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Abstract 

This paper proposes and defines four eXtensible 3-dimensional (X3D) nodes to render 

real-world characters such as human being and animals in 3D virtual environments, 

which conform to the X3D standard format for representing and rendering real-world 

characters in virtual spaces, aiming to make them available as an extension of the X3D 

core nodes. Several examples are implemented to evaluate the effectiveness of the pro-

posed X3D nodes. Implemented results demonstrate the feasibility of the proposed X3D 

nodes as an extension of the X3D core components for rendering real characters in 3D 

virtual spaces. 
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1. Introduction 

Following rapid advances in three-dimensional (3D) technologies, including vir-

tual reality (VR) and augmented reality (AR), application services in many areas are 

attempting to deliver enhanced content. Applications such as sports broadcasts, 

weather forecasts, movies, games, and shopping are already utilizing these 3D tech-

nologies to increase user satisfaction by achieving improved immersion through 

more realistic visualization. Educational learning systems are also shifting into a 

new paradigm, with various forms of educational content exploiting these 3D tech-

nologies to improve student immersion and interaction. Such multi-purpose learning 

systems include experiential and situated virtual learning systems using 2D or 3D 

virtual spaces and multimedia content, as well as VR and/or AR [1-5]. In such sys-

tems, students and teachers usually participate in and interact with the learning sys-

tems through virtual characters (i.e., avatars) serving as representatives of them-

selves in the virtual space. Learners and teachers in real-world spaces are modeled 

as avatars in 3D virtual spaces, and users interact with the systems through the ava-

tars. As a result, these types of learning systems are limited as regards improvement 

of user immersion and interaction because users need to control and animate virtual 

characters through user-steered interfaces. 

To improve these areas of user interaction, a method was proposed to represent 

and render real-world characters in 3D virtual spaces based on mixed reality (MR), 

where both real learners and teachers are embedded; that is, the method uses real-

world characters in a virtual space instead of virtual characters to improve learner 

immersion and interaction [1], [2]. In this paper, we extend this by defining and de-

veloping extensible 3D (X3D) nodes for the implementation of this method, with the 
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aim of achieving an implementation that conforms to the X3D architecture [6] for 

implementing real character rendering in virtual spaces. In addition, we plan to 

make them available as an extension of the X3D core standard nodes supported by 

the Web3D Consortium [6]. 

The remainder of this paper is structured as follows. Section 2 reviews the tech-

nologies on which this study was based, including MR and X3D. Section 3 provides 

an outline of the method for representing and rendering real-world characters in 3D 

virtual spaces proposed previously [1], [2], and presents the four X3D nodes that 

were developed for the implementation of the method. Section 4 gives several ex-

amples of the use of the proposed X3D nodes to evaluate their effectiveness. Section 

5 summarizes the paper and outlines directions for future research. 

 

2. Theoretical Background 
 

2.1. Mixed Reality 

Mixed reality (MR) has been the subject of growing research interest in a wide 

range of fields as an enabling technology for next-generation IT applications. MR is 

a more general term than AR [7], which includes VR and allows real -time mixture 

between computer-generated digital content (in the forms of 3D computer graphics, 

images, or virtual objects) and the real-world. The goal is to give a more detailed 

meaning to the objects in the real world and also to support enhanced user immer-

sion via improved realism [8–11]. Users can interact with a mixed virtual environ-

ment created by seamlessly integrating virtual and real worlds in real-time. Figure 1 

shows a simplified MR representation as a virtuality continuum [12]. In this sche-

matic, AR is a synthetic environment where some virtual objects are overlapped on 

a real-world environment, while an augmented virtuality (AV) environment is where 

some real objects are embedded in a virtual environment. 

 

Figure 1. MR representation as a “Virtuality Continuum” 

Using MR technologies, it is possible to provide multi-sensory 3D data and im-

proved operability via tangible user interfaces (TUIs) [13, 14]. There are also sever-

al reports demonstrating that MR technologies can facilitate or enhance a numb er of 

learning methods, including active learning, constructive learning, intentional learn-

ing, practical learning, and cooperative learning [15]. Intuitive and experiential 

learning through strengthening presence and sensual immersions, the possibi lity of 

practical and constructive learning by combining real and virtual worlds, intentional 

and active learning through manipulating real objects, and the possibi lity of face-to-

face collaborative learning through encoding real-world objects may all be facilitat-

ed using MR technologies in educational learning systems [14, 16]. 

