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Abstract 

The automatic clutch driving system of vehicle automated manual transmission (AMT) 

is a typical nonlinear system. A fast and accurate position control is difficult to achieve 

because of the nonlinearity of the load changes caused by the clutch diaphragm spring, 

the cushion spring, and other nonlinear components and because of the uncertainty of the 

load changes caused by the cushion spring deformation in the clutch engagement process 

at varying temperatures on the friction surface. In this paper, based on the theory of 

fractional calculus and traditional sliding mode control, the method of fuzzy fractional 

order sliding mode control (FFOSMC) is proposed for clutch control. By selecting the 

fractional order sliding surface, the laws of control are designed; and self-tuning of the 

switch gain is realized with the fuzzy controller. Theoretical analysis and numerical 

simulation revealed that compared with the traditional fuzzy integer order sliding mode 

controller, FFOSMC achieves better dynamic performance in position control and better 

robustness against load disturbance and other uncertain factors. 
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1. Introduction 

Automated manual transmission (AMT), which adopts the automatic clutch and 

automatic shift system on manual transmission, has realized automatic clutching and 

shifting with electronic control units; AMT has been widely used because of its high 

efficiency and low cost, among other advantages [1–3]. However, the typical AMT 

adopts a dry clutch structure. Thus, the nonlinear deformation of its internal 

diaphragm springs and cushion springs as well as the uncertainty of cushion spring 

deformation caused by temperature changes on the friction surface in the clutch 

engagement process [4] cause nonlinearity and uncertainty of the load changes for 

the clutch driving system. In addition, separation and engagement, particularly the 

engagement control when the vehicle is started, become difficult, thereby restricting 

AMT performance [6], because the parameters of the driving motor varies with time 

and because the process is influenced by the driver’s intention [5].  

Automatic operation laws and appropriate controlling methods must be 

established to realize real-time tracking of the automatic operation laws with the 

clutch actuator [7]. Controlling strategies and laws of operation [8–11] have been 

explored in previous studies on automatic clutch requirements, including small jerk 

and minor friction loss. 

Real-time tracking of automatic clutch laws is completed by the driving system to 

control the position of the clutch actuator, including the release bearing and the 

pressure plate [12, 13]. In the control process, (1) the accuracy of the position 

control directly affects the size of the clutch transfer torque and significantly 
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influences the performance of the vehicle start and gear shift; (2) the speed of the 

position response, i.e., the response time of the clutch driving system, directly 

affects the dynamic performance of vehicles. However, an accurate and rapid 

position control is difficult to achieve because of the nonlinear characteristics of the 

dry clutch, time varying parameters, and other factors [14]. Various control methods 

have been proposed to overcome the problems of nonlinear control; these methods 

include flatness-based control [15], model predictive control [16], sliding mode 

control (SMC) [17–19], adaptive nonlinear observer [20], feed forward–feedback 

control [21], and adaptive Neuron PID control [22]. 

Among the abovementioned methods, SMC can realize robust control and is 

characterized by fast response, strong robustness to the uncertainty of system 

parameters, low sensitivity to external disturbance, and easy realization. [23], 

suggesting that SMC satisfactorily meets the control requirements of the automatic 

clutch system with nonlinearity and uncertainty. However, the essential 

discontinuous switching characteristic of the conventional SMC causes high 

frequency chatter. Thus, the switching function )sgn(  is often replaced with the 

saturation function )(sat  to avoid or completely eliminate the chatter. However, this 

technique does not guarantee that the steady-state tracking error of the system 

would converge to zero, thereby causing steady-state error. To solve this problem, 

Chern [24] proposed the integral sliding mode control, which lowers the transient 

performance while eliminating the steady-state error [25]. 

Fractional calculus, which extends the conventional integer order calculus to any 

order, is characterized by infinite dimension, hereditary, and memorization [26]. In 

a number of studies, fractional calculus and SMC have been combined and applied 

to nonlinear system control, thus weakening the chatter while maintaining the 

robustness and response characteristics of the traditional sliding mode control [27–

29]. 

