
International Journal of Smart Home

 Vol. 9, No. 2 (2015), pp. 193-206

http://dx.doi.org/10.14257/ijsh.2015.9.2.18

ISSN: 1975-4094 IJSH

Copyright ⓒ 2015 SERSC

X3D Nodes for Representing and Rendering Real Characters in

3D Virtual Environments

In-Kwon Kim
1
, Sin-Ae Kwon

1
, Mihye Kim

2
, Kwan-Hee Yoo

*,1

1
Department of Digital Informatics and Convergence and Dept. of Software Engi-

neering, Chungbuk National University

52 Naesudongro, Heungukgu, Cheongju, Chungbuk, South Korea

khyoo@chungbuk.ac.kr
2
Department of Computer Science Education, Catholic University of Daegu

mihyekim@cu.ac.kr

Abstract

This paper proposes and defines four eXtensible 3-dimensional (X3D) nodes to render

real-world characters such as human being and animals in 3D virtual environments,

which conform to the X3D standard format for representing and rendering real-world

characters in virtual spaces, aiming to make them available as an extension of the X3D

core nodes. Several examples are implemented to evaluate the effectiveness of the pro-

posed X3D nodes. Implemented results demonstrate the feasibility of the proposed X3D

nodes as an extension of the X3D core components for rendering real characters in 3D

virtual spaces.

Keywords: Real character representation, X3D nodes, 3D virtual space

1. Introduction

Following rapid advances in three-dimensional (3D) technologies, including vir-

tual reality (VR) and augmented reality (AR), application services in many areas are

attempting to deliver enhanced content. Applications such as sports broadcasts,

weather forecasts, movies, games, and shopping are already utilizing these 3D tech-

nologies to increase user satisfaction by achieving improved immersion through

more realistic visualization. Educational learning systems are also shifting into a

new paradigm, with various forms of educational content exploiting these 3D tech-

nologies to improve student immersion and interaction. Such multi-purpose learning

systems include experiential and situated virtual learning systems using 2D or 3D

virtual spaces and multimedia content, as well as VR and/or AR [1-5]. In such sys-

tems, students and teachers usually participate in and interact with the learning sys-

tems through virtual characters (i.e., avatars) serving as representatives of them-

selves in the virtual space. Learners and teachers in real-world spaces are modeled

as avatars in 3D virtual spaces, and users interact with the systems through the ava-

tars. As a result, these types of learning systems are limited as regards improvement

of user immersion and interaction because users need to control and animate virtual

characters through user-steered interfaces.

To improve these areas of user interaction, a method was proposed to represent

and render real-world characters in 3D virtual spaces based on mixed reality (MR),

where both real learners and teachers are embedded; that is, the method uses real-

world characters in a virtual space instead of virtual characters to improve learner

immersion and interaction [1], [2]. In this paper, we extend this by defining and de-

veloping extensible 3D (X3D) nodes for the implementation of this method, with the

* A Corresponding author

International Journal of Smart Home

Vol. 9, No. 2 (2015)

194 Copyright ⓒ 2015 SERSC

aim of achieving an implementation that conforms to the X3D architecture [6] for

implementing real character rendering in virtual spaces. In addition, we plan to

make them available as an extension of the X3D core standard nodes supported by

the Web3D Consortium [6].

The remainder of this paper is structured as follows. Section 2 reviews the tech-

nologies on which this study was based, including MR and X3D. Section 3 provides

an outline of the method for representing and rendering real-world characters in 3D

virtual spaces proposed previously [1], [2], and presents the four X3D nodes that

were developed for the implementation of the method. Section 4 gives several ex-

amples of the use of the proposed X3D nodes to evaluate their effectiveness. Section

5 summarizes the paper and outlines directions for future research.

2. Theoretical Background

2.1. Mixed Reality

Mixed reality (MR) has been the subject of growing research interest in a wide

range of fields as an enabling technology for next-generation IT applications. MR is

a more general term than AR [7], which includes VR and allows real -time mixture

between computer-generated digital content (in the forms of 3D computer graphics,

images, or virtual objects) and the real-world. The goal is to give a more detailed

meaning to the objects in the real world and also to support enhanced user immer-

sion via improved realism [8–11]. Users can interact with a mixed virtual environ-

ment created by seamlessly integrating virtual and real worlds in real-time. Figure 1

shows a simplified MR representation as a virtuality continuum [12]. In this sche-

matic, AR is a synthetic environment where some virtual objects are overlapped on

a real-world environment, while an augmented virtuality (AV) environment is where

some real objects are embedded in a virtual environment.

