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Abstract 

As cities in developing countries are expanding rapidly in recent years, flood has an 

increasing impact on urban management. In this paper, we present the design and 

implementation of an urban flood defense decision support system based on big data. The 

system connects real-time sensor to collect streaming data, and uses a data-driven 

method that considers temporal and spatial factors to forecast water level in the next 6 

hours. Thus, it can provide enough time for the authorities to take pertinent flood 

protection measures such as evacuation. Our predictive model is a hybrid of linear 

regression and artificial neural network, and can give early warning of potential flood 

using the forecast results. The system is implemented on Java EE platform, and integrated 

with Baidu Maps API to provide a user-friendly interface. 
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1. Introduction 

Many developing countries, such as China, India, and Brazil, urbanization’s rapid 

progress has endangered lots of challenges. Given the complexities and dynamic settings 

of city, it is very difficult to tackle the challenges. However, smart sensors become cheap 

and pervasive in cities, these sensors produce a variety of big data in urban spaces (e.g., 

air quality, water level, rainfall, traffic patterns and geographical data).The big data 

implies rich knowledge of a city and can help us tackle these challenges when used 

correctly [1]. 

In recent years, researchers have done a lot of researches on tackling urban 

development and management challenges using big data. Zheng Yu et al. used big data to 

forecast fine- grained air quality [2], diagnose urban noise [3], and estimate urban energy 

consumption [4]. 2009, F. A. Pugliese et al. used a large scale floating car data system to 

analyze urban traffic [5]. 2010, He Yongxiu et al. proposed an urban residential load 

combined forecast model based on data mining techniques and panel data theory [6]. 

2015, Guanlin Chen et al. designed an intelligent analysis and mining system for urban 

lighting information [7]. 

One of the challenges in urbanization’s progress is urban flood. Many big cities in 

China, such as Beijing, Shanghai, Guangzhou, Hangzhou, just have to deal with flood risk 

management issues on a regular basis. These are issues that will worsen as climate change 

effects result in more extreme conditions. Since population density in cities is usually 

high, occurrences of flood in urban area will not only cause damage on properties, but 

even threaten people’s lives. In the last few years, a large number of projects aim at the 

development of stronger and “smarter” flood protection systems have been initiated 

around the world. Most of them aim to solve flood control problems [8]. In this paper, we 
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propose a Big-data-based Urban Flood Defense Decision Support System (BUFDDSS) 

that connects with real-time sensor to collect streaming data as input, and combine with a 

water level predictive model to give an early warning for potential flood. 

BUFDDSS is developed on the mainstream of the Java EE platform using the MVC 

pattern. The system employs Spring+Struts2+Hibernate framework and MySQL database. 

The system also integrates with HighCharts data visualization framework and Baidu Maps 

API to provide an interactive and friendly user interface. 

 

2. 2. Overview of System 
 

2.1. Framework of the System 

The system is composed of three major parts, sensors as external data sources, a server 

to provide service for real-time query, water level forecast and flood early warning, and 

clients. Figure 1 presents the framework of BUFDDSS.  

 

Figure 1. The Framework of BUFDDSS 

The sensors include water level sensors and rain sensors, these sensors could send real 

time data back to the server side. The server side has a data receiver module to handle the 

data sent back by the sensors. Theses sensors collect data every 5 minutes, so volume of 

the database will become large in a few years, query for the latest data will not respond in 

a reasonable time, thus we use a separate database to store real time data and historical 

data. The real time database stores the latest 24 hours data. The model to forecast water 

level is trained with the historical data using machine learning technique. The model uses 

the real time streaming data as input to predict water levels in the next 6 hours. Clients 

could query these predicted water results through web service. The web service module 

also provides analytics of historical data. 
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2.2. Website Architecture 

The website provides the user interface of BUFDDSS. Figure 2 presents the 

architecture of the website. There are four major parts: system management, real-time 

query, historical analytics, and forecast and warning. 

 

 
 

Figure 2. The Architecture of Website 

(1) System management, which includes user management and station management. 

Administrator of the system could add or delete user and manage user account 

permissions through user management module, and add or delete sensor stations via the 

station management module. 

(2) Real-time query, which provides query for real-time river stage, reservoir water 

level, and rainfall. 

(3) Historical analytics, this module provides descriptive analytics for historical data, 

such as maximum, minimum value observed in past years, variance and distribution of 

water levels in a year, frequency of water level threshold exceeded at a given station in 

past years. 

(4) Forecast and warning, in this module user could query forecast water level 

produced by the predictive mode. If the forecast results exceed threshold at a station, there 

will be a warning sign displayed on the website, thus decision makers could make a 

decision on how to deal with it. There is an interactive simulation on water level under 

given rainfall in this module. Since rainfall is the direct factor on water level, when 

rainfall is given, water level could be computed with the predictive model. Decision 

maker could input rainfall in the next few hours, and then website will display the 

computed result water level under the input rainfall. 

