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Abstract 

In contrast to the previous ARM microprocessor, the ARM Cortex-M3 processor 

provides a method for accelerating context switching, which is supported by dedicated 

hardware logic vis a software interrupt (or trap). In general, it is expected that retaining 

the context of a task using hardware will reduce the context switching time, but it is also 

known that software interrupts or traps incur their own overheads. In this study, we 

propose an algorithm for analyzing the performance of context switching methods in 

uC/OS-II the Cortex-M3. According to our experimental analysis, we obtained the same 

results using the algorithm in an ideal state and in a real application. We expect that the 

algorithms and experimental results described in this study may help embedded system 

designers by providing quantitative measures in the context switching time of Cortex-M3 

using a real-world application.  
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1. Introduction 

In many embedded systems, real-time operation is required to handle time-sensitive 

tasks. In these systems, the scheduling of complete tasks must satisfy timing constraints, 

and it is better to reduce the scheduling overheads of the context switching time in real-

time systems [1, 2]. Furthermore, in many embedded applications, context switching time 

is one of the most important factors that affect the quality of target applications [3, 4].  

Unlike existing microprocessors, the ARM Cortex-M3 processor achieves a relatively 

short context switching time by performing a partial context switching in hardware [5]. 

However, this function must use a software interrupt or trap, which incurs overheads      

[6, 7].  

The Cortex-M3 processor produced by ARM is a 32-bit embedded 

microprocessor for deterministic real-time applications in time-sensitive systems, 

such as control systems and networking systems. To facilitate better multi-tasking 

performance, hardware support for task-switching interrupts, i.e., PendSV, is 

provided in the Cortex-M3 microprocessor. PendSV is a software trap that can be 

initiated by assembly code, which can manually force context switching, in the Cortex-

M3 [8, 9]. 

Context switching requires the storage of processor registers from one task, which is 

suspended, before restoring the registrations from another task that needs to be executed. 

In traditional ARM microprocessors, context switching was performed solely by software. 

By contrast, the software-trap handler issued by PendSV allows the Cortex-M3 to save 

half of the processor registers automatically and it then restores the registers when exiting 

the handler to achieve context switching between two tasks. Thus, it is expected that the 

context switching method based on PendSV should minimize the context switching time. 
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However, it is well known that an interrupt or a software trap does not occur 

immediately and it inevitably incurs its own timing delay. In our previous study [10], we 

performed a quantitative evaluation of the context switching time with different 

mechanisms, which showed that the time required for the PendSV-based metchod was 

approximately 1.5% longer than that for the software-based method. Our experimental 

results showed that the delay incurred by the hardware-support for PendSV was slightly 

higher than the reduction in the time required for saving and restoring registers. 

In our previous study [10], the experimental environment was ideal because a task only 

switched to another task and only the PendSV software trap was allowed. However, real 

applications require mixed interrupts and software traps, as well as application code. To 

address this limitation, we then applied context switching methods to one of the most 

popular embedded applications: VoIP. Our evaluation obtained consistent experimental 

results, which showed that the software-based context switching method obtained better 

performance than the PendSV-based mechanism [11]. 

In the present study, we describe an algorithm for Context Switching Methods in 

uC/OS-II, and we support the design of embedded systems based on a quantitative 

evaluation of the existing microprocessor by measuring the context switching time in the 

Cortex-M3. 

The remainder of this paper is organized as follows. Section 2 compares software-and 

PendSV-based context switching methods. Section 3 describes the algorithm for 

enforcing the context switching algorithm in uC/OS-II. Section 4 presents a case study 

and the results of our performance evaluation. Finally, we give our conclusions in 

Section 5. 

 

2. Comparison of SW- and HW-based Context Switching Methods 

In the following, we refer to software-based context switching as the SW-based context 

switching and PendSV-based context switching is referred to as HW-based context 

switching.  

