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Abstract 

The accurate cooling load prediction of ice storage system is the basis and foundation 

for optimization control. In order to implement the optimal control of ice storage system, 

the accurate cooling load prediction is very important. This paper proposes that the SVM 

(support vector machine) combined with rough set is used for the load prediction of ice 

storage system.  The simulation results proved that it opens a new avenue in load 

forecasting. SVM based on RS method is a promising alternative approach for cooling 

load prediction in a building. 
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1. Introduction 

Buildings are responsible for 73% of the total electricity consumption. Heating, 

ventilation, and air conditioning (HVAC) systems generate 33% of the total building 

energy consumption [1, 2]. Therefore, it is both economically and environmentally 

significant to reduce HVAC energy consumption. 

Along with the fast development of modern construction in China, the energy 

consumption of air conditioning increases rapidly and is fast approaching the international 

level. As the environmental temperature changes, the cooling load and the electricity 

consumption change correspondingly. During the periods of high outdoor temperatures, 

they are much higher than those during the periods with lower outdoor temperatures. To 

meet the peak electricity demand, utilities are forced to introduce new power generating 

unit, which is termed as peak regulating unit.   It is well known that ice storage 

technology is regarded as a feasible approach for peak-load shifting in the cooling season, 

as the price of electricity during off-peak hours is much lower than during peak hours [3]. 

Although ice storage processes consume more power than conventional processes with 

the same cooling capacity, the operating costs of ice storage processes are much lower, 

and their applications in buildings have been on the rise in recent years [4-6]. How to 

control the operating mode of the ice storage system to achieve energy saving? In fact, a 

well-controlled ice storage system should meet the following two requirements: one is 

that an ice storage volume must meet the requirement of air conditioning cooling in the 

next day. The other is that an ice storage system should be scheduled to release cold, and 

the ice in the storage tank is neither exhausted ahead of schedule nor remained at the end 

of schedule. Therefore, an accurate prediction of the building load is the basis of effective 

implementation of an ice storage system. This paper proposes a method which uses SVM 

combined with RS theory to predict the load of the ice-storage system. It provides a new 

perspective for the researchers on the load prediction of the ice storage system. 

 

1.1 Ice Storage System 
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The ice storage systems use the latent heat of ice to store cooling energy. Ice storage 

system stores energy by producing ice during off-peak periods and releases the stored 

energy during the peak periods. It is an effective measure for shifting peak period power 

demand to the off-peak nighttime hours. Since the electricity price during off-peak hours 

is lower than that in peak hours,  applying ice storage air conditioning system is a cost-

effective measure, and its application is increasing [7, 8]. 

 

 

Figure 1. The Usual Control Strategy for Ice Storage System 

In ice storage systems, ice can be made (i.e., ice tank is charged) when the cost of 

electricity is lower; the ice tank can supply cooling to the building (i.e., the ice tank is 

discharged) during peak hours, when the cost of electricity is higher [9]. The stored 

cooling energy is used to meet the air conditioning requirements during the peak periods. 

Thus, part of the power demand is shifted from peak daytime periods to off-peak night 

time periods [3]. According to the load characteristics and the cost of the electricity, the 

operating strategies of ice storage system can be classified as full ice storage and partial 

ice storage. In partial ice storage systems, the conventional air conditioning system 

operates to meet part of the peak period cooling load, and the rest is met by drawing from 

storage. Four control strategies were investigated for partial ice storage systems: optimal 

control and three conventional controls (chiller priority, constant proportion and storage 

priority control), just shown in Figure 1. 

For all three conventional strategies, the off-peak control rule is to recharge the storage 

as quickly as possible to be prepared for the next on-peak period. During on-peak periods, 

however, the strategies differ. Chiller-priority control meets all of those cooling loads for 

which the chiller capacity is sufficient. Loads that exceed the chiller capacity, are met in 

parallel by the chiller and the ice storage. Consequently, chillers that are supposed to 

operate in conjunction with an ice storage system under chiller-priority control must be 

downsized to make the ice storage system feasible. Typical values of the chiller capacity 

are about 80% of the peak cooling load [10, 11].  

Constant proportion control prescribes that at each on-peak hour a constant load 

fraction of the current cooling load is met by the ice storage. A load fraction value of 25% 

was found to provide good load-shifting performance without premature storage depletion 

for a wide spectrum of cases. The chiller is fully sized, i.e., sized to meet the peak load 

directly. 

Storage priority is very similar to constant proportion control except that the load 

fraction is not constant for a whole month or season, but computed daily anew from 

cooling load predictions (over the next on-peak period) such that the storage is fully 

depleted at the end of the next on-peak period. This strategy ensures that the available 

storage is always fully utilized. 
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In accordance with its definition, storage priority completely discharges the entire 

storage over the on-peak periods. These three conventional controls keep the tank full 

over the entire weekend in preparation for the next on-peak period. 