 

3. System Implementation 

BUFDDSS is implemented on the mainstream Java EE platform, integrated with SSH 

(Spring+Struts2+Hibernate) framework, and applied the MVC pattern. The system 

integrates with Baidu Maps API to provide a user-friendly interface, and uses a data 

visualization library (HighCharts) to provide visual presentation of data. In the following, 

we will give a detailed description of some key modules in the system. 
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3.1. Database Design 

The system uses MySQL 5.5 database and there are nine major tables designed. These 

tables include basic station information (st_stbprp_b), river stage historical data 

(st_river_r0), river stage real time data (st_river_rt), reservoir water level historical data 

(st_rsvr_r0), reservoir water level real time data (st_rsvr_rt), rainfall historical data 

(st_pptn_r0), rainfall real time data (st_pptn_rt), warning threshold for river and reservoir 

(st_warn), and user account (tbl_user). 

The relationships of these tables are as follows: the user in tbl_user is for validation 

when a user logs in the system. st_stbprp_b stores basic information of all water level and 

rainfall sensors. Every sensor has a unique id which is stored in the stcd column in 

st_stbprp_b. st_stbprp_b also stores longitude and latitude of all sensors. Each row in 

st_river_r0, st_rsvr_r0 and st_pptn_r0 stores a record produced by a sensor. The three 

tables have stcd and time as its composite primary key. The real time tables have same 

fields as the corresponding historical table, except they just store the latest 24 hours 

sensors generated data. 

 

3.2. Geographical Display with Baidu Maps 

In the current implemented system, there are 113 water level sensors and 128 rainfall 

sensors, so it’s hard to query data by type the id of a sensor. Thus we overlay the sensor 

with a marker on Baidu Maps, and the user could query a sensor by hover or click on the 

correspondent marker. The Javascript code of using Baidu Maps is as follows.  

 

<script type="text/javascript" src="http://api.map.baidu.com/api?v=1.2"></script> 

var map; 

$(document).ready(function() { 

    map = new BMap.Map("container"); // create a map instance 

    map.disableDoubleClickZoom();  // disable zoom by double click 

    map.enableScrollWheelZoom();  // enable zoom by scroll mouse wheel 

    map.addControl(new BMap.NavigationControl({//add navigation controller on map 

        type : BMAP_NAVIGATION_CONTROL_LARGE 

    })); 

    map.addControl(new BMap.MapTypeControl()); // add map type controller on map 

    map.centerAndZoom('Hangzhou');  // set Hangzhou as map center 

}); 

The javascript code of adding marker of sensor on the map is as follows. 

var stationMarkers = new Array();  // ceate an array to store station markers 

// jQuery getJSON function will get the latest 24 hours data from server,  

// and display the station marker on map 

$.getJSON('../station/getAll',  function(data) {    

    for( var i=0; i<data.count; i++) { 

        var lng = data.list[i].lng; 

        var lat = data.list[i].lat; 

 // create and initialize the marker 

        var marker = new BMap.Marker(new BMap.Point(lng, lat)); 

        marker.div = document.createElement("div"); 

        marker.div.style.position = "absolute"; 

        marker.div.style.width = "auto"; 

        marker.div.style.height = "auto"; 

        marker.div.innerHTML="<h3>" + data.list[i].id + "</h3>"; 

// display latest 24 hours data 

        var infoWindow = new BMap.InfoWindow($("#canvas")[0]);  

// display infoWindow when mouse over the marker 
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        marker.addEventListener("mouseover", function(){   

            this.openInfoWindow(infoWindow);}); 

// close infoWindow when mouse move out the marker 

        marker.addEventListener("mouseout", function(){ 

         this.closeInfoWindow(); 

        }); 

        map.addOverlay( marker );    // add the marker on map 

    } 

}); 

   

After a map object is created, the web page will get all the stations information from 

the server via AJAX, and the latest 24 hours water levels and rainfall data. Every station 

will be presented as a marker on the map, when the user hover mouse on a marker, there 

will pop up an info window to display the latest 24 hours data. The interface is shown in 

Figure 3. 

 

 

Figure 3. The User Interface of Real-time Query 

3.3. Visual Analytics 

To date, we have collected water level and rainfall sensors data in 2011-2014. These 

data are almost 5GB. There is rich knowledge implied in those massive data, but just 

query the original data from the database is hard to find a useful pattern. So we need a 

better presentation of those data. A good visualization of original data can reveal 

knowledge intuitively so as to help in decision making. The visualization of data may also 

suggest the correlation or causality between different factors. So we provide a visual 

presentation of historical data.  

User can select the sensor which he interested from Baidu Maps, and then a page for 

inquiring that sensor will show. Users can type more detailed parameters in that page to 

get a visual descriptive representation of data generated by that sensor in past years. A 

sensor generates data every 5 minutes. There would be more than 100000 in a year. When 

a user inquiries data by the year, it’s impractical to show all of the data on a single page. 

