrated results was sufficiently 

discussed. However, challenging issues in Bayesian calibration still remains as follows: 

(1) inappropriate selection of prior distributions, (2) truncated sample dataset of the 

likelihood functions. The aforementioned issues can increase the risks of Bayesian 

calibration. This paper aims to inform the risks of Bayesian calibration associated with 

the aforementioned issues through a reference case study. For this study, the Gaussian 

Process (GP) emulator, which can be regarded as a meta-model of Building Performance 

Simulation (BPS) tools, was used to reduce the simulation run-time. Bayesian calibration 

using the GP emulator was implemented with what-if scenarios considering the 

aforementioned issues. And then the validated models were used for a stochastic retrofit 

analysis of glazing systems. With the results of the estimated posterior distributions, 

validation, and stochastic retrofit, this paper presents Bayesian calibration issues 

regarding the selection of prior distributions and sample dataset of the likelihood 

functions. 
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1. Introduction 

Recently, Building Performance Simulation (BPS) tools have been widely used 

for optimal design, optimal control, and stochastic retrofit analysis. However, the 

BPS tools decrease accuracy, reproducibility, and reliability of the predicted outputs 

due to uncertainty sources. To reduce the uncertainty, model calibration techniques 

that inversely estimate unknown inputs by minimizing difference between measured 

data and predicted outputs have been used. The model calibration techniques are 

divided into (1) trial and error method, (2) deterministic calibration, and (3) 

Bayesian calibration. Among the model calibration techniques, Bayesian calibration 

can estimate the probability distributions of unknown inputs and produce more 

accurate and robust predicted outputs than the other calibration techniques even if  

the computational cost is too heavy a burden under tight budget and schedule time. 

But it can be resolved using a meta-model or surrogate model of the BPS tools [1-

5].  
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Bayesian calibration obtains posterior distributions using a joint distribution 

composed of a likelihood function and prior distributions of unknown inputs. In 

previous studies [6-9], the unknown inputs within the BPS tools were estimated 

using Bayesian calibration, and their calibrated results were sufficiently validated. 

And they insisted that Bayesian calibration can be used to deal with various 

stochastic decision making problems by coupling between the post -processing 

techniques (e.g. optimization algorithm, uncertainty analysis, and sensitivity 

analysis) and the reliable tuning BPS tools. However, it should be noted that 

different posterior distributions could be obtained by the inappropriate prior 

distributions and likelihood functions. And the aforementioned issues have not been 

presented even now. 

In this study, the risks of Bayesian calibration depending on inappropriate 

selection of prior distributions and truncated sample dataset of the likelihood 

functions were discussed. For this study, EnergyPlus was chosen as a BPS tool for a 

given target building, and the prior distributions of unknown inputs were selected by 

referring to the previous literatures. For the model calibration, the measured data 

was assumed as the predicted outputs obtained by EnergyPlus in which simulation 

inputs employed a set of definite values randomly selected within the probability 

ranges of the unknown inputs. To discuss the risks of Bayesian calibration, this 

paper implemented Bayesian calibrations in the given what-if scenarios based on the 

aforementioned issues. And the calibrated models for each what-if scenario were 

validated using the separate data. The validated models were used for a stochastic 

retrofit analysis of glazing systems and their results were compared. In other words, 

this study addresses the issues of Bayesian calibration when it is impossible to 

accurately obtain the prior distributions and the sample dataset of a likelihood 

function. 

 

2. Bayesian Calibration and Meta-Model 
 

2.1. Bayesian Calibration 

The BPS tool is a mathematical model  ,
D

x   that approximates the causal 

relationships of the thermal properties in the real systems. The relationships are 

realized by numerous deterministic inputs 
m

x , uncertain inputs  , and outputs 
m

y . 

The deterministic inputs denote definite values (e.g. building location (e.g. latitude, 

longitude, orientation, and elevation), thermal zoning, system types, control 

strategy, and simulation run-period) derived from design drawing, specifications, 

measured data, and literatures, etc. In the contrast, the uncertain inputs denote 

unknown values having probabilistic characteristics. The uncertain inputs were 

divided into static and dynamic unknown inputs. The static unknown inputs have 

non-time-varying natures such as thermal properties of materials (density, 

conductivity, and specific heat), internal gains of lights and equipment, etc. The 

dynamic unknown inputs have time-varying natures such as weather data, 

occupants’ behavior patterns, and schedules. Please be noted that the BPS tools need 

the calibration works for transforming unknown inputs into trustworthy inputs for 

rational decision making. 