All in all, chiller priority cannot develop the ability of load shifting. Storage priority 

not only makes the ice in exhaustion in advance, but also makes the chillers work in the 

state of low load for a long time, which result in the unreasonable operation.  

Optimal control in the given context is defined as the control trajectory that minimizes 

the combined energy and demand charge of the electrical utility bill for cooling related 

and non-cooling related electricity use. During the week-days, optimal control behaves 

similarly to storage priority. The most significant difference is that optimal control 

recharges the empty tank more slowly using the entire off-peak period. Over the weekend, 

optimal control goes through some irregular charging and discharging cycles but is 

completely recharged at the onset of the first on-peak period of the week. 

It is well known that the ice storage system is not an energy saving system, but 

balances the city power load through the load transfer function. The users can save the 

costs by the full use of the local difference of the peak and valley price. Table1 gives the 

commercial electricity prices during the different time in Beijing.  

 

Table 1. The Commercial Electricity Prices in Beijing (Unit: Yuan/KWh) 

   On-peak 
price 

Peak 
price 

Flat price Valley price 

1.5065 1.378 0.8595 0.3658 

11:00-
13:00 
20:00-
21:00 

10:00-
11:00 
13:00-
15:00 
18:00-
20:00 

7:00-
10:00 
15:00-
18:00 
21:00-
23:00 

23:00-7:00 

 

We can see from Table 1, if we can make full use of the valley price, which not only 

relieve the pressure of the city electricity, but also save energy and costs. It is the decisive 

factor for daily operation cost to determine how to control the ice storage amount during 

the valley price time reasonably, as well as the ice melting speed in the peak period and 

flat price time. Through the exploration and research for many years, it is generally 

believed that the effective way to solve the control problem is the optimal control based 

on the air conditioning load prediction. 

 

1.2  The Method of Load Prediction  

Accurate prediction of the dynamic air-conditioning load in a building is a key for the 

optimal control of a HVAC system. Many techniques have been proposed in the last few 

decades for short-term load forecasting. The traditional techniques include autogressive 

integrated moving-average (ARIMA) model, linear regression (LR) technique, neural-

network (ANN) model, and grey model [3]. Kalogirou, et al., [12] used back propagation 

neural networks to predict the required heating load of buildings. Minoru Kawashima et al. 

[13] described an artificial neural network model to predict the next day’s total cooling 

load. Kreider and Wang [14] demonstrated an automated load prediction using the ANN 

model. Zhang Lin [15] proposed an improved Support Vector Machines algorithm based 

on time sequence to apply in load forecasting. Li Qiong, et al., [16] apply radial basis 

function (RBF) to predict the load of a building in GuangZhou. Chen Liu [17] proposed a 

model of wavelet neural network for predicting the air-conditioning load.  An SVM 

model and back-propagation (BP) neural network model are both used for the hourly air 
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conditioning load prediction of an office building in summer months in Guangzhou area 

by Li Qiong, et al., [18], and the simulation results show that the SVM model more 

accuracy and more effective than BP neural network. MacArthur, et al., [19] and 

Spethmann [20] developed a prediction method based on the autoregressive integrated 

moving average (ARIMA) model and applied it to an optimal cold storage controller. Li 

Xuemei, et al., [21] proposed an optimal model which is based on stimulated annealing 

particle swarm optimization algorithm that combines the advantages of PSO algorithm 

and SA algorithm. In Ref [21], it illuminated that  because of its strong non-linear 

mapping ability, artificial neural networks (ANN) are widely accepted as a technology 

offering an alternative way to tackle complex and ill-defined problems, which have been 

popularly applied to predict the building cooling load and building energy consumption. 

ANNs-based models seem to obtain improved and acceptable performance in cooling load 

forecasting issue, however, the conventional ANNs still suffer from several weaknesses 

such as the need for a large number of controlling parameters, the difficulty in obtaining 

stable solutions, the danger of over fitting and thus the lack of generalization capability. 

However, the time series method often considers only short-term load prediction, and it 

will have large deviation when considering the long-term load prediction [22]. 

As we all know that accurately predicting the building cooling load is a challenging 

work. Cooling load in the building is affected by many factors. For an accurate 

forecasting model, it is important to understand which factors influence the load level 

most. Such knowledge is often acquired from experienced operators. However, manual 

selection of factors pertinent to prediction task would not guarantee an optimal solution: 

the inaccurate estimations result in inaccurate predictions. Hence, there is a need for a 

reliable model that can select relevant factors automatically from historical data. Rough 

set (RS) theory, which can be used for attribute reduction, provides a solvable method for 

this problem. By attribute reduction, irrelevant factors to the tasks can be identified and 

removed. RS has proved to be very effective in many practical applications. However, in 

RS theory, the deterministic mechanism for the description of error is very simple. 