Figure 1. MR representation as a “Virtuality Continuum”

Using MR technologies, it is possible to provide multi-sensory 3D data and im-

proved operability via tangible user interfaces (TUIs) [13, 14]. There are also sever-

al reports demonstrating that MR technologies can facilitate or enhance a numb er of

learning methods, including active learning, constructive learning, intentional learn-

ing, practical learning, and cooperative learning [15]. Intuitive and experiential

learning through strengthening presence and sensual immersions, the possibi lity of

practical and constructive learning by combining real and virtual worlds, intentional

and active learning through manipulating real objects, and the possibi lity of face-to-

face collaborative learning through encoding real-world objects may all be facilitat-

ed using MR technologies in educational learning systems [14, 16].

2.2. X3D Standards

X3D is a modeling language and runtime architecture for defining interactive

web-based 3D graphics and multimedia content [6]. It is also a free open-source

software standard that uses the XML-based file format ratified by the International

for Standardization and the International Electrotechnical Commission (ISO/IEC

19775) for the “storage, retrieval, and playback of real-time graphic content embed-

ded in applications” [17] as the subsequent version of the Virtual Reality Modeling

International Journal of Smart Home

Vol. 9, No. 2 (2015)

Copyright ⓒ 2015 SERSC 195

Language (VRML). X3D provides data-encoding formats and offers advanced ap-

plication programming interfaces (APIs). Advantages over other graphics standards

include XML and HTML-integrated, componentized, profiled, and well-specified

functionalities with a rich variety of componentized features [17], [18].

The basic unit of the X3D runtime environment is the scene graph, which con-

tains all of the objects in the X3D system as well as the relationships among them.

The scene graph is represented as a hierarchy with ordered components for func-

tionality specifying relationships between objects. Here, a component is a colle ction

of grouping nodes (i.e., a set of functionality consisting of several related objects).

A node is the fundamental component of a scene graph. In X3D, the term node is

usually synonymous with object [6], [18]. More precisely, an object is an instance

of a node.

X3D has evolutionary, extensible, and embedding characteristics with a wide va-

riety of componentized functionalities for texturing, modeling, rendering, and user

interactivity. It supports spatialized audio and video, interchangeable humanoid an-

imation, physical simulation, navigation, user interaction, 3D graphics, sound,

scripting, and real-time communication that enable the implementation of enhanced

VR- or MR-based systems. Other supporting features of X3D include computer-

aided design (CAD), 2D graphics, programmable shaders with multi -stage texturing,

lighting, geospatial positioning, polygonal and parametric geometry, pixel and ver-

tex shaders, and hierarchical transformations. Furthermore, it supports user -defined

objects, broadcast, layering, and networking [6], [17–19]. More detailed functionali-

ties of X3D can be found in the X3D specifications supported by the Web3D Con-

sortium [6].

3. X3D Nodes for Embedding Real Characters in 3D Virtual Spaces

3.1. Overview of Real Character Representation and Rendering into Virtual Spaces

A method for embedding and rendering real human characters in virtual spaces

was proposed previously [1], [2]. Figure 2 shows the overall configuration of this

method.

Figure 2. Overall Configuration of the Previously Proposed Method [2]

To encode a real-world human character into a virtual space, first, a sequence of

two images containing the information of a real-world character is obtained from

two input devices: one from a 2D camera such as a webcam, internet protocol cam-

International Journal of Smart Home

Vol. 9, No. 2 (2015)

196 Copyright ⓒ 2015 SERSC

era, or digital camera, and the other from a depth camera such as GameCube or Ki-

nect. A webcam was used as the 2D camera and the Kinect as the depth camera. The

Kinect is a motion-sensing input device developed by Microsoft, who provides a

software development kit (SDK) designed for Windows-based PCs [20]. The two

images are filtered to suppress image noise, and the facial and hand regions of the

real-character are extracted from the 2D image, while the color, depth, and skeleton

information of the character are extracted from the Kinect data.