In general, the model calibration is an optimization problem wherein unknown 

inputs are estimated by minimizing the difference between the measured data 
D

y  

and the predicted outputs
m

y . To improve the abilities of the calibrated model 

prediction, the model calibration must reflect the unknown inputs as well as two 

additional uncertain types (discrepancy ( )
D

x  due to model inadequacy and 

measurement error ( )
D

x  due to sensor noise) as shown in Equations 1-2. 
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   ,
m D D

y y x x            (1) 

( )
D D

y y x        (2) 

In Bayesian calibration, the posterior distribution ( )p y  can be calculated by 

multiplying the prior distribution  p   and the observed sample dataset of the 

likelihood function ( )p y   as shown in Equation 3. In other words, the estimation 

of the posterior distributions is affected by the prior distribution and the sample 

dataset of the likelihood function.  
 

( ) ( ) ( )p y p y p         (3) 

The prior distribution can capture unbiased and non-overfitting probabilistic 

natures if the measured data are quite plentiful. However, it is not easy to obtain the 

appropriate measured data regarding all systems in a short building lifecycle. Thus, 

a few prior distributions are assumed as non-informative prior distributions selected 

by referring to the existing literatures. The non-informative prior distribution is a 

flat prior distribution in which the estimation of the posterior distribution is not 

affected by other data except for the observed sample dataset of the likelihood 

function. A representative example is a beta distribution having the shape 

parameters (a = 1 and b = 1). And it can be easily used when the prior distribution is 

vague, but it is likely to draw the instability of the posterior distribution and the 

convergence problem of Bayesian inference. The likelihood function is the 

probability for obtaining an observed data given the model. It could be affected by 

the quantity and quality of the measured data. If the measured data are deficient or 

truncated, the parameter uncertainty increases. And a Markov Chain Monte Carlo 

(MCMC) method for Bayesian calibration is used to deal with the integration 

problem of the marginal distribution by generating a sample from the parameter 

space, but it requires numerous iterative calculations. But, if the number of samples 

is small, a convergence problem could occur. To solve the problem, there is an 

approach that the calibration works are performed by only sampling the influential 

unknown inputs through a screening method (e.g. Morris method). Furthermore, a 

Gaussian Process (GP) emulator can provide significant probabilistic results having 

a fast computational speed. With the aforementioned methods, it enables to search a 

wide parameter space while increasing the number of samples for the MCMC 

method. In the following section, the GP emulator for Bayesian calibration is 

described in detail. 

 

2.2. Gaussian Process Emulator 

The GP emulator is constructed by (1) training dataset, (2) Gaussian Process, and 

(3) Bayesian inference [1-5]. The training dataset are generated by the sampling 

methods (e.g. Simple Random Sampling (SRS), Latin Hypercube Sampling (LHS)). 

The LHS method is widely used due to its ability to produce significant results with 

few samples compared to the simple random sampling [10]. With the generated 

training dataset, the mathematical model and model discrepancy are represented by 

using the Gaussian Process model that consists of a kernel matrix (K(xi, xj)) having 
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zero mean function. In general, the kernel matrix in the Gaussian Process model was 

assumed as a squared exponential covariance function as shown in Equation 4. The 

squared exponential covariance function has two hyperparameters (scaling 

parameter 2

se
  and length scales 

1: p
l ). And The Gaussian noise (

i
 ) is generally 

expressed as an independent identically distributed (iid) normal distribution with 

zero mean and variance vn. The variance in the Gaussian noise is also a 

hyperparameter. The hyperparameters need to obtain the posterior estimates through 

the MCMC methods.  
 

2
2 2

, , ,

1

1
( , ) exp( / )

2

d

i j i j se i k j k k

k

k x x x x l


        (4) 

The MCMC methods can easily estimate the posterior distribution by numerically 

calculating the multidimensional integration using the Markov chain and Monte 

Carlo integration [11, 12]. In the MCMC methods, Metropolis-Hastings algorithm, 

the Gibbs sampling algorithm, and the Hybrid Monte Carlo (HMC) algorithm are 

used. Among the MCMC sampling methods, the Hybrid Monte Carlo algorithm is a 

combination of the Metropolis rule and Gibbs sampling, and its sampling and 

convergence abilities are superior to those of the Metropolis -Hastings algorithm and 

the Gibbs sampling algorithm [13].  