To address this issue, the system will aggregate those data by the day, and then respond 

with a reasonable volume of data back to the client. If user wants to inquiry data in more 

fine-grained, such as water level series in a day, server will respond with original data, 

thus provide more information to users. Distribution of water level in that time range 

query by user and frequency of water level exceeds the warning threshold will display on 

that correspondent page. Figure 4 presents the visual analytic page for a river stage sensor. 
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Figure 4. The Historical Analytics of a Station 

3.4. Framework of the Predictive Model 

There are a large number of predictive models of flood proposed and real time forecast 

of river stage. River stage is not fit in a linear regression model very well, so most of 

those models applied artificial neural network [9], support vector machine [10] and 

dynamic Bayesian network [11] or a hybrid of these techniques [12].  

Our model is a hybrid of linear regression and artificial neural network, which 

considers local temporal and global spatial factors. The predictive model consisting of 

two components: a temporal predictor and a spatial predictor. The temporal predictor 

predicts the water level of a station in terms of the data about the station, which is water 

level of the past few hours. The temporal predictor is based on a linear regression, which 

models the water level regression process. The spatial predictor considers all sensor 

stations current state to predict a station’s future water level. A station’s water level is 

influenced not only by its past water level, but also has a spatial correlation with other 

stations, a station at downstream will have a correlation with stations in upstream. The 

spatial predictor is based on artificial neural network (ANN), modeling the spatial 

correlation and predicting water level from other stations’ points of view. 

(1) Temporal Predictor.  

The temporal predictor models the trend of water level of a station based on its past few 

hours of data. Intuitively, the current status has different degrees of impact to different 

future time intervals. So we train different models to different time intervals, as shown in 

Figure 5. Each blue broken arrow showed in Figure 5 denotes a temporal predictor. Over 

the next six hours, we train a model for each hour. A linear regression is employed to 

model the local temporal change of water level. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Illustration of the Temporal Predictor 
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 (2) Spatial Predictor. 

A station’s water level is also depends on its upstream stations and rainfall at current. 

Rainfall is a direct factor for the water level, and if a station’s upstream has a rising on 

water level, the station’s water level will rise in future. To model the impact of rainfall 

and correlations with other stations, we devise a spatial predictor which predicts the water 

level of a location based on rainfall sensors’ data and other water level stations’ status, as 

shown in Figure 6. 

In the implementation, we predict the deviation between the water level of current time 

tc and the future time interval tc+w, because the distribution space of deviation is much 

narrower than the original water level. Since every station’s water level has a different 

range, to avoid large range value dominates the model, we need to rescale the range of 

water level to scale in [0, 1]. The formula is given in equation 1: 

)min()max(
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'
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                      (1) 

The artificial neural network applied in the system is the widely-used Back-propagation 

(BP) neural network with one hidden layer in the experiments for its simplicity and 

generality. We set a sigmoid function φ(x) for the hidden and output layer. The formula is 

defined in equation 2: 
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r       (2) 

Where fp the feature scaling function for input; b’n and b’’ are the biases associated with 

neuron in different layers; wpq, w’qr and wr denote the weight associated with the input of 

different layers. 

 

 

Figure 6. Illustration of the Spatial Predictor 
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3.5. Forecast and Warning 

Using the predictive model and the real time data sent back by sensors, we can forecast 

the water level in the next 6 hours. Combine the forecast result with the warning threshold 

stored in database, we can easily compute whether there is a potential flood in the next 6 

hours, thus give an early warning of flood to reduce the damage caused by flood. Figure 7 

shows the prediction of our method at the next one hour against the ground truth of station 

1101 in Hangzhou from March 3, 2012 to March 3, 2013. 

 

 

Figure 7. 1-hour River Stage Prediction of Station 1101 in Hangzhou 

For the next 1-6 hours, we measure the prediction of each hour Yi against its ground 

truth Ti, calculating the RMSE and Efficiency Index (equation 3 and equation 4). As a 

result, we generate a measurement for the six time intervals respectively at each station. 
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Table 1 shows the corresponding performance statistical parameters for station 1101 in 

Hangzhou. It found that the statistical performance of the one hour prediction is better in 

term of EI. In terms of RMSE and EI, the shorter the forecasting time interval, the better 

the predictive model performs. 

Table 1. Performance Statistical Parameters for Station 1101 in Hangzhou 

 RMSE (m) EI 

t+1 0.0408 0.819 

t+2 0.0513 0.773 

t+3 0.0575 0.712 

t+4 0.0629 0.658 

t+5 0.0814 0.592 

t+6 0.0873 0.536 
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4. Conclusions 

We implemented a big-data-based urban flood defense decision support system as 

shown in the paper, which is a complex system using machine learning and data 

visualization methods. We focus on monitoring, analysis and mining of the water level 

and rainfall sensor data. We trained a model which can predict the water level in the next 

6 hours, and give more information to the decision maker to defense the potential flood. 

In the future, we will continue to expand data sources and introduce more sophisticated 

model in the system, enhancing the applied value of flood defense in the digital urban 

management. Since our technology is general and only the system is only deployed and 

tested in Hangzhou, we will deploy the system in other cities to test its effectiveness. 
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