 

2.2. X3D Standards 

X3D is a modeling language and runtime architecture for defining interactive 

web-based 3D graphics and multimedia content [6]. It is also a free open-source 

software standard that uses the XML-based file format ratified by the International 

for Standardization and the International Electrotechnical Commission (ISO/IEC 

19775) for the “storage, retrieval, and playback of real-time graphic content embed-

ded in applications” [17] as the subsequent version of the Virtual Reality Modeling 
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Language (VRML). X3D provides data-encoding formats and offers advanced ap-

plication programming interfaces (APIs). Advantages over other graphics standards 

include XML and HTML-integrated, componentized, profiled, and well-specified 

functionalities with a rich variety of componentized features [17], [18]. 

The basic unit of the X3D runtime environment is the scene graph, which con-

tains all of the objects in the X3D system as well as the relationships among them. 

The scene graph is represented as a hierarchy with ordered components for func-

tionality specifying relationships between objects. Here, a component is a colle ction 

of grouping nodes (i.e., a set of functionality consisting of several related objects). 

A node is the fundamental component of a scene graph. In X3D, the term node is 

usually synonymous with object [6], [18]. More precisely, an object is an instance 

of a node. 

X3D has evolutionary, extensible, and embedding characteristics with a wide va-

riety of componentized functionalities for texturing, modeling, rendering, and user 

interactivity. It supports spatialized audio and video, interchangeable humanoid an-

imation, physical simulation, navigation, user interaction, 3D graphics, sound, 

scripting, and real-time communication that enable the implementation of enhanced 

VR- or MR-based systems. Other supporting features of X3D include computer-

aided design (CAD), 2D graphics, programmable shaders with multi -stage texturing, 

lighting, geospatial positioning, polygonal and parametric geometry, pixel and ver-

tex shaders, and hierarchical transformations. Furthermore, it supports user -defined 

objects, broadcast, layering, and networking [6], [17–19]. More detailed functionali-

ties of X3D can be found in the X3D specifications supported by the Web3D Con-

sortium [6]. 

 

3. X3D Nodes for Embedding Real Characters in 3D Virtual Spaces 
 

3.1. Overview of Real Character Representation and Rendering into Virtual Spaces 

A method for embedding and rendering real human characters in virtual spaces 

was proposed previously [1], [2]. Figure 2 shows the overall configuration of this 

method. 

 

Figure 2. Overall Configuration of the Previously Proposed Method [2] 

To encode a real-world human character into a virtual space, first, a sequence of 

two images containing the information of a real-world character is obtained from 

two input devices: one from a 2D camera such as a webcam, internet protocol cam-
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era, or digital camera, and the other from a depth camera such as GameCube or Ki-

nect. A webcam was used as the 2D camera and the Kinect as the depth camera. The 

Kinect is a motion-sensing input device developed by Microsoft, who provides a 

software development kit (SDK) designed for Windows-based PCs [20]. The two 

images are filtered to suppress image noise, and the facial and hand regions of the 

real-character are extracted from the 2D image, while the color, depth, and skeleton 

information of the character are extracted from the Kinect data. 

A movable bounding box is constructed on both images by calculating the depth 

information of the real character in the real-world space to define the movement of 

the character in the virtual space. A moveable bounding box is also formulated in a 

virtual space to which a real character of a real space is embedded. In this paper, the 

bounding box of a movable space of a real character (object) in a real space is re-

ferred to as a “real character bounding box in a real space” (RCBBRS), and a move-

able bounding box of a real character in a virtual space is referred to as a “real char-

acter bounding box in a virtual space” (RCBBVS). Here, an RCBBRS is mapped to 

an RCBBVS, and the real character is composited with a virtual object through tex-

ture mapping and rendered in the RCBBVS, resulting in a new 3D virtual space 

where the real character is presented. The detailed processes and algorithms for ob-

taining the depth information of real characters in real space, constructing movable 

bounding boxes, and rendering real characters in 3D virtual spaces can be found in 

previous studies [1, 2]. 
 

3.2. X3D Nodes 

We defined and developed four X3D nodes (RCSensingDeviceNode, RCB-

BRSNode, RCBBVSNode, and RCSpatialMapper) based on the X3D standard for-

mat for representing and rendering real-world characters in 3D virtual models, as 

shown in Table 1. 