Therefore, the rules generated by RS are often unstable and have low classification 

accuracies. So RS cannot predict loads with high accuracy. RS theory provides useful 

techniques to reduce irrelevant and redundant attributes from a large database with a lot of 

attributes.  

In recent years, support vector machine (SVM), developed by Vapnik and his 

coworkers in 1995, and has been widely used in classification forecasting and regression 

[4]. In this paper, based on the RS theory for the attribute reduction, we try to introduce 

the theory of SVM into the forecasting of hourly building cooling load. The SVM theory 

based on RS theory establishes a building cooling load prediction model. The steps are 

proposed. Figure 2 shows that firstly, some reductions can be derived from crude data 

based on RS theory and relevant factors can automatically be obtained from historical 

data. Then SVM is trained to learn in order to predict the load. The simulation results for 

a building in Beijing show that SVM combined with RS theory is feasible. 

 

2. The RS Theory 

The RS theory is one of the mathematical tools that can tackle uncertain and fuzzy data.  

It is proposed by Pawlak z in 1982. The RS theory is one of the promising data mining 

techniques. The theory was characterized with the attributes reduction and association 

rules extraction ability. Compared with other tools, the most important advantage of 

Rough Set is that it does not require any pre-knowledge about the data. The main object 

of Rough Set is to extract rules from Information System (IS). An IS can be demonstrated 

as ,I U A , where U denotes a collection of limited and nonempty objects 

1 2{ , ,..., }nU x x x  and A denotes a collection of nonempty and limited attributes 
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as
1 2{ , ,... }mA a a a . For each , :i i ia A a U Va   where 

iVa denotes the value field of 

attribute ai, A can further be divided into two collections that are conditional attribute 

collection C and Decision attribute collection D with no intersection. The kind of IS are 

called Decision Information System (DIS) or Decision Table (DT) [23]. 

 

3. SVM 

Support Vector Machines (SVMs), derived from statistical learning theory and VC-

dimension theory, have been widely used in many fields and show good performance 

(Vapnik, 1998). Good generalization ability is an important characteristic of SVMS. 

SVM is a novel type of learning machine, gaining popularity due to its many attractive 

features and promising empirical performance. SVM has been successfully employed to 

solve nonlinear regression and time series problems. The main advantage of SVM is that 

it adopts the structure risk minimization (SRM) principle, which has been shown to be 

superior to the traditional empirical risk minimization (ERM) principle, employed by 

conventional neural networks. SRM seeks to minimize an upper bound of the 

generalization error consisting of the sum of the training error and a confidence level 

based on VC dimension, which is different from commonly used ERM principle that only 

minimizes the training error. This method has been proven to be very effective for 

addressing general purpose classification and regression problems [17]. The basic idea of 

SVM for regression is to introduce kernel function, map the input space into a high-

dimensional feature space via a nonlinear mapping and to perform a linear regression in 

this feature space [24, 25]. 
 

4. A Building Cooling Load Prediction Model 
 

4.1 The Steps for Load Forecasting Model 

In order to predict the cooling load for ice-storage system with the method of SVM 

based on RS theory, the steps are as follows: 

Step 1: Attribute reduction using RS theory from historical data. The following is the 

implementation: 

(1) To construct the corresponding vector sets according to the preprocessed data. 

(2) To reduce attribute using RS theory for each vector set. 

(3) To store the dimension-reduced vector. 

(4) To extract the features and find the decision factors. 

(5) To take data discretization with equidistant discretization method. 

Step 2: To take the discretized data as the inputs and forecast the load with SVM. The 

flow chart is shown with Figure 2. 
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Figure 2. The Flow Chart of the Algorithm 

4.2 The Model based on the Combination of RS and SVM 

The common advantage of RS and SVM is that they do not need any additional 

information about data like probability in statistics or grade of membership in fuzzy-set 

theory. RS has proved to be very effective in many practical applications. RS theory 

provides useful techniques to reduce irrelevant and redundant attributes from a large 

database with a lot of attributes. SVM has the ability to approach any complex functions 

and possess as a good robustness to noise.  

To predict the load for the ice storage air-conditioning system the ideal input samples 

will be the following parameters: the outdoor dry bulb temperature, outdoor wet bulb 

temperature or dew point temperature, atmospheric pressure, cloud state, cloud cover (0-

10 levels), relative humidity (absolute temperature), outdoor air enthalpy, outdoor air 

density, wind speed, wind direction, the sun direct radiation intensity, diffuse solar 

radiation intensity, the ground scattered radiation intensity, rainfall, snowfall, indoor load, 

the indoor equipment heat load. But it is too complex to model load predicting model with 

so many input parameters. So at first we use the RS theory to find the decision factor for 

the load predicting. We can get six input parameters for the building cooling prediction 

model: Tt, Tt-1, Tt-2 denote the outdoor dry bulb temperature (。C) at the time t, t-1, t-2, 

respectively, Dt is the relative humidity (%) and Lt and Lt-1are the solar radiation 

intensity (W/m2) at time t and t-1 respectively. After determining the input parameters, 

the cooling load as the output, we can establish the load forecasting model with SVM. 