In previous studies [1-5], the aforementioned process was described in detail, and 

there was sufficiently validated the superiority of Bayesian calibration using GP 

emulator. However, Bayesian calibration still remains the challenging issues as 

follows: (1) inappropriate selection of prior distributions, (2) truncated sample 

dataset of the likelihood functions. In this paper, the issues are discussed. 

 

3. Target Building and Development & Validation of the GP Emulator 
 

3.1. Target Building and What-if Scenarios 

A general office building was chosen as the target building and modelled by 

EnergyPlus as shown in Figure 1. In this study, the model calibration was performed 

for a virtual building (EnergyPlus model) rather than an existing building.  Since, the 

goal of this study was to examine the risks of Bayesian calibration depending on the 

inappropriate selection of prior distributions and the truncated sample dataset of the 

likelihood function, rather than to accurately calibrate an existing building. In the 

case of the parameter estimation of the prior distribution, it is desirable to use 

statistical tests that estimate the distribution of the population based on the sample 

measured in the past (e.g. one-sample Kolmogorov-Smirnov (K-S) test). However, it 

is not easy to collect the sample for various existing buildings. Thus, most unknown 

inputs are determined by probabilistic values derived in existing literatures or the 

judgment and assumption of experts. This leads to different probability distributions 

of the population. 
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Figure 1. Target Building (Display in OpenStudio) 

Riddle and Muehleisen [14] indicated that if the variance ranges using general 

probability distribution models (e.g., normal distribution, beta distribution, and 

triangular distribution) can sufficiently explain the uncertainty of unknown inputs, 

the parameter estimation of the prior distribution does not significantly affect the 

accuracy of Bayesian calibration. With this mind, a total of 24 normal distributions 

based on existing literatures [15-19] were used as shown in Table 1.  

Table 1. Prior Distribution of the Unknown Inputs 

Unknown inputs 
Normal distribution 

Mean Standard deviation 

x1 

Gypsum board 

Conductivity (W/m-K) 0.43 0.153 

x2 Density (Kg/m
3
) 1488 501 

x3 Specific Heat (J/kg-K) 958 109 

x4 

Brick 

Conductivity (W/m-K) 1.25 0.354 

x5 Density (Kg/m
3
) 2000 33 

x6 Specific Heat (J/kg-K) 840 90 

x7 
Heavyweight  

concrete 

Conductivity (W/m-K) 1.68 0.54 

x8 Density (Kg/m
3
) 2310 225 

x9 Specific Heat (J/kg-K) 840 90 

x10 

Insulation 

Conductivity (W/m-K) 0.039 0.014 

x11 Density (Kg/m
3
) 38 27 

x12 Specific Heat (J/kg-K) 1072 298 

x13 

Tile 

Conductivity (W/m-K) 0.932 0.406 

x14 Density (Kg/m
3
) 1610 436 

x15 Specific Heat (J/kg-K) 818 89 

x16 
Glass 

U-factor (W/m
2
-K) 2.74 0.274 

x17 SHGC (dimensionless) 0.76 0.076 

x18 Infiltration rate Air Change per Hour (1/hour) 0.5 0.17 

x19 Indoor set-point 

temperature 

Heating 21.5 0.43 

x20 Cooling 27 0.54 

x21 
People 

Person per area 0.215 0.1075 

x22 Activity level (W/m
2
) 125 12.5 

x23 Light Power density (W/m
2
) 18.22 3.644 

x24 Equipment Power density (W/m
2
) 16.15 3.23 

To deal with the inappropriate variance ranges of the prior distribution, the 

variances of the unknown inputs were changed. For the sample dataset of the 

likelihood function, monthly total energy consumptions during two years (2009 and 

2010, in Seoul) were calculated by randomly generating the definite inputs extracted 
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from the variance ranges of the unknown inputs. Table 2 shows the what-if 

scenarios regarding the selected prior distributions and sample dataset of the 

likelihood function. 

Table 2. What-if Scenarios Depending on the Priors and the Likelihood 

Function 

Scenarios Descriptions 

1 
Prior distribution Mean: refer to Table 1, Standard deviation: refer to Table 1 

Likelihood function Monthly energy consumption (2009 and 2010) 

2 
Prior distribution Mean: refer to Table 1, Standard deviation: ±5% of the mean 

Likelihood function Monthly energy consumption (2009 and 2010) 

3 
Prior distribution Mean: refer to Table 1, Standard deviation: ±10% of the mean 

Likelihood function Monthly energy consumption (2009 and 2010) 

4 
Prior distribution Mean: refer to Table 1, Standard deviation: refer to Table 1 

Likelihood function Monthly energy consumption (2010) 