Table 1. Four X3D Nodes Defined in this Paper 

RCSensingDeviceNode{ 

SFString[in]      id  “” 

SFString[in]  description “” 

SFString[in]      type  camera 

SFFloat[in] fov  45.0 

SFInt[in] framerate  20 

SFImage[out]  image  0 0 0 

MFString[in]  jointtype   “” 

MFVector[out]  values  0 0 0 

SFBool[in] usedChromakeying  false  } 

RCBBRSNode { 

SFString[in]    id                     “” 

SFString[in]    description      “” 

SFVector[in, out]   startpoint         0 0 8000 

SFVector[in, out]    endpoint          320 240 30000 

RCSensingDeviceNode[in] sensingDevice “”    

} 

RCBBVSNode { 

SFString[in]   id        “” 

SFString[in]  description     “” 

SFVector[in, out] startpoint       0 0 1 

SFVector[in, out] endpoint        1 1 1 

SFString[in]  virtualspace   null 

SFVector[in, out] vsStartpoint   0 0 0 

SFVector[in, out] vsEndpoint    1 1 1   

} 

RCSpatialMapper { 

SFString[in]            id  “” 

SFString[in]           description “” 

SFVector[in, out]        realspace “” 

SFVector[in, out]        virtualspace “” 

SFString[in]           direction  0 0 1 

SFVector[in, out]        scale  1 1 1 

SFVector[in, out]       up  0 1 0 

SFString[in]          vcObject  null     } 

3.2.1. RCSensingDeviceNode: This node sets the sensing information of the input 

devices. Users can set the properties (features) of their input device, including the 

type, angle, and frame rate to obtain real-world objects (in this case human beings) 

from a camera. It has the following properties: 

• type. This property indicates the type of the input camera. We specify two types 

of cameras: 2D (designated “camera”) and depth cameras (“depthcamera”). 
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• fov. This field specifies the viewing angle of the input camera with a default 

value of 45°. 

• framerate. This is indicates the number of frames transmitted per second. 

• image. This designates the image of a real character captured from a camera. 

• jointtype. This field specifies joint object names on human figures for animating 

the skeleton. We defined 23 joints of human figures based on humanoid animation 

(H-Anim) joints [21] and Kinect 20 joints [20] as shown in Table 2. H-Anim is “an 

abstract representation for modeling three dimensional human figures” [22] to create 

and animate 3D human figures and to track the motions of real-world human beings 

in virtual environments [22]. This is the international standard (ISO/IEC 19774) 

prepared by a number of working groups, including ISO/IEC JTC 1, SC 24, and the 

H-Anim Working Group of the Web3D Consortium. Microsoft supports the Kinect 

SDK to provide the tools and drivers required for Kinect-enabled applications for 

Microsoft Windows [20]. Using the Microsoft SDK Skeleton, users can easily ex-

tract the depth information of the skeleton of a real object and perform joint tracking 

without calibration, which provides several advantages over other open-source tools. 

The Microsoft SDK enables tracking of 20 joints as shown in Table 2. Figure 3 

shows the mapping between the joint object names of the Kinect and those of H-

Anim. The joint type all selects all of the joint names we defined. 

• values. This field indicates the joint position coordinates of the joint names 

specified in the field jointtype, and is defined as a vector data type. For example, 

when the field jointtype is specified as “skullbase, l_hand,” this is expressed as 

[skullbase_x, skullbase_y, skullbase_z] [l_hand_x, l_hand_y, l_hand_z].  

• usedChromakeying. This property designates whether or not the background of 

a photographed real image is removed. When its value is “true,” the background 

color of a real image is removed using chroma keying techniques [23], as shown on 

the left side of Figure 4. When the value is “false,” a real image is used as it was 

captured without removing the background, as shown in the right side of Figure 4. 

Table 2. Twenty-three Joint Object Names for the Property Jointtype  

The Kinect H-Anim jointtype The Kinect H-Anim jointtype 

HEAD skullbase skullbase KNEE_RIGHT r_knee r_knee 

SHOULDER_CENTER vc4 c_shoulder KNEE_LEFT l_knee l_knee 

SHOULDER_RIGHT r_shoulder r_shoulder ANKLE_RIGHT r_ankle r_ankle 

SHOULDER_LEFT l_shoulder l_shoulder ANKEL_LEFT l_ankle l_ankle 

ELBOW_RIGHT r_elbow r_elbow - r_sternoclavicular r_sternoclavicular 

ELBOW_LEFT l_elbow l_elbow - l_sternoclavicular l_sternoclavicular 

WRIST_RIGHT r_wrist r_wrist HAND_RIGHT - r_hand 

WRIST_LEFT l_wrist l_wrist HAND_LEFT - l_hand 

SPINE vl1 SPINE FOOT_RIGHT - r_foot 

HIP_CNETER HumanoidRoot c_hip FOOT_LEFT - l_foot 

HIP_RIGHT r_hip r_hip - - all 

HIP_LEFT l_hip l_hip - - - 
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Figure 3. Mapping the Joint Object Names of the Kinect and H-Anim 

