
International Journal of Smart Home

Vol. 9, No. 12, (2015), pp. 233-244

http://dx.doi.org/10.14257/ijsh.2015.9.12.24

ISSN: 1975-4094 IJSH

Copyright ⓒ 2015 SERSC

The Improvement and Evaluation of the Implementation Ability

for Deriving Timing Constraints Context in Service-Oriented

Home Network

BenYan
1
, Hua-Ping Yao

1
, Masahide Nakamura

2
 and Shinsuke Matsumoto

2

1
LuoYang Institute of Science and Technology

No. 90 Wangcheng Dadao, Luolong District,

Luoyang City, Henan Province, 471023, China
2

Kobe University

1-1 Rokkoudait-cho, Nada-ku,Kobe,Hyoko 657-8501,Japan

1 {yanbenjp, yhplisajp}@gmail.com

2 masa-n@cs.kobe-u.ac.jp

Abstract

Home Network System (HNS) is comprised of networked home appliances and sensors

to provide value-added and more powerful services. In order to build high-level HNS

service by integrating multiple appliances and sensors, our earlier study proposes a

method to derive timing constraints context based on Sensor Service Framework (SSF,

which deploys sensor devices as web services to achieve easy development of context-

aware application).

That method divides timing constraints into two types: the sequential timing constraint

and the continuous timing constraint. A high-level context can be defined as conditions

expression based on the above two types. Moreover, we present a timer service to

implement timing constraints context within SSF, and demonstrate how a high-level

context with timing constraint is registered and detected in a real home network system.

However, to create high-level context with timing constraints, the developer needs to

know the details about pre-existing context of HNS, and also needs the ability to analyze

and implement complex logic to detect a high-level timing constraints context. This

limitation impedes the efficient creation of high-level context in HNS.

Therefore, we propose a method to collectively manage the information of a pre-

existing context of HNS in this paper, by which the developer can create high-level timing

constraints context more easily than before. As a case study, we implement Enter-Leave

context and TV Left On context, and execute an evaluation to prove the effectiveness of

this proposal.

Keywords: Home Network System (HNS), service-oriented architecture, context-aware

application, web service, Sensor Service Framework (SSF), timing constraints context

1. Introduction

Home Network System (HNS) is a system consisting of multiple networked household

appliances and sensors. It is one of the most promising applications about emerging

ubiquitous technologies. The biggest advantage of HNS is that it provides value-added

and more powerful HNS services by integrating multiple appliances and various sensors

[1]. Recently, the study and development of context-aware application of HNS which can

be implemented by matching the surrounding situation or users are becoming more and

more notable [6].

A context refers to an information collection which contains the status of user，
appliances, surrounding environment and other various entities in HNS. It is defined as a

mailto:yhplisajp%7D@gmail.com

International Journal of Smart Home

Vol. 9, No. 12, (2015)

234 Copyright ⓒ 2015 SERSC

conditional expression by using the value over a single or multiple sensors. The context-

aware application means executable software which can be implemented when a context

is established.

In our earlier study [8], we proposed a Sensor Service Framework (SSF) based on the

idea of service-oriented architecture (SOA) [9]. Since SSF does not depend on any device

or platform, it realized loose coupling between applications, appliances and sensors. The

developer can use sensor device (such as temperature sensor, illumination sensor etc.) as a

standard web service by using standard interfaces in HNS, such as getting value from

sensor, registering context condition etc.

We also proposed a Sensor Mush up Platform (SMuP) based on SSF, which is used to

build more complex context by combining multiple sensor web services [10], such as the

context integrating temperature sensor and moisture sensor [Temperature is 25 degrees or

higher, and humidity is 30% or less].

Based on SSF/SMuP, we proposed a method to define and presume a high-level

timing constraints context [5]. We divided timing constraints into 2 types:

sequential timing constraints and continuous timing constraints. Sequential timing

constraints means a relation like context C1 is detected within n seconds after

context C2 is detected. Continuous timing constraints means a relation like context

C continuously exists during a period of time n.