5 
Prior distribution Mean: refer to Table 1, Standard deviation: ±5% of the mean 

Likelihood function Monthly energy consumption (2010) 

6 
Prior distribution Mean: refer to Table 1, Standard deviation: ±10% of the mean 

Likelihood function Monthly energy consumption (2010) 

7 
Prior distribution Mean: Table 1, Standard deviation: Table 1 

Likelihood function Monthly energy consumption (random sampling of 12-month data) 

8 
Prior distribution Mean: refer to Table 1, Standard deviation: ±5% of the mean 

Likelihood function Monthly energy consumption (random sampling of 12-month data) 

9 
Prior distribution Mean: refer to Table 1, Standard deviation: ±10% of the mean 

Likelihood function Monthly energy consumption (random sampling of 12-month data) 

 

3.2. Development and Validation of the GP Emulator 

For the training dataset, a total of 200 samples were generated using the LHS 

method. 150 samples and 50 samples were used to construct and validate the GP 

emulator, respectively. In this study, the GP emulators of what-if scenarios # 4-9 

replaced those of what-if scenarios # 1-3 having the same prior distributions and 

wider likelihood functions. Figures 2-3 show results comparing between the GP 

emulator and EnergyPlus using a boxplot and the two-sample K-S test. The two-

sample Kolmogorov-Smirnov (K-S) test was used to find whether the populations of 

the two samples have same probability distribution or not. The null hypothesis is 

that the two populations have the same distribution, and the alternative hypothesis is 

the opposite of the null hypothesis. If p-value (0.0-1.0) is smaller than 0.05, the null 

hypothesis is rejected. As shown in Figures 2-3, the probabilistic results of the GP 

emulator are similar to those of EnergyPlus and the null hypothesis was accepted. In 

other words, the GP emulator can provide significant probabilistic results having 
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fast computational speed. In this study, the GP emulator was used for Bayesian 

calibration. 
 

 

(a) Scenario #1 

 

 

(b) Scenario #2 
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(c) Scenario #3 

Figure 2. Comparison between EnergyPlus (left) and the GP Emulator 

(right) 

 

 
 

Figure 3. P-values Using the Two-sample K-S Test 

 

4. Calibration Results 
 

4.1. Priors vs. Posteriors 

According to what-if scenarios #1-9, Bayesian calibration using the Hybrid 

Monte Carlo algorithm was implemented. The number of sampling and burn-in 

period were set to 20,000 and 2,000, respectively. The burn-in period was used to 

avoid the effect of the initial value. Tables 3-5 show the results of the posterior 

distributions. In the results, the coefficient of variations of the posterior 

distributions was smaller than those of the prior distributions. It can be inferred that 

Bayesian calibration can reduce the uncertainty. However, it should be noted that 
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the posterior distributions according to what-if scenarios #1-9 were different. In 

case of the what-if scenarios #1, 4, and 7, the definite values were in ranges of the 

95% confidence interval (from 2.5% to 97.5%) even if they had the different sample 

dataset of the likelihood function. In the contrast, the definite values of the others 

were out of range of the 95% confidence interval. For an example, the posterior 

distributions for the density of the gypsum board (X2 in Tables 3-5) in the what-if 

scenarios # 2, 3, 5, 6, 8, and 9 were shifted to the left comparing the definite values. 

In other words, Bayesian calibration was very sensitive to the inappropriate 

selection of the prior distribution, rather than the truncated sample dataset of the 

likelihood function. Figure 4 shows the definite value, prior distributions, and 

posterior distributions of the density of gypsum board. 

Table 3. Calibration Results for What-if Scenarios #1-3                          
(Std. dev.: Standard Deviation) 

 

Definite 

value 

Posterior distribution 

What-if scenario #1 What-if scenario #2 What-if scenario #3 

Mean 
Std. 

dev. 

Confidence interval 

Mean 
Std. 

dev. 

Confidence interval 

Mean 
Std. 

dev. 