On the basis of the accuracy and rapidity requirements for the position control of 

the automatic clutch driving system, as well as the strong-nonlinearity of the system 

itself, fuzzy fractional order sliding mode control (FFOSMC) is proposed in this 

study. A fractional order sliding surface is designed with regard to the slow energy 

transfer of the fractional order sliding surface, and real-time self-tuning sliding 

mode switch gain of the fuzzy controller is designed with regard to the uncertainty 

of parameters and disturbance changes. The objective of such a design is to weaken 

the chatter caused by the sliding mode control while improving the accuracy of the 

automatic clutch position control and the robustness against load disturbance, 

thereby realizing better control performance than that of the traditional integer order 

sliding mode control. 

The remainder of this paper is organized as follows. Section 2 introduces the 

structure of automatic clutch and establishes the dynamic model. Section 3 describes 

the designing of the fractional order sliding mode controller and the fuzzy controller 

with self-tuning sliding mode switch gain. Section 4 analyzes the advantages of 

FFOSMC over the traditional SMC in terms of chatter, stability, and robustness. 

Section 5 presents the numerical simulation and results analysis. Section 6 provides 

the conclusions. 

 

2. Mathematical Modeling of the Clutch Driving System 

 

2.1. Structure of the Clutch Driving System and Transmission Relations 

The structure of the automatic clutch system in this study is shown in Figure 1. 

The system is composed of a clutch motor (DC motor), a transmission unit (gear 



International Journal of Smart Home 

Vol. 9, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  55 

reduction unit and lever mechanism) and a clutch (diaphragm spring, pressure plate, 

clutch plate, and flywheel).  
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Figure1. Schematic Diagram of the AMT Clutch System 

1. Output shaft gear of DC motor 2. First large reduction gear 3. Second small 

reduction gear 4. Second large reduction gear 5. Crankshaft 6. Drive plate hub 7. 

Flywheel 8. Clutch plate 9. Friction pad on the pressure plate side 10. Cushion 

spring 11. Friction pad on the flywheel side 12. Pressure plate 13. Diaphragm spring 

14. Main shaft 15. Release bearing 16. Release lever 17. Push rod 

As shown in Figure 1, the clutch motor rotating clockwise drives the gear 

retarding mechanism and the leverage mechanism drives the release bearing shifting 

from position A to position B, thus realizing engagement through the diaphragm 

spring and the pressure plate. When the motor rotates counter-clockwise, clutch 

separation is realized.  

The relationship between the displacement x of the clutch release bearing and the 

rotation angle m of the clutch motor in Figure 1 is expressed as 

mmm k
iii

l
fx  

321

4)(                                                              

(1) 

where k is constant; 1i  and 2i  are reduction ratios of the first and the second 

gear reduction mechanisms respectively; 3i  is the reduction ratio of the second 

reduction gear to the clutch fork determined by a lever mechanism composed of a 

push rod and a release lever: 

                                         

3
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
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
i                                                                                        

(2) 

Where 1  and 3  are the included angles of the lever mechanism in Figure 1, and their 

relations can be calculated with the following constraint kinematics equation: 

                                   )atan(2
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And )cos(2 1143 lllA  , 131 sin2 llB  , 
121

2
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2
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2

2 cos2 llllllC  , 1l ~ 4l  are 

parameters of the lever mechanism shown in Figure 1.  
 

2. 2 Relationship between the Separating Force of the Clutch and the Displacement 

of the Release Bearing 

The force exerted by the diaphragm spring on the release bearing in the moving 

process is translated into the load of the clutch drive motor with strong nonlinearity. 

This force is the separating force Fs (x) of the clutch. Displacement of the release 

bearing x and the corresponding separating force FS are measured in the experiment, 

the experimental data obtained are fitted by the six-time polynomial, and the FS-x 

relation curve is obtained, as shown in Figure 2. When x=0, the release bearing is 

located at position B, and the clutch engages completely; when x=10 mm, the 

release bearing is located at position A, and the clutch separates completely.  