A movable bounding box is constructed on both images by calculating the depth

information of the real character in the real-world space to define the movement of

the character in the virtual space. A moveable bounding box is also formulated in a

virtual space to which a real character of a real space is embedded. In this paper, the

bounding box of a movable space of a real character (object) in a real space is re-

ferred to as a “real character bounding box in a real space” (RCBBRS), and a move-

able bounding box of a real character in a virtual space is referred to as a “real char-

acter bounding box in a virtual space” (RCBBVS). Here, an RCBBRS is mapped to

an RCBBVS, and the real character is composited with a virtual object through tex-

ture mapping and rendered in the RCBBVS, resulting in a new 3D virtual space

where the real character is presented. The detailed processes and algorithms for ob-

taining the depth information of real characters in real space, constructing movable

bounding boxes, and rendering real characters in 3D virtual spaces can be found in

previous studies [1, 2].

3.2. X3D Nodes

We defined and developed four X3D nodes (RCSensingDeviceNode, RCB-

BRSNode, RCBBVSNode, and RCSpatialMapper) based on the X3D standard for-

mat for representing and rendering real-world characters in 3D virtual models, as

shown in Table 1.

Table 1. Four X3D Nodes Defined in this Paper

RCSensingDeviceNode{

SFString[in] id “”

SFString[in] description “”

SFString[in] type camera

SFFloat[in] fov 45.0

SFInt[in] framerate 20

SFImage[out] image 0 0 0

MFString[in] jointtype “”

MFVector[out] values 0 0 0

SFBool[in] usedChromakeying false }

RCBBRSNode {

SFString[in] id “”

SFString[in] description “”

SFVector[in, out] startpoint 0 0 8000

SFVector[in, out] endpoint 320 240 30000

RCSensingDeviceNode[in] sensingDevice “”

}

RCBBVSNode {

SFString[in] id “”

SFString[in] description “”

SFVector[in, out] startpoint 0 0 1

SFVector[in, out] endpoint 1 1 1

SFString[in] virtualspace null

SFVector[in, out] vsStartpoint 0 0 0

SFVector[in, out] vsEndpoint 1 1 1

}

RCSpatialMapper {

SFString[in] id “”

SFString[in] description “”

SFVector[in, out] realspace “”

SFVector[in, out] virtualspace “”

SFString[in] direction 0 0 1

SFVector[in, out] scale 1 1 1

SFVector[in, out] up 0 1 0

SFString[in] vcObject null }

3.2.1. RCSensingDeviceNode: This node sets the sensing information of the input

devices. Users can set the properties (features) of their input device, including the

type, angle, and frame rate to obtain real-world objects (in this case human beings)

from a camera. It has the following properties:

• type. This property indicates the type of the input camera. We specify two types

of cameras: 2D (designated “camera”) and depth cameras (“depthcamera”).

International Journal of Smart Home

Vol. 9, No. 2 (2015)

Copyright ⓒ 2015 SERSC 197

• fov. This field specifies the viewing angle of the input camera with a default

value of 45°.

• framerate. This is indicates the number of frames transmitted per second.

• image. This designates the image of a real character captured from a camera.

• jointtype. This field specifies joint object names on human figures for animating

the skeleton. We defined 23 joints of human figures based on humanoid animation

(H-Anim) joints [21] and Kinect 20 joints [20] as shown in Table 2. H-Anim is “an

abstract representation for modeling three dimensional human figures” [22] to create

and animate 3D human figures and to track the motions of real-world human beings

in virtual environments [22]. This is the international standard (ISO/IEC 19774)

prepared by a number of working groups, including ISO/IEC JTC 1, SC 24, and the

H-Anim Working Group of the Web3D Consortium. Microsoft supports the Kinect

SDK to provide the tools and drivers required for Kinect-enabled applications for

Microsoft Windows [20]. Using the Microsoft SDK Skeleton, users can easily ex-

tract the depth information of the skeleton of a real object and perform joint tracking

without calibration, which provides several advantages over other open-source tools.

The Microsoft SDK enables tracking of 20 joints as shown in Table 2. Figure 3

shows the mapping between the joint object names of the Kinect and those of H-

Anim. The joint type all selects all of the joint names we defined.