Confidence interval 

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

X1 0.46 0.42 0.11 0.19 0.64 0.44 0.02 0.40 0.48 0.42 0.03 0.35 0.49 

X2 1853.09 1722.83 271.94 1189.83 2255.82 1503.93 49.29 1407.33 1600.53 1458.51 120.78 1221.78 1695.24 

X3 932.04 890.60 100.74 693.15 1088.05 909.49 42.98 825.25 993.74 917.47 65.92 788.27 1046.66 

X4 1.01 1.21 0.29 0.64 1.78 1.27 0.05 1.18 1.37 1.21 0.09 1.04 1.38 

X5 2010.49 2011.87 27.46 1958.05 2065.70 2009.03 58.93 1893.52 2124.53 2078.26 119.57 1843.91 2312.61 

X6 880.31 896.02 100.58 698.88 1093.15 823.19 30.66 763.11 883.28 852.29 54.05 746.35 958.22 

X7 1.52 1.57 0.35 0.89 2.25 1.65 0.06 1.52 1.77 1.70 0.11 1.47 1.92 

X8 2452.39 2416.13 163.19 2096.28 2735.97 2278.02 65.13 2150.37 2405.68 2019.27 109.74 1804.17 2234.37 

X9 696.66 815.34 61.71 694.38 936.29 851.00 26.15 799.76 902.25 825.53 38.77 749.54 901.52 

X10 0.04 0.04 0.01 0.03 0.05 0.04 0.001 0.035 0.041 0.04 0.002 0.036 0.043 

X11 35.00 31.86 19.44 -6.24 69.96 38.23 1.18 35.92 40.54 37.20 2.82 31.66 42.73 

X12 1200.44 1037.06 239.66 567.33 1506.79 1090.00 41.42 1008.82 1171.18 1094.50 75.37 946.77 1242.23 

X13 0.77 0.84 0.29 0.27 1.41 0.93 0.04 0.86 1.01 0.99 0.09 0.82 1.17 

X14 1936.54 1850.34 344.71 1174.72 2525.97 1696.82 74.21 1551.37 1842.27 1603.56 94.43 1418.47 1788.65 

X15 881.35 812.06 79.16 656.90 967.22 831.02 30.40 771.44 890.60 772.80 47.89 678.92 866.67 

X16 2.39 2.60 0.17 2.26 2.93 2.39 0.08 2.22 2.55 2.26 0.12 2.03 2.48 

X17 0.66 0.67 0.02 0.62 0.71 0.68 0.01 0.66 0.69 0.65 0.01 0.62 0.68 

X18 0.39 0.38 0.01 0.36 0.41 0.40 0.01 0.38 0.41 0.42 0.01 0.40 0.43 

X19 20.94 21.01 0.16 20.70 21.31 20.78 0.18 20.43 21.13 21.17 0.19 20.81 21.54 

X20 27.26 27.03 0.25 26.55 27.52 26.92 0.24 26.45 27.39 27.23 0.32 26.61 27.85 

X21 0.27 0.28 0.04 0.21 0.36 0.22 0.01 0.21 0.24 0.24 0.01 0.22 0.25 

X22 121.48 118.55 10.99 97.01 140.10 130.74 4.46 121.99 139.49 136.17 7.84 120.80 151.54 

X23 17.34 14.55 1.56 11.50 17.60 17.92 0.54 16.86 18.97 19.17 0.84 17.53 20.81 

X24 15.91 16.61 1.34 13.99 19.23 15.95 0.63 14.72 17.18 15.59 1.07 13.49 17.69 

 

Table 4 Calibration Results for What-if Scenarios #4-6                             
(Std. dev.: Standard Deviation) 

 

Definite 

value 

What-if scenario #4 What-if scenario #5 What-if scenario #6 

Mean 
Std. 

dev. 

Confidence interval 
Mean 

Std. 

dev. 

Confidence interval 
Mean 

Std. 

dev. 

Confidence interval 

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

X1 0.46 0.44 0.14 0.16 0.71 0.43 0.02 0.39 0.47 0.43 0.03 0.36 0.50 

X2 1853.09 1669.57 365.49 953.20 2385.94 1482.70 68.19 1349.05 1616.35 1439.45 131.45 1181.81 1697.08 

X3 932.04 938.47 105.68 731.33 1145.61 937.32 41.92 855.15 1019.49 979.34 74.00 834.30 1124.38 

X4 1.01 1.26 0.28 0.71 1.81 1.26 0.06 1.15 1.38 1.22 0.11 1.00 1.43 

X5 2010.49 2004.22 29.11 1947.16 2061.27 2026.39 74.50 1880.36 2172.42 2074.81 114.29 1850.80 2298.82 

X6 880.31 850.23 87.96 677.83 1022.64 846.52 37.41 773.20 919.84 830.34 66.33 700.34 960.35 

X7 1.52 1.58 0.38 0.82 2.33 1.67 0.08 1.52 1.82 1.71 0.14 1.43 1.98 
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X8 2452.39 2336.44 185.03 1973.79 2699.10 2258.04 102.35 2057.45 2458.64 2277.01 136.31 2009.84 2544.18 