Figure 4. Embedding Results for when Chroma Keying is Applied to a Real 
Image (left), or Not Applied (right) 

3.2.2. RCBBRSNode: This node generates a movable bounding box of the real 

character in real spaces. A movable bounding box has two corner points: a start 

point, which is the minimum volume of the bounding box, and an end point, which 

is the maximum volume of the bounding box, as shown in Figure 5. The description 

of its properties is as follows. 

 

Figure 5. Example of Setting up a Movable Bounding Box of a Real            
Character in a Real-world Space 

• startpoint. This field specifies the minimum Cartesian coordinate of the mova-

ble bounding box of a real character in a real-world space. It is defined using Carte-
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sian coordinates and its default value is (0, 0, 8000). This startpoint will be mapped 

to that of the movable bounding box of the character in a virtual space. 

• endpoint. This field indicates the maximum coordinate of the movable bounding 

box of a real character in a real space. Its default value is (320, 240, 30000). In the 

same way as startpoint, this endpoint is mapped to that of the movable bounding 

box of a real character in a virtual space. The range of values of the X, Y, and Z 

coordinates are 0–640, 0–480, and 6000–40000, respectively. 

• sensingDevice. This specifies the input sensing device, id, to obtain and load the 

settings of the id. 

3.2.3. RCBBVSNode: This node generates a movable bounding box of a real 

character in the 3D virtual space. A bounding box has two corner points: a 

startpoint and an endpoint, as for RCBBRSNode. The volume of RCBBVS is gener-

ated in accordance with the ratio of two points in RCBBRS. The startpoint and end-

point of RCBBRS is mapped to those of RCBBVS. Figure 6 shows a movable 

bounding box of a real character in a virtual space. 

Figure 6. A Movable Bounding Box of a Real Character in a Virtual Space 

• startpoint. This field specifies the minimum coordinate of the movable bound-

ing box of a real character in a virtual space. The startpoint in RCBBRS is mapped 

to this startpoint. The position of a movable bounding box in a virtual space (i.e., 

RCBBVS) is relative to that of RCBBRS; that is, the startpoint of RCBBVS is gen-

erated in accordance with the ratio of two points in RCBBRS. Consequently, it will 

be (0 0 0) when the startpoint of RCBBRS has the default value (0, 0, 8000). 

• endpoint. This designates the maximum coordinate of the movable bounding 

box of a real character in a virtual space. The endpoint of RCBBRS is mapped to 

this endpoint. 

• virtualspace. This indicates the file name of a 3D virtual model (i.e., scene file) 

to load as a virtual space from the database for 3D virtual models. The supported 

file formats are .3ds, .fbx, and .obj.  

• vsStartPoint. This specifies the minimum value of the range of a movable space 

of a bounding box in a virtual space. This is represented as an (X, Y, Z) coordinate 

calculated using the following formula: 

(1) vsStartPoint = (startpoint.x*(x2-x1)+x1, startpoint.y*(y2-y1)+y1, startpoint.z*(z2-

z1)+z1) 

• vsEndPoint. This field indicates the maximum range of a movable space of a 

bounding box in a virtual space. This is obtained from: 

 (2) vsEndPoint = (endpoint.x*(x2-x1)+x1, endpoint.y*(y2-y1)+y1, endpoint.z*(z2-z1)+z1) 

where the minimum value of a real character is (x1, y1, z1) and the maximum is (x2, y2, 

z2). 
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Figure 7 shows an example of the coordinates of the startpoint, endpoint, 

vsStartPoint, and vsStartPoint where the minimum value (x1, y1, z1) of a real char-

acter in a real-world space is (-230, -150, -350) and the maximum value (x2, y2, z2) 

is (400, 300, 450). 