Suppose that all the normalized input parameters compose a vector Xi ( i represents one 

input sample), and Yi is the normalized building cooling load under the input sample i. 

when the total number of samples is N, the sample set is defined as  
1

( )
N

i i i
X Y


. 

Therefore, SVM approximates the relationship between the output and input parameters 

using the following form: 

( ) ( )Y f X W X b                                                                                               (1) 
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Where  1 2 1i i i i i i iX T T T D L L   . ( )X  represents the high dimensional feature 

space which is nonlinearly mapped from the input space X, coefficients W and b are 

estimated by minimizing the regularized risk function shown  

2

1

*

*

1
min + )

2

( )

( ). .       ( 1,2, , )

, 0

i

N

i

i

i i i

i i i

i i

Q W c

Y f X

f X Ys t i N

 

 

 

 





 

  


   




（

                                                                (2) 

In eq.(2), the first term 
2

W  is called regularized term. Minimizing 
2

W  will make the 

function as flat as possible, thus playing role of controlling the function capacity. The 

second term is the empirical error measured by ε-insensitive loss function. C is the 

penalty parameter, which is regularized constant to determine the trade-off between 

complex function regression model and the accuracy of sample fitting.   is the largest 

error that regression allowed, εcontrols the number of the support vectors and the 

generalization ability, the bigger it is , the less the number of support vectors are. i  and 

*

i are positive slack variables respectively. 

According to the Lagrange optimization method and duality principle, the optimization 

problem Eq.(2) can be rewritten as follows: 

* * *

, 1 1 1

*

1

*

1
max ( )( ) ( , ) ( ) ( )

2

( ) 0
. .

0 ,

N N N

i i j j i j i i i i

i j i i

N

i i

i

i i

J K x x y y

s t

C

       

 

 

  



       


 


  

  


       (3) 

Here, 
*

1

( ) ( )
N

i i i

i

W x  


  . 

In order to improve the calculation efficiency, and prevent individual data from 

overflowing during the calculation, input and output parameters should be normalized as 

follows: 

*

1

( ) ( ) ( , )
N

i i i

i

Y f X K X X b 


                                                                       (4) 

Where i and 
*

i are Lagrange multipliers, i and j represent different samples respectively. 

( , )iK X X  is kernel function. Any function K(Xi,Xj) satisfying Mercer’s condition can 

be used as the kernel function [26]. The typical kernel functions include linear function, 

polynomial function, Gaussian function, and Sigmoid function, etc. among these 

functions, the Gaussian function can map the sample set from the input space into a high-

dimensional feature space effectively, which is good for representing the complex 

nonlinear relationship between the output and input samples. Moreover, there is only one 

variable needing to be determined, thus, Gaussian function is used widely. Gaussian 

function is also selected as the kernel function in this paper, whose expression is shown as 

follows: 
2

2

iK(X , ) exp( )j i jX X X                                                                                 (5) 

Where σ2 is the width parameter of Gaussian kernel. 

The SVM load forecasting model is as Figure 3. 
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Figure 3. The Scheme of SVM for Load Prediction 

4.3 Application 

An office building located in Beijing, China is selected randomly to justify the 

feasibility of SVM based on RS theory to establish the building cooling load prediction 

model. The total building area is 14,957m2, where the ground area is 8839m2, the 

underground area is 6118m2. DeST is used to calculate the office building’s hourly 

cooling loads, which are taken as the basic values to compare with the predicted values 

from SVM models. Through repeated experiments, we set 
2 5, 10, 0.034C    , 

which can be the best for the load forecasting. We choose the data from 1st of June to 9th 

of June as the training sample. The comparison of the predicting load with SVM based on 

RS and the actual load is shown in Figure 4, The predicting error is shown in Figure 5. 

The result shows that the new method can predict the cooling load effectively and 

accurately. 

 

  

Figure 4. Comparison of the Forecasting with SVM based on RS and Actual 
Load Curves 
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Figure 5. Output Error 

5.  Conclusion 

RS can remove redundant attributes without any classification information loss. SVM 

is a novel type of learning machine, gaining popularity due to its many attractive features 

and promising empirical performance. 

A novel method of combined RS with SVM models was applied to forecast cooling 

load of the ice storage air conditioning system. The basic steps are produced. It is a 

guiding role for the load forecasting. The SVM combined with RS method’s quick and 

correct learning performance makes it open a new avenue in the load forecasting. SVM 

based on RS method is a promising alternative approach for cooling load prediction in a 

building. 
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