X9 696.66 793.44 72.82 650.71 963.16 827.18 37.99 752.71 901.64 808.36 66.02 678.95 937.76 

X10 0.04 0.03 0.01 0.02 0.05 0.04 0.002 0.036 0.042 0.04 0.002 0.032 0.041 

X11 35.00 44.38 20.95 3.33 85.44 37.77 1.67 34.49 41.04 38.70 3.57 31.69 45.71 

X12 1200.44 1083.75 266.39 561.62 1605.88 1087.05 53.98 981.26 1192.84 1084.24 99.69 888.85 1279.62 

X13 0.77 0.87 0.33 0.22 1.52 0.95 0.04 0.86 1.03 0.93 0.08 0.77 1.09 

X14 1936.54 1667.22 319.10 1041.79 2292.66 1588.27 76.73 1437.88 1738.66 1633.56 126.98 1384.68 1882.45 

X15 881.35 782.96 78.30 629.50 936.42 811.34 35.57 741.61 881.07 796.94 61.74 675.93 917.94 

X16 2.39 2.82 0.19 2.45 3.20 2.57 0.11 2.35 2.79 2.45 0.17 2.11 2.78 

X17 0.66 0.72 0.05 0.63 0.81 0.75 0.03 0.70 0.80 0.71 0.04 0.63 0.78 

X18 0.39 0.39 0.01 0.36 0.41 0.41 0.01 0.39 0.42 0.41 0.01 0.39 0.43 

X19 20.94 21.22 0.22 20.78 21.66 21.03 0.23 20.58 21.47 21.04 0.28 20.49 21.59 

X20 27.26 27.66 0.35 26.98 28.34 27.58 0.33 26.94 28.22 27.56 0.50 26.58 28.55 

X21 0.27 0.31 0.05 0.22 0.40 0.22 0.01 0.20 0.24 0.22 0.01 0.19 0.25 

X22 121.48 125.53 9.88 106.20 144.92 125.89 6.11 113.92 137.86 120.59 10.00 100.98 140.20 

X23 17.34 14.83 2.27 10.39 19.28 18.46 0.76 16.89 19.94 19.07 1.27 16.59 21.56 

X24 15.91 16.38 1.66 13.12 19.64 16.42 0.69 15.08 17.77 16.74 1.23 14.32 19.16 

 

Table 5. Calibration Results What-if Scenarios #7-9                               
(Std. dev.: Standard Deviation) 

 

Definite 

value 

What-if scenario #7 What-if scenario #8 What-if scenario #9 

Mean 
Std. 

dev. 

Confidence interval 
Mean 

Std. 

dev. 

Confidence interval 
Mean 

Std. 

dev. 