 

Figure 7. Range of a Movable Space of a Bounding Box in a Virtual 
Space 

3.2.4. RCSpatialMapper: This node renders real characters in 3D virtual models. If an 

RCBBRS is mapped to an RCBBVS, the real-world character in the RCBBRS can be 

embedded in the RCBBVS of the virtual space, while tracking a sequence of the continu-

ous movement of the real character in the virtual space in real-time. The real character is 

represented in the RCBBVS of the virtual space by texture mapping with a virtual object 

(vcObject). The direction and scale of the texture-mapped real character are changeable 

and a virtual object can also be replaced with other virtual objects. 

• realspace. This field specifies the id of an RCBBRSNode to be loaded as the 

bounding box of a real character in a real-world space. 

• virtualspace. This field specifies the id of an RCBBVSNode to be loaded as the 

bounding box of a real character in a virtual space. 

• direction. This field indicates the direction of a real character in a virtual space. 

It is represented by Cartesian coordinates with a default value of (0 0 1). With the 

default value, the real character is facing forward as shown on the left side of Figure 

8. If we change this from (0 0 1) to (1 0 1), the direction of the real character is 

changed as shown on the right side of Figure 8. 

• scale. This field indicates the scaling of a real character when mapped to the 

virtual space. It is represented by Cartesian coordinates and has the default value (1 

1 1). Figure 9 illustrates a change in the scale of a real character from (1 1 1) to (2 1 

1). 

 

Figure 8. Embedding Examples with Direction (0 0 1) (left) and (1 0 1) 
(right) 



International Journal of Smart Home 

Vol. 9, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  201 

 

Figure 9. Embedding Examples with Scale (1 1 1) (left) and (2 1 1) (right) 

• up. This specifies the direction of the head of a real character. When it is (0 1 0), 

the head direction of a real character is on top. 

• vcObject. This field indicates a virtual object (vcObject) to be added to the real 

character image through texture mapping. In this paper, we present two different 

types of virtual objects: person.3ds as shown in the left side of Figure 10 and 

plane.3ds, shown on the right side. Users can define their own 3D models using 

the .3ds, .fbx, and .obj file formats. 

Figure 11 shows rendering examples of a real character in a 3D virtual model 

through the bounding box mapping between RCBBRS and RCBBVS, and texture 

mapping between the real character and the virtual object. The texture-mapped real 

character will move in the virtual space, tracking the movement of the real character 

in the real space in real-time. 

Figure 10. Texture Mapping Examples with Two Virtual Objects 
 

Figure 11. Rendering Results of a Real Charter in a 3D Virtual Space 
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4. Experimental Results 

A number of experiments rendering real characters in a virtual space using the 

proposed X3D nodes were carried out to evaluate the effectiveness of the system. 

The examples were developed using Unity 3.415t, Microsoft Visual Studio 2008 and 

2010 on Windows 7 using an Intel Core i5-2500 3.30 GHz Quad-Core processor and 

an Nvidia GeForce GTX 550 Ti graphics card. 

Table 3 shows the X3D source code for representing a real-world character cap-

tured through a 2D camera (i.e., a webcam) using the four X3D nodes defined in 

Section 3. First, a continuous sequence of movements of the real human being is 

captured using the webcam (cam0) as defined in the node RCSensingDeviceNode in 

Table 3. The real character is encoded without removing the background (i.e., 

usedChromakeying = false). Second, as indicated in the node RCSpatialMapper, the 

startpoint and endpoint of RCBBRS (bbrs1) is mapped to those of RCBBVS (bbvs1), 

and then the real character is embedded in the RCBBVS of the virtual space, class-

room.3ds, through texture mapping with the virtual object plane.3ds. The properties 

of the RCBBRS and RCBBVS are specified in the nodes RCBBRSNode and 

RCBBVSNode, respectively. Through these mapping processes, a real character in a 

real-world space is rendered into a virtual space, simulating the movement of the 

real-world character in real-time. Figure 12 shows the rendering results using the 

X3D source code shown in Table 3 with a number of screenshots captured from a 

sequence of the continuous movements of the real character in the virtual space 

classroom.3ds. 