 

 

Figure2. Separation Characteristics Curve of the Clutch 

The expression fitted by the six-time polynomial is as follows: 

39.34222.13925284.770824.188.587823 4718.1 03633.0)( 123456  xxxxxxxFs
 

(4) 
 

2. 3 Dynamic Model of the Clutch Driving System 

A DC motor is used to drive the clutch, and the influence of the motor inductance 

is ignored. The voltage and torque equations of the motor can be expressed as 

follows: 

                                   aaRieu                                                                            

(5) 

dt

d
JTT m
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(9) 

where u  is the motor voltage, e  is the motor induction electric potential, ai  is 

the motor current, mC  is the motor constant, aR  is the total resistance of the 

armature circuit, m  is the motor angular rate, eqJ  is the equivalent to the moment 

0 2 4 6 8 10
0

200

400

600

800

1000

x(mm)

F
s(

N
)

 

 

test data

fitting curve



International Journal of Smart Home 

Vol. 9, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  57 

of inertia of the motor rotor, LT  is the equivalent load torque of the motor output 

shaft. 
According to Equations (5)–(9), 

                          L
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(10) 

By substituting Equation (1) into Equation (10), the dynamic model of the clutch 

driving system is obtained as follows: 
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where J  is the moment of inertia of the DC motor rotor and the output shaft gear, 

21 tt JJ 、  is the moment of inertia of the first reduction gear, 
2tJ  is the equivalent 

moment of inertia of the second reduction gear and the lever mechanism, 
bm  is the 

mass of the release bearing, and mk  is the damping coefficient of the diaphragm 

spring. 

In consideration of the influence of uncertainty and the time variant of system 

parameters and load disturbance, Equation (11) can be changed as follows: 
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Where ba  ，  are system parameter perturbations, c  is the system load 

disturbance, and   includes the function of time-varying parameters and load 

disturbance and is supposed to be limited, and 

 RΨΨ，                                                                        

(15) 

 

3. Design of the Fuzzy Fractional Order Sliding Mode Controller 
 

3.1 Structure of the Control System 

The automatic clutch control system is a position servo mechanism used to track 

the target position of the clutch release bearing. The position of the release bearing 

is obtained by measuring the motor turn angle and conversion. Therefore, the 

structure of the control system is shown as follows: 
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Figure 3. Structure of the Control System 

In Figure 3, )(txr  is the target position value of the release bearing and is 

determined by TCU according to the driver's intentions, the working status of the 

engine, and ride Comfort [30]; )(tx  is the measured position value of the release 

bearing, i.e., the current actual position; and FFOSMC is composed of the fractional 

order sliding mode controller (FOSMC) and the fuzzy self-tuning module (FC) of 

the switch gain. 

The controller generates appropriate clutch motor control signal, which drives the 

clutch motor and makes the release bearing position error tends to zero. Position 

deviation of the release bearing is defined as follows: 

)()()( txtxte r                                                                            

(16) 

According to Equation (16), 

)()()( txtxte r
 

                                                                                  
(17) 

)()()( txtxte r
 

                                                                                       
(18) 

                  

3.2 Fractional Calculus 

Fractional calculus is a process of extending the classical integer order calculus to 

non-integral calculus. That is, the order can be arbitrary. The basic operation of the 

fractional calculus is defined as: 
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Where, a and t are the lower and upper limits of the basic operation, respectively; 

r is the order of the fractional operation, and )Re(r  is the real component of r. 

In theoretical development, various definitions of fractional calculus are 

generated, and the definition of the commonly used Caputo fractional calculus [26] 

is shown as follows: 
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Where Nmmrm  ，1 . 

Based on the definition of fractional calculus, fractional calculus  has a higher 

degree of freedom than the integer calculus in order, and the fractional calculus of a 
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continuous function at a certain point is related to the function values of all time 

points between the initial point and the specific point, and it has memory. Therefore, 

better control performance can be achieved by selecting the appropriate fractional 

order. 

 

3.3 Design of the Fractional Order Sliding Mode Controller 

The contents of design include sliding surface and control law. 

Fractional order differential sliding surface is selected in this study. 