Confidence interval 

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

X1 0.46 0.45 0.15 0.16 0.74 0.43 0.02 0.39 0.48 0.43 0.04 0.35 0.50 

X2 1853.09 1340.95 381.21 593.78 2088.12 1463.14 71.34 1323.31 1602.97 1410.24 135.81 1144.04 1676.43 

X3 932.04 935.18 115.17 709.46 1160.91 945.46 46.09 855.12 1035.81 921.27 77.67 769.04 1073.51 

X4 1.01 1.35 0.32 0.73 1.98 1.26 0.06 1.15 1.38 1.23 0.11 1.02 1.45 

X5 2010.49 1993.54 33.95 1927.00 2060.08 2040.38 74.99 1893.40 2187.36 2074.79 120.78 1838.05 2311.52 

X6 880.31 850.83 79.20 695.60 1006.06 843.04 36.56 771.39 914.69 843.10 71.65 702.66 983.54 

X7 1.52 1.91 0.40 1.12 2.71 1.69 0.08 1.54 1.85 1.66 0.14 1.38 1.93 

X8 2452.39 2235.20 185.99 1870.66 2599.74 2182.21 103.57 1979.21 2385.20 2015.88 138.14 1745.12 2286.64 

X9 696.66 796.60 66.23 666.78 926.42 791.27 38.93 714.97 867.57 802.61 62.81 679.51 925.71 

X10 0.04 0.04 0.01 0.01 0.06 0.04 0.002 0.035 0.042 0.04 0.003 0.030 0.042 

X11 35.00 42.28 20.50 2.09 82.47 37.91 1.77 34.45 41.38 38.25 3.48 31.43 45.07 

X12 1200.44 1123.52 287.70 559.62 1687.42 1081.75 48.61 986.48 1177.02 1062.07 102.51 861.14 1262.99 

X13 0.77 0.98 0.33 0.33 1.63 0.94 0.05 0.85 1.03 0.92 0.09 0.75 1.09 

X14 1936.54 1632.59 387.69 872.72 2392.45 1596.30 74.65 1449.99 1742.60 1604.31 148.75 1312.76 1895.87 

X15 881.35 835.82 74.06 690.66 980.97 819.50 36.95 747.07 891.92 795.27 63.36 671.08 919.47 

X16 2.39 2.64 0.21 2.23 3.06 2.61 0.11 2.39 2.82 2.52 0.18 2.15 2.88 

X17 0.66 0.70 0.03 0.64 0.76 0.73 0.03 0.68 0.78 0.70 0.04 0.63 0.78 

X18 0.39 0.41 0.02 0.37 0.46 0.42 0.01 0.39 0.44 0.43 0.01 0.41 0.46 

X19 20.94 21.27 0.21 20.85 21.68 20.90 0.25 20.42 21.39 21.35 0.27 20.81 21.89 

X20 27.26 27.11 0.27 26.59 27.63 27.45 0.33 26.80 28.09 27.87 0.45 27.00 28.74 

X21 0.27 0.29 0.04 0.21 0.38 0.22 0.01 0.20 0.24 0.23 0.02 0.20 0.26 

X22 121.48 130.96 11.27 108.87 153.05 126.81 6.41 114.25 139.37 132.49 9.35 114.17 150.82 

X23 17.34 13.17 2.32 8.62 17.72 18.66 0.78 17.13 20.19 20.13 1.38 17.42 22.83 

X24 15.91 16.79 1.82 13.22 20.37 16.41 0.73 14.99 17.84 16.65 1.43 13.84 19.46 
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(a) What-if scenarios #1, 4, and 7 

 

(b) What-if scenarios #2, 5, and 8 

 

(c) What-if scenarios #3, 6, and 9 

Figure 4 Comparison between Definite Value (x mark) vs. Prior 
Distribution (Normal Distribution), and Posterior Distribution 

(Histogram) for Density of the Gypsum Board 
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As shown in Figure 4, both the prior and posterior distributions of the what-if 

scenarios # 2, 5, and 8 were biased toward the left side comparing with the definite 

values due to the prior distribution with a small variance. In other words, the 

appropriate selection of the prior distribution was very important for the estimation 

of the posterior distribution. Due to the aforementioned issue, a few experts may 

select a non-informative prior distribution having a wide variance range. However, 

it should be noted that the selection of the prior distribution with a wide variance 

range could lead to increase the uncertainty of the posterior distribution due to the 

convergence problem of Bayesian inference. As shown in Figure 4(a), when the 

variance of the prior distribution is wide, the width of decrease of the variance of 

the posterior distribution is small even if the definite value were in ranges of the 

95% confidence interval. To obtain the reliable prior distribution, the measured 

dataset of various buildings must be secured and filtered through the stochastic 

techniques. And then the filtered dataset can be used to estimate population of the 

prior distribution. In the following section, the validation results comparing between 

the measured data using EnergyPlus with definite values and predicted outputs using 

the calibrated model during the separate weather data (2011 year in Seoul) are 

described in detail.  

 
4.2. Model Validation 

Table 6 shows the validation results using the Coefficient of Variance of the Root 

Mean Square Error (CVRMSE). In the results, the calibrated models can provide 

more accurate predicted outputs than those of the uncalibrated model. It should be 

noted that the validation results can be improved even if the definite values were out 

of range of the 95% confidence interval. In other words, the calibration works only 

reduces the difference between the predicted outputs and measured data regardless 

of whether it is unbiased posterior distributions or not. In other words, it is desirable 

to additionally validate if the posterior distributions of the unknown inputs were 

properly estimated. In the case of the CVRMSE results depending on the different 

sample dataset of the likelihood function, the more the sample dataset of the 

likelihood function were truncated, the more CVRMSE values increase (what-if 

scenario #1 vs 4 and 7, what-if scenario #2 vs 5 and 8, and what-if scenario #3 vs 6 

and 9). It can be inferred that the calibration works were affected by the truncated 

sample dataset of the likelihood function. Figure 5 shows the results comparing 

between the predicted probabilistic energy consumptions and the measured energy 

consumption. 