• values. This field indicates the joint position coordinates of the joint names

specified in the field jointtype, and is defined as a vector data type. For example,

when the field jointtype is specified as “skullbase, l_hand,” this is expressed as

[skullbase_x, skullbase_y, skullbase_z] [l_hand_x, l_hand_y, l_hand_z].

• usedChromakeying. This property designates whether or not the background of

a photographed real image is removed. When its value is “true,” the background

color of a real image is removed using chroma keying techniques [23], as shown on

the left side of Figure 4. When the value is “false,” a real image is used as it was

captured without removing the background, as shown in the right side of Figure 4.

Table 2. Twenty-three Joint Object Names for the Property Jointtype

The Kinect H-Anim jointtype The Kinect H-Anim jointtype

HEAD skullbase skullbase KNEE_RIGHT r_knee r_knee

SHOULDER_CENTER vc4 c_shoulder KNEE_LEFT l_knee l_knee

SHOULDER_RIGHT r_shoulder r_shoulder ANKLE_RIGHT r_ankle r_ankle

SHOULDER_LEFT l_shoulder l_shoulder ANKEL_LEFT l_ankle l_ankle

ELBOW_RIGHT r_elbow r_elbow - r_sternoclavicular r_sternoclavicular

ELBOW_LEFT l_elbow l_elbow - l_sternoclavicular l_sternoclavicular

WRIST_RIGHT r_wrist r_wrist HAND_RIGHT - r_hand

WRIST_LEFT l_wrist l_wrist HAND_LEFT - l_hand

SPINE vl1 SPINE FOOT_RIGHT - r_foot

HIP_CNETER HumanoidRoot c_hip FOOT_LEFT - l_foot

HIP_RIGHT r_hip r_hip - - all

HIP_LEFT l_hip l_hip - - -

International Journal of Smart Home

Vol. 9, No. 2 (2015)

198 Copyright ⓒ 2015 SERSC

Figure 3. Mapping the Joint Object Names of the Kinect and H-Anim

Figure 4. Embedding Results for when Chroma Keying is Applied to a Real
Image (left), or Not Applied (right)

3.2.2. RCBBRSNode: This node generates a movable bounding box of the real

character in real spaces. A movable bounding box has two corner points: a start

point, which is the minimum volume of the bounding box, and an end point, which

is the maximum volume of the bounding box, as shown in Figure 5. The description

of its properties is as follows.

Figure 5. Example of Setting up a Movable Bounding Box of a Real
Character in a Real-world Space

• startpoint. This field specifies the minimum Cartesian coordinate of the mova-

ble bounding box of a real character in a real-world space. It is defined using Carte-

International Journal of Smart Home

Vol. 9, No. 2 (2015)

Copyright ⓒ 2015 SERSC 199

sian coordinates and its default value is (0, 0, 8000). This startpoint will be mapped

to that of the movable bounding box of the character in a virtual space.

• endpoint. This field indicates the maximum coordinate of the movable bounding

box of a real character in a real space. Its default value is (320, 240, 30000). In the

same way as startpoint, this endpoint is mapped to that of the movable bounding

box of a real character in a virtual space. The range of values of the X, Y, and Z

coordinates are 0–640, 0–480, and 6000–40000, respectively.

• sensingDevice. This specifies the input sensing device, id, to obtain and load the

settings of the id.

3.2.3. RCBBVSNode: This node generates a movable bounding box of a real

character in the 3D virtual space. A bounding box has two corner points: a

startpoint and an endpoint, as for RCBBRSNode. The volume of RCBBVS is gener-

ated in accordance with the ratio of two points in RCBBRS. The startpoint and end-

point of RCBBRS is mapped to those of RCBBVS. Figure 6 shows a movable

bounding box of a real character in a virtual space.

Figure 6. A Movable Bounding Box of a Real Character in a Virtual Space

• startpoint. This field specifies the minimum coordinate of the movable bound-

ing box of a real character in a virtual space. The startpoint in RCBBRS is mapped

to this startpoint. The position of a movable bounding box in a virtual space (i.e.,

RCBBVS) is relative to that of RCBBRS; that is, the startpoint of RCBBVS is gen-

erated in accordance with the ratio of two points in RCBBRS. Consequently, it will

be (0 0 0) when the startpoint of RCBBRS has the default value (0, 0, 8000).