)()()( 0 teDtekts r

tp         Rpk ,  )10( ，r                               

(21) 

Where 
pk  is the gain of the sliding surface, and )(0 r

tD  is the fractional calculus 

operator. 

Taking the derivative of Equation (21), 
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Under ideal conditions ( 0 ), when the system moves on the sliding mode,

0)( ts , substitute Equations (14) and (18) into Equation (22): 
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Taking (1-r) order differential on both sides of Equation (23) with )())(( tftfDD rr  [26], the 

equivalent control of the system in the sliding mode is obtained as follows: 
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Considering the uncertainty of the parameters and load disturbance of the actual 

system, the following control law is adopted: 
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(25) 

where )sgn(s is the switching control, realizing robust control of uncertainties of 

the system and external disturbance,   is the switch gain, and )sgn(  is the 

symbolic function and is defined as 
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Equation (25) is the control law and r is the order of FOSMC. When the order r is 

equal to 1, Equations (21) and (25) are the traditional integer order sliding surface 

and control law, respectively. That is, 
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3.4 Stability Analysis 

Stability analysis covers two aspects: (1) the control law determined by Equation 

(25) guarantees that the system can converge to the sliding mode at arbitrary initial 

state, thereby satisfying the reaching condition; and (2) when the system reaches the 

ideal sliding mode, the operation stability of the system on the fractional order 

sliding surface should be guaranteed. 

Step 1: Reaching Condition 

Theorem. For the clutch position control system of Equation (14), when the 

control law of Equation (25) is adopted, the sliding trajectory at arbitrary initial 

state will converge to the sliding surface determined by Equation (21). 

Proof. Lyaponov function is selected as in reference [31] 
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According to Equations (14), (18) and (22), Equation (30) can be expressed as 
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Substituting the control law of Equation (25) into Equation (31): 
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Then, the following two cases are discussed: 
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According to Equation (15), when the switch gain satisfies 

b


                                                                                            

(33) 

Then 0V . Based on Lyaponov stability theorem, the reaching condition is 

satisfied.   

The proof has been completed. 

Step 2: Stability 

When the sliding mode occurs, Equation (21) can be rewritten as 

)()(0 tekteD p

r

t            )10( ，r                                             

(34) 

As 2/)(arg  rk p  , according to stability theorem of the fractional order 

system [32], the sliding mode operation of the system is asymptotically stable. 
 

3.5 Fuzzy Self-tuning of Switch Gain 

Switch gain   satisfies that Equation (33) is a condition of sliding mode 

convergence, but its size is a major cause of system chatter on the sliding surface. 

System disturbance   varies with time. Thus, to reduce the chatter caused by ,   
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should also be time-varying. However, tuning of the switch gain   is very difficult 

because of the uncertainty of the system disturbance and the difficulty in 

measurement. Therefore, fuzzy self-tuning of switch gain is proposed in this paper. 

Input/output fuzzy sets of the fuzzy controller are defined as follows: 

}P  ZN{s , where the linguistic terms N, Z, and P respectively represent 

Negative, Zero and Positive, and their membership functions are shown in Figures 4 

and 5. 

                        

   Figure 4.  Membership Functions of s  

 

Figure5.  Membership Functions of   

 

The fuzzy rules are designed as follows: 

R1: If s  is N then   is P; 

R2: If s  is Z then   is Z;  

R3: If s  is P then   is N; 

 

4. Performance Analysis of the FOSMC  

The advantages of FOSMC over the traditional SMC are analyzed in terms of 

chatter restraining, stability, and robustness. 

 

4.1 Chatter 

Equation (34) is the fractional order linear time-invariant system, without loss of 

generality, and is expressed as follows: 
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The general solution of equation (35) is [27]: 
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When 0<r<1, based on the results of Matignon [32], 
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(38) 

Equations (37) and (38) show that the state x (t) of integer order system towards 0 

like 
Ate and fractional order system decays towards 0 like

rt . It means that the 

energy transfer is slower with fractional order sliding surface than that with integer 

order counterpart [27]. Therefore, FOSMC adjusts the convergence of the sliding 

surface by adjusting r to transfer energy slowly, which is conducive to reducing 

chattering amplitude. 