Table 6. CVRMSE Results Using Separate Data 

What-if scenarios 
CVRMSE (%) 

Prior distribution Posterior distribution 

1 6.89 0.39 

2 5.16 0.27 

3 4.55 0.49 

4 6.89 0.73 

5 5.16 0.99 

6 4.55 0.59 

7 6.89 0.99 

8 5.16 0.97 

9 4.55 0.74 
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(a) Comparison between measured data (solid line) vs. uncarlibrated model 

(boxplot) vs. calibrated model of what if scenarios #1, 4, and 7 (boxplot)  

 
(b) Comparison between measured data (solid line) vs. uncarlibrated model 

(boxplot) vs. calibrated model of what if scenarios #2, 5, and 8 (boxplot) 

 
(c) Comparison between measured data (solid line) vs. uncarlibrated model 

(boxplot) vs. calibrated model of what if scenarios #3, 6, and 9 (boxplot) 

Figure 5. Validation Results of the Calibrated Models Using Separate 
Data 
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5. Case Study 

In this study, a stochastic retrofit analysis of glazing systems for the design 

alternatives (Table 7) was implemented. For comparing with probabilistic results of 

each design alternative, thermal properties of the glazing system such as U-factor 

and Solar Heat Gain Coefficient (SHGC) are assumed to follow a normal 

distribution with 10% standard deviation of definite values. To generate the sample, 

the LHS method was used and the number of sample is set to 200. 

Table 7. Design Alternatives for Stochastic Retrofit Analysis of Glazing 
Systems 

Design alternatives U-factor (W/m
2
-K) SHGC (dimensionless) 

1 

Clear 3 mm 

3.160 0.763 Air 6 mm 

Clear 3 mm 

2 

Loe clear 6 mm 

1.770 0.568 Air 13 mm 

Clear 6 mm 

3 

Green 6 mm 

3.096 0.510 Air 6 mm 

Clear 6 mm 

 

Table 8 shows the probabilistic results of the total annual energy consumption 

using the calibrated model. In the results, alternative #3 has a lower mean and 

standard deviation than the others in all the what-if scenarios. It means that the 

identical decision making result can be obtained if the probabilistic predicted 

outputs are used only for the relative comparison. However, the different results 

depending on the what-if scenarios may lead to a mistaken optimal solution in terms 

of a decision making problem requiring accurate probabilistic predicted outputs 

such as stochastic optimal design and control. 

Table 8. Stochastic Retrofit Analysis Using the Calibrated Model (kWh) 

What-if 

scenarios 

Alternative #1 Alternative #2 Alternative #3 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

1 114.04 8.50 107.61 7.39 99.16 6.75 

2 112.56 5.34 106.48 3.85 97.87 3.34 

3 113.37 5.50 107.27 5.02 98.27 4.54 

4 111.40 10.01 104.49 9.38 95.90 8.58 

5 108.29 5.49 100.77 4.73 92.49 3.97 

6 110.31 6.81 105.82 5.79 99.22 5.44 

7 112.60 9.69 105.89 8.71 97.97 8.04 

8 109.62 5.63 102.03 4.81 93.67 4.13 

9 111.02 7.10 106.16 6.07 99.02 5.64 

 
5. Conclusions 

This paper presented the challenging issues regarding the inappropriate selection 

of prior distributions and truncated sample dataset of the likelihood functions in 

terms of Bayesian calibration. To deal with the issues, this paper implemented 
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Bayesian calibration based on the what-if scenarios in view of the different prior 

distribution and likelihood function in a given reference case study. The calibration 

results indicated that the inappropriate selection of prior distributions had a greater 

effect on the accuracy of the posterior distributions than the truncated sample 

dataset of the likelihood function. To solve the problem, a few experts may assume 

a wide probability range for a vague prior distribution. However, the estimated 

posterior distributions using wide variance ranges of the prior distributions could 

lead to increase the uncertainty. In other words, the appropriate selection of the 

prior distribution is very important, and it is thought that building simulation 

societies or research institutions need to perform studies on the detailed parameter 

estimation for the prior distributions. In respect of validation results of the 

calibrated model using separate data, the more the sample dataset of the likelihood 

function were truncated, the more model uncertainty increased. In other words, it is 

important to acquire the undamaged sample dataset. In a stochastic retrofit analysis 

of glazing systems, the results showed that the calibrated model could yield the 

same solution about each what-if scenario, but different probabilistic results derived 

from risks of Bayesian calibration will be inappropriate for the stochastic optimal 

design and control. In other words, the appropriate selection of the prior distribution 

and a likelihood function is important to acquire meaningful information and 

knowledge from robust Bayesian calibration. 
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