Based on the above proposal, a high-level context can be defined in HNS. Since a new

high-level context is combined with one or multiple pre-existing contexts, the developer

needs to know the details of these contexts, and needs the ability to analyze and

implement complex logic to detect high-level timing constraints context. Thus a problem

arises concerning how to use pre-existing contexts to create a new context in context-

aware application creating process.

For this purpose, this paper proposes a method to support the developer to create

high-level timing constraints context more easily than before. This method includes

two web service objects: ContextRegistry service and TimingContextSensor service.

Context Registry service is used to collectively manage the information of a pre-

existing context of HNS. When a developer uses a pre-existing context to create

context-aware application, it’s unnecessary to call each sensor service. The details

of these sensors and pre-existing contexts can be acquired from Context Registry

service.

TimingContexSensor service is designed to register a new high-level timing

constraints context in HNS, which makes the developing of a context-aware

application with a new timing constraints context easier.

To prove the effectiveness of this proposal from performance aspect, we

implemented [Enter-Leave context] and [TV Left On] context in our library. We

measured the response time of each method and the creation time of a context aware

application, which is described in the last part if the paper.

2. Preliminaries

2.1 Home Network System (HNS)

A HNS consists of one or more networked appliances connected to a LAN at

home. In general, each appliance has a set of application program interfaces (APIs),

by which the users or external software agents can control the appliance via the

network. A HNS typically has a home server, which manages all the appliances in

the HNS. Services and applications are installed on the home server. A HNS service

provides a sophisticated and value-added service by using multiple appliances

together. HNS service is implemented as a software application that invokes the

APIs of the appliances. The appliances and services are deployed in a home, which

http://www.iciba.com/registering

International Journal of Smart Home

Vol. 9, No. 12, (2015)

Copyright ⓒ 2015 SERSC 235

is characterized by environmental attributes (e.g., temperature, humidity, brightness,

current, sound, space) [2] [3].

In our library, based on service-oriented architecture (SOA) [9], we are

developing a HNS texting environment [CS27-HNS] which can use various

appliances as web service [11]. Appliances-dependent control method and

communication protocol are wrapped by web service, and all appliances in CS27-

HNS can be used as a web service of SOAP or REST formality. For example, we

can set a TV into 6ch by accessing URL: [http://cs27-

hns/TVService/setChannel?channel=6].

APPLICATION

220lux

Property：temperature

getValue()

Temperature Sensor
Service

Temperature
Sensor

Property：brightness

getValue()

Light Sensor
Service

Light
Sensor

Property：motion

getValue()

Motion Sensor
Service

Motion
Sensor

28℃ ture

APPLICATION

 Temperature Sensor

Property：temperature

Subscribe()

Temperature Sensor
Service

Tell me when “hot”

Notify()

“hot”is true

Registered ConteXt

Context Conditions

“cold”: temperature < 5℃
“hot”: temperature > 27℃

...

Figure 1. The Summary Figure of Sensor Service Framework (SSF)

2.2 Sensor Service Framework (SSF)

Sensor Service Framework (SSF) was developed as an application framework to

deploy sensor devices as web service in CS27-HNS [7] [7] [12]. A web service

wraps sensor-specific control logic into standard API. Each sensor has a measurable

property. For example, a temperature sensor has a property temperature(℃), a light

sensor has a property brightness(lux), and the value of these properties can be

acquired form getValue() method in CS27-HNS. Moreover, by implementing

periodic observation of the change of sensor service’s properties, a context can be

detected based on the registered conditional expression (Figure 1).