 

2.1. SW-based Context Switching Method 

General embedded microprocessors perform context switching by following a 

procedure [12]. First, all registers are stored in a stack using software. Second, the next 

task to be performed is selected and the context is changed for the task, including the 

stack data structure. Finally, all register are loaded in the stack operation by software code 

[10]. 

 

 

Figure 1. Register Set Saved and Restored by Software Code 

2.2. HW-based Context Switching Method 

The stack comprises two registers in the CortexM3: the process stack used by the 

task and the main stack used by the operating system. The context that needs to be 

saved and restored for task switching in the Cortex-M3 microprocessor includes 
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general purpose registers, which range from R0 to R12, program counter (PC), a 

link register (LR), and a control and status register (xPSR). 

 

 

Figure 2. Register Sets Saved and Restored by Software Code and by the 
Hardware Logic Issued by the PendSV Software Trap 

As shown in Figs 1 and 2, the number of registers in the pure SW-based mechanism is 

twice that in the HW-based mechanism, but the architecture of the pure SW-based method 

is much more straightforward compared with PendSV [11, 13].  

Half of the entire register is stored and recalled automatically by the hardware, but 

software interrupt-based context switching must be used in PendSV to drive the Cortex-

M3. 

As mentioned earlier, the ARM Cortex-m3 processor achieves a relatively short 

context switching time by performing partial context switching in hardware according to 

the following procedure. First, it generates a PendSV. Second, the registers are stored in 

the stack automatically, except for those between R4 and R11, although these exceptions 

are still saved in the stack in the same manner. Third, the next task is selected for 

performance and context is changed for the task, including the stack data structure. Fourth, 

after loading the task in R4 to R11 using software code, the PendSV is returned. Finally, 

the registers are loaded except, from R4 to R11, in the stack operation where this task is 

performed in hardware [10].  

 

 

Figure 3. Architecture of the HW-based Context Switching Method 
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Figure 3 shows that it is easy to use the assembly code for these procedures, as follows. 

First, Get the process SP and save the remaining registers R4 - R11 in the process stack. 

Next, save the process SP in its TCB, OSTCBCur → OSTCBStkPtr = SP, and call 

OSTaskSwHook(). Second, get the current ready thread TCB, OSTCBCur = 

OSTCBHighRdy, and get the new process SP from TCB, SP = OSTCBHighRdy → 

OSTCBStkPtr. Third, restore R4 - R11 from the new process stack and perform an 

exception return, which will restore the context. In Cortex-M3, half of the registers are 

saved and restored automatically by hardware in the context switching method based on 

PendSV. 

 

2.3. Implementation of SW-based Context Switching Methods and Measuring the 

Context Switching Time  

Cortex-M3 has not been implemented in existing SW-based context switching 

methods. Therefore, using ARM’s White Paper [14] and Board Support Package, we 

implemented the code for the SW-based mechanism [10], which is shown in Fig. 4. 

As shown in Fig. 4, the SW-based context switching methods in the Cortex-M3 can be 

used to write the code, which saves/restores via software and the code is registered to 

save/restore via the existing hardware. When the call is OSCtxSw(), context switching is 

performed in the same manner as HW-based context switching methods. However, the 

STMFD command is used instead of hardware when saving a register. All registers are 

restored at the end of context switching. The LDMFD command is used instead of 

hardware when restoring a register. 

 

 

Figure 4. Architecture for SW-Based Context Switching Methods 

Different methods can be used to measure the context switching time. In our previous 

study, we simply measured the time required to execute the OSTaskChangePrio() API, 

but to measure the time more accurately and precisely, it is necessary define the beginning 
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and the end of the context exchange via OSTaskSwHook(), which is called always during 

context switching.  

After considering these points, the startup time was measured before the OSCtxSw () 

call and the end time was defined as the time when OSTaskSwHook() finished running. 