In addition, the sliding surface of the fractional order determined by Equation 

(21) is adjusted as 

)()()( 1

0 teDtekts r

tp


                                                                                     
(39) 

0<r<1, indicating that sliding surface )(ts  determined by Equation (39) contains 

1r  order integral of )(te  and is thus smoother than the integer order sliding 

surface )(ts
 
determined by Equation (27). Therefore, the switching function of 

)sgn(s resulting from changing the sliding surface )(ts  itself is inhibited to a 

certain degree, and chatter caused by rapid changes of )(tu  in Equation (25) will be 

inhibited. 

 

4.2 Stability 

Ahmed [34] pointed out that systems with memory are typically more stable than 

their memory-less counterparts. Therefore, fractional order differential equations 

are, at least, as stable as their integer order counterparts. The clutch position servo 

system determined in Figure 3 adopts the FOSMC controller, which is a fractional 

order system. Consequently, the degree of achieving stability is increased. [35]. 

Furthermore, stability regions of the fractional order system (0<r<1) that adopts 

sliding surface Equation (21) is shown in Figure 6(a), and it has a greater 

stability region than that of the integer order system (r=1), as shown in Figure 6(b), 

suggesting that FOSMC has higher robustness. 
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Figure 6.  Stability Regions of the Fractional Order System [36] 

4. 3 Robustness 

By comparing the Lyaponov function differential expressions of FOSMC and 

SMC control methods, Equation (32) can be rewritten as 

)))(sgn(())(sgn( 1

0    tsbDtsV r

tFOSMC


                                            

(40) 

Similar to analysis process of Equations (29)–(32), the Lyaponov function 

differential expression of the traditional SMC can be obtained as 

)))(sgn(())(sgn(   tsbtsVSMC


                                                           

(41) 

Then, the following two cases are discussed. 

 

(a) When the system reaches the sliding mode, and 0)( ts , 0V  

If there is an instant disturbance  ins
 (such as mutation of load torque), 

0SMCV  in Equation (41), the traditional SMC system would immediately lose 

stability. By contrast, for the FOSMC system, according to Equation (40), despite a 

ins mutation disturbance (  ins
), as 01r , the integral effect of the fractional 

order integral operation )(1

0 r

tD  prevents 
FOSMCV  from mutating, and 

FOSMCV  

remains 0FOSMCV in a short period of time. That is, the system will remain stable 

for an extra short period of time. 

 

(b) When the system reaches the sliding mode, and 0)( ts , 0V  

If there is an instant disturbance  ins
 (such as mutation of load torque), as 

in the previous analysis, the traditional SMC system will immediately lose stability, 

whereas the FOSMC system, because of the integral effect of fractional order 

integral operation )(1

0 r

tD , will remain stable for an additional short period of time. 

These analyses show that FOSMC shows stronger robustness than the traditional 

SMC method. 

 

5. Numerical Simulation and Result Analysis 

On the basis of Figures 1 and 3, the clutch simulation model is established in 

MATLAB/Simulink, and the main simulation parameters are listed in Table 1. 
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Table 1. The Clutch System Parameters 

Ra

 
)(347.0   l1 30 mm 

L (H)106 4  l2 173. 4 mm 

cm 0. 026 l3 145. 36 mm 

i1 59/9 l4 87. 82 mm 

i2 63/11 Jeq )(Nms102.4 24  

To present a contrast, the traditional fuzzy integral sliding mode control (FISMC) 

is also simulated. 10pk  And 8.0r  are adopted for the FFOSMC controller, and 

10pk  1r  for the FISMC controller. 

 

5. 1 Dynamic Characteristics Comparison under the Function of Step Signals 

Unit step signals are detected in the reference position of the release bearing, and 

a constant load torque mTL N2.0  is exerted. The position tracking curves and the 

sliding surface convergence trajectories under FFOSMC and FISMC are shown in 

Figures 7 and 8, respectively. 