For example, we define a context named “hot” and register it as context condition

expression: “temperature > 27” (join context name and condition together, and we

write the above context as [hot: temperature >27]). The temperature sensor keeps

monitoring “temperature” and detects context “hot” when the value of

“temperature” becomes higher than 27℃. The registration of context condition is

implemented as “register()”, and the context can be called by any web service by

using “subscribe()” method. By using this web service, we can build context-aware

service easily just by appointing an appliance of HNS. For example, the HNS

http://ejje.weblio.jp/content/registration

International Journal of Smart Home

Vol. 9, No. 12, (2015)

236 Copyright ⓒ 2015 SERSC

service of “when the room is hot, the air-conditioner will turn on” can be

implemented as [subscribe(hot,http://cs27-hns/AirConditionerService/on)]

2.3 Timing Constraints Context

Based on the early study SSF [5], we have presented a method to detect a high-

level timing context in HNS. This proposal defined timing constraints context into 2

types: sequential timing constraints context and continuous timing constraints

context. Sequential timing constraints context is a sequential time limitation

between two contexts, and it means a relation like context C1 is detected within a

few seconds after context C2 is detected. Continuous timing constraints context is a

continuous time limitation that means context C continuously exists during a period

of time n. For example, context [C: enter home] can be defined as a sequential

timing constraints context with the condition like [after opening the door for 2

seconds, passed the hall], and context [C: appliance is on] can be defined as a

continuous timing constraints context with the condition like [the power of

appliance is ON for 600 seconds].

3. Research Goal and Approach

3.1 Issues

In our early study, a new high-level context is combined with one or multiple pre-

existing contexts. Thus the developer needs to know the details about these HNS

contexts, and also needs to have the ability to analyze and implement complex logic

to detect high-level timing constraints context [5]. So there is a problem concerning

using pre-existing contexts and creating a new context, such as:

 Which sensor service is possible to detect whether an existing context is

established or not?

 What conditional expression can judge whether the context is established or

not?

 Is the existing context that it itself exists?

 How to implement complex logic between sensor web services and timer web

service to measure the time in a new time constrains service?

3.2 Key Idea

To solve the problem, we propose a method to support a developer to create high-

level timing constraints context. This method has two main points:

 [K1]: Acquiring details of pre-existing context with calling web service only;

 [K2]: Making the registering of timing constraints context easier.

To achieve K1, we designed ContextRegistry service to collectively manage the

information of all HNS pre-existing contexts. When a developer uses a pre-existing

context to create high-level context, it is unnecessary to call each sensor service

registered by the context as before. The details of these pre-existing contexts can be

acquired from this web service.

To achieve K2, we implemented TimingContextSensor service to register a new

high-level timing constraints context easily in HNS.

By these methods, the developing of a context aware application with a new

timing constraints context becomes easier. The details of these two services will be

described in the next section.

http://cs27-hns/AirConditionerService/on

International Journal of Smart Home

Vol. 9, No. 12, (2015)

Copyright ⓒ 2015 SERSC 237

3.3 ContextRegistry Service

ContextRegistry object is designed as a web service to collectively manage the

information of all HNS contexts. The information includes the context name, the

context condition expression and URL (URL is to get the status of the context as

whether established or not). These information can be acquired through the

getContextList() method in ContextRegistry class. A context is established or not

can be judged only by calling the getContextStatus() method which specifies the

context name.

For example, for a context [T:DoorOpen] defined as [DoorOpen:

DoorSensor.isOpen == true], the context establishing status can be acquired by

calling “http://cs27-

hns/ContextRegistryService/getContextStatus?name=DoorOpen” only. It is

unnecessary to call each sensor service of the context.

Since a context registers with each sensor service in HNS, the information of

sensor service is also managed by ContextRegistry class. The information of sensor

service includes the name of sensor and URL of sensor service. These information is

acquired through the getSensorList() method in ContextRegistry class.