However, the time cannot be measured simply by changing the start and end of a context 

switch. Thus, we also needed to consider how we obtain the context switching time 

because the context exchange is executed many times repeatedly, and the condition that 

the end time is greater than the start time is not always satisfied. Therefore, we developed 

the method shown in Fig. 5. 

 

 

Figure 5. Measuring the Context Switching Time 

3. Algorithm for Enforcing Context Switching (Task Yielding) in 

uC/OS-II 

uC/OS-II is a real-time priority-based operating system where the priority of each 

specific task does not have the yield function provided by time-sharing scheduling-based 

operating systems such as Linux. Thus, in order to determine the context switching time, 

it is necessary to schedule the forcing between any two tasks [10]. 

uC/OS-II provides an OSTaskChangePrio() API that allows the priority of any task to 

be changed  run-time [15]. 
 

 

Figure 6.  Flowchart Showing Context Switching between Two Tasks in a 
Priority-based Scheduler 

Figure 6 shows the flowchart for a task-yielding algorithm with two tasks on a priority-

based scheduler. Task 1 has the highest priority, which is designated as A, and Task 2 has 

the lowest priority, denoted as B. N is the number of tasks, i.e., two in Fig. 6. The 

numbers specified in the small boxes indicate the priority in the procedure. 

The order of priority setting is important when measuring the context exchange time 

between any two tasks. From step 1 to step 2, the change in the priority of Task 1 is 

A+2N, and the remaining priority of Task 2 is B immediately after performing step 2. 

Therefore, step 1 cannot be performed from Task 1 to Task 2 immediately after step 2 

(with priority-based scheduling). However, the current priority is lower and the priority of 

Task 2 does not change the state of Task 1, which has higher priority [10].  
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The software code created based on a consideration of these points is shown in Fig. 7. 

 

 

Figure 7. Software Code for Enforced Context Switching between Two 
Tasks 

3.1. Enforcing Context Switching Among N Tasks 

uC/OS-II can manage 56 independent tasks [15]. In our previous study, we proposed a 

mechanism for task yielding between two tasks in the scheduler based on priorities [10, 

11]. In the present study, we extended the scheduling mechanism to support an arbitrary 

number of tasks, where we developed a task-yielding algorithm to enforce context 

switching among N tasks in uC/OS-II. The assumptions of the algorithm are as follows. 

 

 
 

When context switching is called for OSTaskChangePrio(), the order is the same as 

that shown in Fig. 8, where N is the number of tasks and the numbers specified in the 

small rectangular boxes indicate the priority assignments. 

 

 

Figure 8.  Flowchart Showing Task Yielding in a Priority-based Scheduler 
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The flowchart for enforced context switching is similar to the flowchart for scheduling 

two tasks in a priority-based scheduler. However, as mentioned earlier, the order of the 

priority assignments is important and the algorithm for context-switching methods in 

uC/OS-II (Fig. 9) is based on Fig. 8. 

 

 

Figure 9. Algorithm for Task N 

 

 

Figure 10. Algorithm for Other Tasks 

 The task-yielding algorithms are shown in Figs 9 and 10. A priority-based 

scheduler is used a variable number of times, which employs the algorithm because 

it is important to specify the correct sequence of calls, i.e., OSTaskChangePrio(). 

The number of times the function is called is the same as the order in which they are 

called, and the order of execution is the same as that shown in Fig. 6, where the 

number of tasks is specified simply by increasing the number N to two. When 

context switching is performed up to Task N, tasks other than Task N have rules that 

are applied after 2N has been added, and N is then added N-2 times. Context 

switching is then performed again up to Task 1 after performing Task N, and tasks 

other than Task N have rules that are applied when 2N is subtracted, after which N 

is then subtracted N-2 times. We can deduce the following equations (1) from these 

rules [11]. 
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(1) 

 

3.3. Maximum Number of Tasks Allowed by the Algorithm 

According to Section 3.2, the context-switching methods in uC/OS-II, and the 

characteristics of uC/OS-II, the available priority range is 55. Therefore, the maximum 

number of tasks can be obtained using Equation (2). 