• endpoint. This designates the maximum coordinate of the movable bounding

box of a real character in a virtual space. The endpoint of RCBBRS is mapped to

this endpoint.

• virtualspace. This indicates the file name of a 3D virtual model (i.e., scene file)

to load as a virtual space from the database for 3D virtual models. The supported

file formats are .3ds, .fbx, and .obj.

• vsStartPoint. This specifies the minimum value of the range of a movable space

of a bounding box in a virtual space. This is represented as an (X, Y, Z) coordinate

calculated using the following formula:

(1) vsStartPoint = (startpoint.x*(x2-x1)+x1, startpoint.y*(y2-y1)+y1, startpoint.z*(z2-

z1)+z1)

• vsEndPoint. This field indicates the maximum range of a movable space of a

bounding box in a virtual space. This is obtained from:

 (2) vsEndPoint = (endpoint.x*(x2-x1)+x1, endpoint.y*(y2-y1)+y1, endpoint.z*(z2-z1)+z1)

where the minimum value of a real character is (x1, y1, z1) and the maximum is (x2, y2,

z2).

International Journal of Smart Home

Vol. 9, No. 2 (2015)

200 Copyright ⓒ 2015 SERSC

Figure 7 shows an example of the coordinates of the startpoint, endpoint,

vsStartPoint, and vsStartPoint where the minimum value (x1, y1, z1) of a real char-

acter in a real-world space is (-230, -150, -350) and the maximum value (x2, y2, z2)

is (400, 300, 450).

Figure 7. Range of a Movable Space of a Bounding Box in a Virtual
Space

3.2.4. RCSpatialMapper: This node renders real characters in 3D virtual models. If an

RCBBRS is mapped to an RCBBVS, the real-world character in the RCBBRS can be

embedded in the RCBBVS of the virtual space, while tracking a sequence of the continu-

ous movement of the real character in the virtual space in real-time. The real character is

represented in the RCBBVS of the virtual space by texture mapping with a virtual object

(vcObject). The direction and scale of the texture-mapped real character are changeable

and a virtual object can also be replaced with other virtual objects.

• realspace. This field specifies the id of an RCBBRSNode to be loaded as the

bounding box of a real character in a real-world space.

• virtualspace. This field specifies the id of an RCBBVSNode to be loaded as the

bounding box of a real character in a virtual space.

• direction. This field indicates the direction of a real character in a virtual space.

It is represented by Cartesian coordinates with a default value of (0 0 1). With the

default value, the real character is facing forward as shown on the left side of Figure

8. If we change this from (0 0 1) to (1 0 1), the direction of the real character is

changed as shown on the right side of Figure 8.

• scale. This field indicates the scaling of a real character when mapped to the

virtual space. It is represented by Cartesian coordinates and has the default value (1

1 1). Figure 9 illustrates a change in the scale of a real character from (1 1 1) to (2 1

1).

Figure 8. Embedding Examples with Direction (0 0 1) (left) and (1 0 1)
(right)

International Journal of Smart Home

Vol. 9, No. 2 (2015)

Copyright ⓒ 2015 SERSC 201

Figure 9. Embedding Examples with Scale (1 1 1) (left) and (2 1 1) (right)

• up. This specifies the direction of the head of a real character. When it is (0 1 0),

the head direction of a real character is on top.

• vcObject. This field indicates a virtual object (vcObject) to be added to the real

character image through texture mapping. In this paper, we present two different

types of virtual objects: person.3ds as shown in the left side of Figure 10 and

plane.3ds, shown on the right side. Users can define their own 3D models using

the .3ds, .fbx, and .obj file formats.

Figure 11 shows rendering examples of a real character in a 3D virtual model

through the bounding box mapping between RCBBRS and RCBBVS, and texture

mapping between the real character and the virtual object. The texture-mapped real

character will move in the virtual space, tracking the movement of the real character

in the real space in real-time.

Figure 10. Texture Mapping Examples with Two Virtual Objects

Figure 11. Rendering Results of a Real Charter in a 3D Virtual Space

International Journal of Smart Home

Vol. 9, No. 2 (2015)

202 Copyright ⓒ 2015 SERSC

4. Experimental Results

A number of experiments rendering real characters in a virtual space using the

proposed X3D nodes were carried out to evaluate the effectiveness of the system.