Context

- contextName:String
- contextEndpoint:String
- expression:String

ContextRegistry

- contextList:HashMap<String,Context>
- sensorList:HashMap<String,Sensor>

+ getContextStatus(contextName:String):boolean
+ addSensorReference(sensorName:String,sensorEndpoint:String):void
+ deleteSensorReference(sensorName:String):void
+ getSensorList():List<Sensor>
+ getContextList():List<Context>
+ updateContextList():void

Sensor

- sensorName:String
- sensorEndpooint:String
- contextList:ArrayList<Context>

+ getSensorName():String
+ getSensorEndpoint():String
+ getContextList():List<Context>

+ getStatus():boolean
+ getContextEndpoint():String
+ getContextName():String
+ getExpression():String

1 0...*

Figure 2. Class Diagram of ContextRegistry Service (Class)

Table 1. The Details of Each Class and Method in ContextRegistry Service

Object Name Object Type Object Instruction

Sensor class
This class is to get the name, the URL of a sensor service and

the list of the contexts which are registered with the sensors.

Context class
This class is to get the name, the condition expression and the

URL of a context.

getContextStatus method
This method is to get the context establishing status with

specifying the “context name” as an argument.

getSensorList method
This method is to get the name list and the URL list of the

sensor services in HNS.

getContextList method

This method is to get the name list, the condition expression list

and the URL list of the contexts which are registered with

sensor services.

International Journal of Smart Home

Vol. 9, No. 12, (2015)

238 Copyright ⓒ 2015 SERSC

Figure 2 is class diagram of the main classes and methods of the ContextRegistry

service. The details of each class and main methods are indicated in Table 1.

3.4 TimingContextSensor Service

TimingContextSensor object is to register a timing constraints context. Based on

the definition of timing constraints context in our earlier study, we design two

registration methods to register sequential timing constraints context and continuous

timing constraints context.

RegisterSequentialContext() method is to register a new sequential timing

constraints context by specifying a new context name (T), two pre-existing contexts

name (Cx, Cy) and a time (n). It is implemented like registerSequentialContext(T,

C1, C2,n). T is the new sequential timing constraints context derived from two pre-

existing contexts (Cx and Cy), which is defined as [T: #n [Cx , Cy]]. It means that if

a context Cx is detected within n seconds after context Cy is detected, a new context

T is detected.

RegisterContinuousContext() method is to register a new continuous timing

constraints context by specifying a new context name (T), a pre-existing contexts

name (Cx) and a time (n). It is implemented like registerSequentialContext(T, Cx, n).

T is a new continuous timing context with using pre-context Cx, which is defined as

[T: @n [Cx]]. It means that if a context Cx continuously exists during a period of

time n, T is detected.

Subscribe() method is to connect any web services by appointing the context

name and the context calling URL of HNS. The usage is the same as our early study

SSF described in chapter 2.2. The same as ContextRegistry class (chapter 3.3), a

TimingContextSensor class includes getContextList() and getSensorList(), which is

to acquire details of the sensor service registered by a context. Figure 3 is the class

diagram of the main classes and methods of TimingContextSensor service.

TimingContextSensorService

- contextList:ArrayList<Context>

+ registerSequentialContext(contextName:String,preContextName:String,nextContextName:String,time:int):boolean
+ registerContinueousContext(contextName:String,registeredContextName:String,time:int):boolean
+ unregister(contextName:String):boolean
+ subscribe(contextName:String,restUrl:String):String
+ unsubscribe(subscribedld:String):String
+ getContextStatus(contextName:String):boolean
+ getContextList():Context[]

Context

- contextName:String
- contextEndpooint:String
- expression:String

+ getStatus():boolean
+ getContextEndpoint():String
+ getContextName():String
+ getExperssion():String

1

0...*

Figure 3. Class Diagram of TimingContextSensor Service (Class)

International Journal of Smart Home

Vol. 9, No. 12, (2015)

Copyright ⓒ 2015 SERSC 239

4. Case Study

CS27-HNS is a HNS testing environment in our lab which has deployed

HomeApplianceOperation services, TimingContextSensor service and

ContextRegistry service [13] [14] [15]. Based on SSF, each sensor of CS27-HNS

can be accessed by calling the sensor service. In the case study, we have registered

three timing constraints contexts ([T1: Enter] context, [T2: Leave] and [T3:

TvLeftOn] context) by using ContextRegistry service. This chapter demonstrates

how to register these contexts and how to create context-aware applications by using

these creating contexts based on our proposal.