 

Figure7. Position Unit Step Signal Response 

As shown in Figure 7, the rise time of FFOSMC is 0.25 s, and that of FISMC is 

0.5 s, suggesting that FFOSMC control can respond faster. 

        
         (a)                                               (b) 

Figure8. Convergence Trajectory of the Sliding Surface 

In Figure 8, ds of the ordinate are derivative of the sliding surface. That is, the 

trajectory change rate, s, of the abscissa is the trajectory of the sliding surface. 

Figure 8(b) is the enlarged view of Figure 8(a) that shows the sliding surface 

convergence trajectory at the convergence point. As shown in the figure, FFOSMC 

and FISMC have chatter approximating the equilibrium state, but FFOSMC chatter 

amplitude is far less than that of FISMC. Therefore, FFOSMC reaches the steady 

state more smoothly and has an obvious dynamic quality that is superior to FISMC. 
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5. 2 Stability Comparison under the Load Disturbance 

5mac  Output amplitude of switch gain fuzzy controller is adopted. According 

to Equation (33) and the parameters given in Table 1, the maximum load 

disturbance of the system is NmT 378.0int(max)  . Unit step signals are detected in the 

reference position of the release bearing. When the load disturbance signal shown in 

Figure 9 is applied to the system, the position tracking curves of the two control 

methods are shown in Figure 10. 
 

  

Figure 9.  Load Disturbance Torque Curve  

 

Figure10.  Position Tracking Curve under Load Disturbance 

According to Figure 10, in the interval between 1.1 and 1.2 s, the load 

disturbance is below
int(max)T , and the system remains stable when the two methods of 

control is adopted. At 2 s, under 0.38 Nm impact load, greater than
int(max)T , the 

system becomes instable. However, the position deviation of FFOSMC is obviously 

less than that of FISMC, indicating that FFOSMC has stronger robustness than 

FISMC, which is consistent with the results of Section 4.3. 
 

5.3 Comparison of the Effect of time Delays on System Steady-state Error 

Ramp input signals are detected in the reference position of the release bearing, 

with a rise time of 0.5 s, a steady state value of 1 mm, and a load torque of 0.2 Nm. 

Figure 11(a) is the position tracking steady-state error curve without considering the 

influence of feedback delay. Figure 11(b) is the position tracking steady-state error 

curve when the position feedback delay influence caused by time and space 

hysteresis of the actual system is considered. In the simulation model, the position 

feedback delay time is set to 0.002 s. 
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(a)                                                                         (b) 

Figure 11. Position Tracking Steady-state Error Curve 

According to Figure 11, in the absence of position feedback delay, the position 

tracking steady-state error of FFOSMC is approximately 0.022 mm, and that of 

FISMC is approximately 0.026 mm. When the position feedback delay is 0.002 s, 

the position tracking steady-state error of FFOSMC is approximately 0.02 mm, and 

that of FISMC is approximately 0.033 mm. The curve shows that FFOSMC 

produces lower position steady-state error when there is position feedback delay.   
 

5. 4 Comparison of the Clutch Position Trackings at Vehicle Starting 

According to the method in the literature [30], the target displacement curve of 

the release bearing is obtained under the condition of the vehicle starting with 

constant engine rotating speed, as shown in Figure 12. The period before 0.8 s is a 

process of clutch separation, and complete separation is realized. After 0.8 s, clutch 

engagement is realized (i.e., vehicle is started). 

 

Figure 12. Clutch Position Tracking Curve at Starting   

Simulation results reveal that both control methods have realized target position 

tracking, but FFOSMC achieves better dynamic performance, and it has a better and 

faster tracking ability when the target position changes rapidly. 

 

6. Conclusions 

A nonlinear robust controller based on fuzzy fractional order sliding mode 

control is proposed in this paper. The stability of this method is proved by 

Lyapunov theorem, and its robustness is analyzed. The self-tuning of switch gain of 

sliding mode controller is realized. Numerical simulation shows that for reasonable 

selection of the order r of fractional order sliding surface, the proposed method is 

more accurate in position tracking, more efficient in dynamic performance, and 

stronger in robustness than the traditional FISMC. 
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