The examples were developed using Unity 3.415t, Microsoft Visual Studio 2008 and

2010 on Windows 7 using an Intel Core i5-2500 3.30 GHz Quad-Core processor and

an Nvidia GeForce GTX 550 Ti graphics card.

Table 3 shows the X3D source code for representing a real-world character cap-

tured through a 2D camera (i.e., a webcam) using the four X3D nodes defined in

Section 3. First, a continuous sequence of movements of the real human being is

captured using the webcam (cam0) as defined in the node RCSensingDeviceNode in

Table 3. The real character is encoded without removing the background (i.e.,

usedChromakeying = false). Second, as indicated in the node RCSpatialMapper, the

startpoint and endpoint of RCBBRS (bbrs1) is mapped to those of RCBBVS (bbvs1),

and then the real character is embedded in the RCBBVS of the virtual space, class-

room.3ds, through texture mapping with the virtual object plane.3ds. The properties

of the RCBBRS and RCBBVS are specified in the nodes RCBBRSNode and

RCBBVSNode, respectively. Through these mapping processes, a real character in a

real-world space is rendered into a virtual space, simulating the movement of the

real-world character in real-time. Figure 12 shows the rendering results using the

X3D source code shown in Table 3 with a number of screenshots captured from a

sequence of the continuous movements of the real character in the virtual space

classroom.3ds.

Table 3. X3D Source Code for Rendering a Real Character Captured
using a 2D Camera

<RCSensingDeviceNode id = “cam0” type = “camera” fov = “50” framerate = “30” usedChroma-

keying = “false” jointtype = “all”> </RCSensingDeviceNode>

<RCBBRSNode id = “bbrs1” description = “a movable space of a real character in a real space”

startpoint = “0 0 8000” endpoint = “640 480 30000” sensingDevice = “cam0”> </RCBBRSNode>

<RCBBVSNode id = “bbvs1” description = “a movable space of a real character in a virtual space”

startpoint = “0 0 0” endpoint = “1 1 1” virtualspace = “classroom.3ds”> </RCBBVSNode>

<RCSpatialMapper id = “rcsp1” realspace = “bbrs1” virtualspace = “bbvs1” direction = “0 0 1”

scale = “1 1 1” vcObject = plane.3ds”> </RCSpatialMapper>

Figure 12. Rendering Results for the X3D Codes in Table 3

Table 4 shows the X3D source code for embedding a real-world character cap-

tured using a depth camera (i.e., the Kinect). In this example, the real character data

from the depth camera is embedded in the RCBBVS of the virtual space

artRoom.3ds through texture mapping with the virtual object person.3ds. Figure 13

shows the rendering results with a number of screenshots captured from a sequence

of the continuous movement of the texture mapped real character in the virtual space

artRoom.3ds.

International Journal of Smart Home

Vol. 9, No. 2 (2015)

Copyright ⓒ 2015 SERSC 203

Table 4. X3D Source Code for Representing a Real Character Captured
using a Depth Camera

<RCSensingDeviceNode id = “depthcam1” type = “depthcamera” fov = “50” framerate = “30”

usedChromakeying = “false” jointtype = “all” </RCSensingDeviceNode>

<RCBBRSNode id = “bbrs2” description = “a movable space of a real character in a real space”

startpoint = “0 0 8000” endpoint = “640 480 30000” sensingDevice = “depthcam1”>

</RCBBRSNode>

<RCBBVSNode id = “bbvs2” description = “a movable space of a real character in a virtual space”

startpoint = “0 0 0” endpoint = “1 1 1” virtualspace = “artRoom.3ds”> </RCBBVSNode>

<RCSpatialMapper id = “rcsp2” realspace = “bbrs2” virtualspace = “bbvs2” direction = “0 0 1”

scale = “1 1 1” vcObject = “person.3ds”> </RCSpatialMapper>

Figure 13. Rendering Results for the X3D Codes in Table 4

Figure 14 shows the embedding results corresponding to the X3D source code

shown in Table 3. Note that the startpoint of RCBBRSNode was modified from (0 0

8000) to (0 0 0) and the virtual object was changed from plane.3ds to person.3ds; in

addition, the direction and scale of the real character were changed from (0 0 1) to

(-1 0 1), and from (1 1 1) to (1.5 1 1), respectively.