 

(2) 

4. Performance Evaluation 

We ported uC/OS-II to the Cortex-M3 evaluation board, MCBSTM32EXL from 

Keil [16]. We then performed experiments using the algorithm developed in the present 

study. We increased the number of context switches from 100 to 10000 and we measured 

the context-switching times. Figure 11 shows the experimental results obtained using the 

SW- and HW-based methods, which demonstrates that the SW-based method obtained 

better results than the HW-based method, where the context-switching time and the time 

difference increased with the number of context switches. 
 

 

Figure 11. Experimental Results Obtained Relative to the Number of 
Context Switches 

We measured the context-switching time until the maximum number of tasks issued 

calls. Figure 12 shows that the SW-based method obtained better results than the HW-

based method, where the context-switching time and the time difference increased with 

the number of tasks.   
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Figure 12. Experimental Results Relative to the Number of Tasks 

The experiments reported in the previous section were performed in ideal conditions 

because one task performed one function before switching to another task and only the 

PendSV software trap was allowed. However, real applications require mixed interrupts 

and software traps, as well as application codes. To address this limitation, we applied the 

context-switching methods to one of the most popular embedded applications: VoIP. We 

modified the software code for the context switching functions, i.e., OSCtxSW() and OS 

_CPU_PendSVHandler(), in the source file, os_cpu_a.s, to support both context-switching 

mechanisms. An embedded system for VoIP application requires WiFi and an audio 

device for playing and recording voice communication. However, we used a timer 

interrupt to emulate receiving VoIP packets from a communication device because the 

evaluation board lacked these devices. Other features, such as sending VoIP packets and 

playing and recording voice communications, were replaced by memory I/Os because 

these are often implemented as programmed or polling I/Os. 

 

 

Figure 13. Embedded Software for the VoIP Application 

Figure 13 shows an overview of the embedded software for VoIP [17, 18] used in 

the present study. The timer interrupt was set as periodic to fill the buffer for the 

G711 audio decoder [19]. To determine a realistic time frame for the interrupt 

period, we used the calculation described in [20]. In the experiment, raw audio data 

were encoded based on the G711 audio codec at 64 kbps with a 20-ms sampling 

period and the communication device required 95.2 kbps bandwidth for each VoIP 

connection. The increased bandwidth was attributable to the packet payload in the 

communication layers. In the application, one task ran on the audio decoder and the 

other task ran on the audio encoder to support two-way conversations. Task 1 was 

pending on the semaphore, where the timer interrupt handled posts when it was 

invoked [11]. 
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To evaluate the performance, we designed the experiments to increase the number of 

VoIP connections up to a limit of 1000, where the microprocessor handled the decoder 

and encoder during the next invocation of the timer interrupt. In addition, application 

tasks were created to support concurrent VoIP clients up to 27 connections. Our 

experimental results are shown in Fig. 14, where the y-axis values obtained using the 

PendSV software based on the VoIP test context-switching times were longer than those 

obtained in the case study. According to our experimental results, the SW-based 

mechanism performed consistently better than the HW-based mechanism and the 

performance gain increased slightly with the numbers of connections.  

 

Figure 14. Experimental Results Obtained Using the VoIP Application 

5. Conclusions 

In contrast to existing microprocessors, the ARM Cortex-M3 processor achieves a 

relatively short context-switching time by using a software interrupt (Trap) in hardware 

for context switching. However, software interrupts (traps) are known to incur their own 

overheads. Thus, we developed an algorithm for context switching method in uC/OS-II. 

We also used the algorithm to analyze the time required for context switching with 

different numbers of tasks. Our experiments showed that the same results were obtained 

using the algorithm in an ideal state and in a real application. In future research, we will 

test whether the same results can be obtained with different repetitions of context 

switching. 
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