4.1 Automatic Light Service (Using Sequential Timing Constrains Context)

This case study creates a context-aware application which combines sequential

timing constrains context [T1: Enter] ([T2: Leave]) with On/Off service of lights. If

somebody enters (or leaves) the room, the light will turn on (or off) by the system

automatically.

In CS27-HNS, there are two pre-existing contexts registered as [C1: DoorOpen]

and [C2: HumanDetect]. C1 is detected by a door sensor at entrance and defined as

[DoorOpen: DoorSensor.isOpen == true]. C2 is detected by a motion sensor at

entrance and defined as [HumanDetect: MotionSensor1.motion==true]. By using the

above pre-contexts, a sequential timing constrains context T1 can be defined as

[Enter: #5 [DoorOpen, HumanDetect]]. It means if the motion sensor reacts within 5

seconds after the door sensor reacts, somebody enters the room.

The same as T1, timing sequential constrains context T2 can be defined as [Leave:

#5 [HumanDetect, DoorOpen]]. It means if the door sensor reacts within 5 seconds

after the motion sensor reacts, somebody leaves the room.

Based on the proposal in chapter 3, the context T1 or T2 can be registered with

the registerSequeintialContext() method of TimingContextSensor service, and the

connection between T1 (or T2) and On (Off) service of the lights can be

implemented with subscribe() method.

The following step1 and step2 indicate the registration calling affiliates of web

service for this context-aware application. Step3 indicates the calling method of this

context-aware application.

 STEP1: Registering Context

[Registering T1]

http://cs27-

hns/TimingContextSensorService/registerSequeintialContext?name=

Enter&context1=DoorOpen&context2=HumanDetect&time=5

[Registering T2]

http://cs27-

hns/TimingContextSensorService/registerSequeintialContext?name=

Leave&context2= HumanDetect&context1= DoorOpen&time=5

 STEP2: Creating context-aware application

[Connecting Light ON with T1]

http://cs27-

hns/TimingContextSensorService/subscribe?context=Enter¬ify=

http://cs27-hns/LightService/on

[Connecting Light OFF with T2]

http://cs27-

hns/TimingContextSensorService/subscribe?context=Leave¬ify=

http://cs27-hns/LightService/off

 STEP3: Calling method of context-aware application

[Power on automatically]

http://cs27-hns/TimingContextSensorService/registerSequeintialContext?name
http://cs27-hns/TimingContextSensorService/registerSequeintialContext?name
http://cs27-hns/TimingContextSensorService/registerSequeintialContext?name
http://cs27-hns/TimingContextSensorService/registerSequeintialContext?name
http://cs27-hns/TimingContextSensorService/subscribe?context=Enter¬ify
http://cs27-hns/TimingContextSensorService/subscribe?context=Enter¬ify
http://cs27-hns/LightService/on
http://cs27-hns/TimingContextSensorService/subscribe?context=Leave¬ify
http://cs27-hns/TimingContextSensorService/subscribe?context=Leave¬ify
http://cs27-hns/LightService/off

International Journal of Smart Home

Vol. 9, No. 12, (2015)

240 Copyright ⓒ 2015 SERSC

http://cs27-hns/TimingContextSensorService/getContextStatus?name=Enter

[Power off automatically)]

http://cs27-hns/TimingContextSensorService/getContextStatus?name=Leave

4.2 TV LeftOn Notification Service (Using Continuous Timing Constrains Context)

This section introduces how to create another context-aware application by using

pre-existing contexts [T3: TvLeftOn], [C3: NoHumanDetect], [C4: Notify] and [C5:

TvOn].