Figure 14. Embedding Results of the X3D Source Code Shown in Table
3 where the Start Point, Direction, and Scale of the Virtual Object were

Changed

Figure 15 shows the rendered results of embedding of a real character in a virtual

space, while tracking continuous movement. Here, the background color of the pho-

tographed real image was removed using chroma keying (i.e., usedChromakeing =

true) and the startpoint and endpoint of the RCBBVS in the node RCBBVSNode

was changed from (0 0 0) to (0 0 0.2) and (1 1 1) to (1 1 0.8), respectively.

International Journal of Smart Home

Vol. 9, No. 2 (2015)

204 Copyright ⓒ 2015 SERSC

Figure 15. Embedding Results for when the Start Point, Direction, and
Scale of the Virtual Object were Changed

5. Conclusion

This paper has described four X3D nodes for representing and rendering real

characters in 3D virtual models in real-time. The objective of this paper was to de-

velop a standardized implementation that conforms to the X3D format for real char-

acter rendering in virtual spaces as an extension of the X3D core nodes [6]. To eval-

uate the effectiveness of these X3D nodes, several application examples were inves-

tigated. The results show that the settings and features we defined in the four X3D

nodes were sufficient to obtain sensing information of an input device, generating a

movable bounding box of the real character both in real space and in the virtual

space, and to synthesize and render the real character in the virtual model. This

demonstrates the feasibility of the four X3D nodes for rendering real characters in

3D virtual spaces.

Further development of more realistic 3D virtual models is required to implement more

immersive virtual e-learning environments. The development of more advanced tech-

niques for recognizing gestures of real characters is also required. In addition, the devel-

opment of techniques that enable the augmentation of virtual spaces based on these ges-

tures would be a valuable enhancement of current VR and MR environments.

Acknowledgements

This research was supported by the MSIP (Ministry of Science, ICT and Future Plan-

ning), Korea, under the ITRC (Information Technology Research Center) support pro-

gram (NIPA-2014-H0301-14-1022) supervised by the NIPA (National IT Industry Pro-

motion Agency), and by the Ministry of Education(MOE) and National Research Founda-

tion of Korea(NRF) through the Human Resource Training Projection for Regional Inno-

vation.

References

[1] J. S. Jeong, J. A. Park, S. A. Kwon, C. Park, N. Baek and K. H. Yoo, “A Reference Model for Repre-

senting Real Characters into the 3D Virtual Space”, Information Science and Tehcnology, vol. 1, no. 1,

(2011).

[2] J. S. Jeong, J. A. Park, S. A. Kwon, C. Park, N. Baek, R. H. Jang and K. H. Yoo, “An Embedding Meth-

od for Real Characters into the 3D Virtual Space”, International Journal of Software Engineering and Its

Applications, vol. 7, no. 1, (2013), pp. 69-78.

[3] J. S. Jeong, C. Park, J. J. Han, M. S. Im, R. H. Jang, M. Kim and K. H. Yoo, “Development of a 3D

Virtual Studio System for Experiential Learning”, CCIS, vol. 195, (2011), pp. 78-87.

[4] M. Kim, J. S. Jeong, C. Park, R.H. Jang and K. H. Yoo, “A Situated Experimental Learning System

Based on a Real-Time 3D Virtual Studio”, LNAI, vol. 7457, (2012), pp. 364-371.

[5] S. Stieglitz, C. Lattermann and M. Kallischnigg, “Experiential Learning in Virtual Worlds – A Case

Study for Entrepreneurial Training”, Proceedings of the 16th Americas Conference on Information Sys-

tems, (2010); Lima, Peru.

International Journal of Smart Home

Vol. 9, No. 2 (2015)

Copyright ⓒ 2015 SERSC 205

[6] Web3D Consortium, http://www.web3d.org/, http://www.web3d.org/realtime-3d/specification/all,

http://www.web3d.org/files/specifications/19775-1/V3.3/index.html (2013).

[7] P. Milgram and S. Zhai, “Applications of augmented reality for human-robot communications”, Pro-

ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, (1993); Yokohama,

Japan.

[8] R. Silva, J. C. Oliveira and G. A. Giraldi, “Introduction to Augmented Reality”, Technical Report,

LNCC, (2003).