Table 3. X3D Source Code for Rendering a Real Character Captured  
using a 2D Camera 

<RCSensingDeviceNode id = “cam0” type = “camera” fov = “50” framerate = “30” usedChroma-

keying = “false” jointtype = “all”> </RCSensingDeviceNode> 

<RCBBRSNode id = “bbrs1” description = “a movable space of a real character in a real space” 

startpoint = “0 0 8000” endpoint = “640 480 30000” sensingDevice = “cam0”> </RCBBRSNode> 

<RCBBVSNode id = “bbvs1” description = “a movable space of a real character in a virtual space” 

startpoint = “0 0 0” endpoint = “1 1 1” virtualspace = “classroom.3ds”>  </RCBBVSNode> 

<RCSpatialMapper id = “rcsp1” realspace  = “bbrs1” virtualspace = “bbvs1” direction = “0 0 1” 

scale = “1 1 1” vcObject = plane.3ds”> </RCSpatialMapper> 

 

Figure 12. Rendering Results for the X3D Codes in Table 3 

Table 4 shows the X3D source code for embedding a real-world character cap-

tured using a depth camera (i.e., the Kinect). In this example, the real character data 

from the depth camera is embedded in the RCBBVS of the virtual space 

artRoom.3ds through texture mapping with the virtual object person.3ds. Figure 13 

shows the rendering results with a number of screenshots captured from a sequence 

of the continuous movement of the texture mapped real character in the virtual space 

artRoom.3ds. 
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Table 4. X3D Source Code for Representing a Real Character Captured 
using a Depth Camera 

<RCSensingDeviceNode id = “depthcam1” type = “depthcamera” fov = “50” framerate = “30” 

usedChromakeying = “false” jointtype = “all” </RCSensingDeviceNode> 

<RCBBRSNode id = “bbrs2” description = “a movable space of a real character in a real space” 

startpoint = “0 0 8000” endpoint = “640 480 30000” sensingDevice = “depthcam1”> 

</RCBBRSNode> 

<RCBBVSNode id = “bbvs2” description = “a movable space of a real character in a virtual space” 

startpoint = “0 0 0” endpoint = “1 1 1” virtualspace = “artRoom.3ds”> </RCBBVSNode> 

<RCSpatialMapper id = “rcsp2” realspace = “bbrs2” virtualspace = “bbvs2” direction = “0 0 1” 

scale = “1 1 1” vcObject = “person.3ds”> </RCSpatialMapper> 

 

Figure 13. Rendering Results for the X3D Codes in Table 4 

Figure 14 shows the embedding results corresponding to the X3D source code 

shown in Table 3. Note that the startpoint of RCBBRSNode was modified from (0 0 

8000) to (0 0 0) and the virtual object was changed from plane.3ds to person.3ds; in 

addition, the direction and scale of the real character were changed from (0 0 1) to 

(-1 0 1), and from (1 1 1) to (1.5 1 1), respectively. 

 

Figure 14. Embedding Results of the X3D Source Code Shown in Table 
3 where the Start Point, Direction, and Scale of the Virtual Object were 

Changed 

Figure 15 shows the rendered results of embedding of a real character in a virtual 

space, while tracking continuous movement. Here, the background color of the pho-

tographed real image was removed using chroma keying (i.e., usedChromakeing = 

true) and the startpoint and endpoint of the RCBBVS in the node RCBBVSNode 

was changed from (0 0 0) to (0 0 0.2) and (1 1 1) to (1 1 0.8), respectively. 

  



International Journal of Smart Home 

Vol. 9, No. 2 (2015) 

 

 

204   Copyright ⓒ 2015 SERSC 

 

Figure 15. Embedding Results for when the Start Point, Direction, and 
Scale of the Virtual Object were Changed 

5. Conclusion 

This paper has described four X3D nodes for representing and rendering real 

characters in 3D virtual models in real-time. The objective of this paper was to de-

velop a standardized implementation that conforms to the X3D format for real char-

acter rendering in virtual spaces as an extension of the X3D core nodes [6]. To eval-

uate the effectiveness of these X3D nodes, several application examples were inves-

tigated. The results show that the settings and features we defined in the four X3D 

nodes were sufficient to obtain sensing information of an input device, generating a 

movable bounding box of the real character both in real space and in the virtual 

space, and to synthesize and render the real character in the virtual model. This 

demonstrates the feasibility of the four X3D nodes for rendering real characters in 

3D virtual spaces. 

Further development of more realistic 3D virtual models is required to implement more 

immersive virtual e-learning environments. The development of more advanced tech-

niques for recognizing gestures of real characters is also required. In addition, the devel-

opment of techniques that enable the augmentation of virtual spaces based on these ges-

tures would be a valuable enhancement of current VR and MR environments. 
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