[9] B. Parhizkar, A. A. M. Modwahi, A. H. Lashkari, M. M. Bartaripou and H. R. Babae, “A Survey on

Web-based AR Applications. International Journal of Computer Sicence, vol. 8, no. 1, (2011), pp. 471-

479.

[10] R. T. Azuma, “A survey of augmented reality”, Presence: Teleoperators and Virtual Environment, vol. 6,

no. 4, (1997), pp. 355-385.

[11] R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier and B. MacIntyre, “Recent Advances in

Augmented Reality”, IEEE Computer Graphics and Application, vol. 25, no. 6, (2001), pp. 34-47.

[12] P. Milgram and F. A. Kishino, “Taxonomy of mixed reality visual display”, IEICE Transactions on

Information and Systems (Special Issue on Networked Reality), E77-D (12), (1994), pp. 1321-1329.

[13] H. Ishii and B. Ullmer, “Tangible bits: Towards seamless interfaces between people, bits and atoms”,

Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, (1997); Atlan-

ta, GA, USA.

[14] B. K. Kye, J. H. Kim and J. H. Ryu, “Pedagogical Understanding of Augmented Reality”, KERIS Issue

Report RM, Korea Education and Research Information Service, (2007).

[15] B. E. Shelton, “How augmented reality helps students learn dynamic spatial relationships”, Doctoral

Dissertation, University of Washington, (2003).

[16] J. H. Ryu, I. H. Jo, H. O. Heo, J. H. Kim, B. K. Kye and B. S. Go, “The Next Generation of Learning

Model for Augmented Reality Enhanced in Tangible Interface”, Research Report CR, Korea Education

and Research Information Service, (2007).

[17] J. J. Hong, M. Kim and K. H. Yoo, “Development of a 3D Digital Textbook Using X3D”, LNEE, vol.

214, (2012), pp. 341-351.

[18] Web3D Consortium, What is X3D?, http://www.web3d.org/realtime-3d/x3d/what-x3d, (2013).

[19] X3D, Wikipedia, http://en.wikipedia.org/wiki/X3D, (2013).

[20] Microsoft Corporation, Kinect for Windows & Kinect for Windows SDK Beta 1 Programming Guide

Version, http://www.microsoft.com/en-us/kinectforwindows/, Kinect for Windows SDK,

http://msdn.microsoft.com/en-us/library/hh855347.aspx, (2013).

[21] Web3D Consortium, Humanoid Animation (H-Anim), http://www.web3d.org/realtime-3d/working-

groups/h-anim, (2013).

[22] Web3D Consortium, Humanoid Animation (H-Anim): Foreword, Introduction.

http://www.web3d.org/x3d/specifications/ISO-IEC-19774-HumanoidAnimation/, (2013).

[23] Chroma Keying, http://www.mediacollege.com/glossary/c/chroma-key.html, (2013).

Authors

In-Kwon Kim. He received his B.S. in the Department of

Computer Education at Chungbuk National University, Korea in

2013, and is a M.S. student in Department of Digital Informatics

and Convergence at Chungbuk National University, Korea from

2014. Her research interests include computer graphics, e-

learning, 3D character animation, and multimedia.

Sin-Ae Kwon. She received her M.S. in Computer Education

Division, at Chungbuk National University, Korea in 2013. Her

research interests include computer graphics, e-learning, 3D

character animation, and multimedia.

http://msdn.microsoft.com/en-us/library/hh855347.aspx

International Journal of Smart Home

Vol. 9, No. 2 (2015)

206 Copyright ⓒ 2015 SERSC

Mihye Kim. She received her Ph.D. degree in Computer Sci-

ence and Engineering from New South Wales University, Sydney,

Australia in 2003. She is currently an Associate Professor in the

Department of Computer Science Education at Catholic Univer-

sity of Daegu, South Korea. Her research interests include

knowledge management and retrieval, computer science educa-

tion, digital textbooks, and cloud computing.

Kwan-Hee Yoo. He is a professor in the Department of Soft-

ware Engineering at Chungbuk National University, Korea. He

received his B.S. in Computer Science from Chonbuk National

University in 1985, and his M.S. and Ph.D. in computer science

from KAIST (Korea Advanced Institute of Science and Technol-

ogy) in 1988 and 1995, respectively. His research interests in-

clude computer graphics, 3D character animation, and den-

tal/medical applications.