T3 is a continuous timing constrains context by using [C3: NoHumanDetect] and

[C5: TvOn]. It is defined as [TvLeftOn: @600[[TvOn]&&[NoHumanDetect]]], and

means that if the TV is on for 600 seconds and there is nobody in the room, the

context will be detected. The new context-aware application is connected with T3

and C4. When T3 is detected, a notification will be released by this context-aware

application automatically.

The same as case study in section 4-1, context T3 can be registered with the

registerContinuousContext() method of TimingContextSensor service, and the

connection between T3 and C4 can be implemented with subscribe() method.

The following step1 and step2 indicate the registration calling affiliates of web

service for this context-aware application. Step3 indicates the calling method of the

context-aware application.

 STEP1: Register TvLeftOn Context

http://cs27-

hns/TimingContextSensorService/registerContiueousContext?name=

TVLeftOn&context5=TVon&context3=NoHumanDetect&time=600

 STEP2: Connecting TvLeftOn context with Notify context
http://cs27-hns/TimingContextSensorService/subscribe?context=TVLeftOn&
Notify=http://cs27-hns/NotifyService/notify

 STEP3: Calling method of context-aware application

http://cs27-

hns/TimingContextSensorService/getContextStatus?name=TVLeftOn

5. Evaluation

5.1 Evaluation Method and Environment

In order to prove the validity and efficiency of our proposal, we measured the

response time and the creating time of each step in context-aware application

creating process.

The evaluation is implemented in our HNS testing environment CS27-HNS and

the details of evaluation environment and the technique are as follows:

 Web Server: Apache Tomcat 7.0

 Web Service Engineer: Apache Axis 1.4.1

We first selected 5 items as the response time evaluation objects (Table2 and

Table3). Then we called REST 10 times for each URL of the evaluation object and

recorded the response time. Finally we took the average of these recorded times as

evaluation result (Table2).

For the creating time, we selected TV Left On notification service (context-aware

application) as the evaluation object. The creating time of this service includes two

parts, one is the time required for getting list of pre-context by using

getContextList() and registering TvLeftOn context by using

registerContinuousContext() method of the ContextRegistry service (the pre-Step

and step1 of Table3), the other is the time required to connect this context with

notifying service (Step2 of Table3).

http://cs27-hns/TimingContextSensorService/registerContiueousContext?name
http://cs27-hns/TimingContextSensorService/registerContiueousContext?name
http://cs27-hns/TimingContextSensorService/subscribe?context=TVLeftOn&

International Journal of Smart Home

Vol. 9, No. 12, (2015)

Copyright ⓒ 2015 SERSC 241

5.2 Evaluation Result

Table 2 and table 3 show the evaluation result. For the response time, the total

time for registration (Step1) and detection (Step3) of the sequential timing

constrains context is longer than the continuous timing constrains context. It’s

because the sequential timing constrains context connects two contexts, and the

continuous timing constrains context only uses one context.

Depending on our proposal, the detailed information of pre-existing context is

acquired by calling the ContextRegistry service. So we think the response time of

any context is the same as this result even including step2 (connecting a context

with an operation) of the table2.

Object Details evaluation object response time

Realization of Automatic Light Service (by using timing sequential timing constrains context)

STEP1 Register Enter Context ■ 14.6 milliseconds

STEP2 Connecting Light ON with Enter Context ■ 7.2 milliseconds

STEP3 Calling method of context-aware application ■ 8.3 milliseconds

Realization of TV Left Notification Service (by using continuous timing constrains context)

STEP1 Register TvLeftOn Context ■ 9.8 milliseconds

STEP2 Connecting TvLeftOn context with Notify context - -

STEP3 Calling method of context-aware application ■ 12.4 milliseconds

Table 2. The Evaluation Objects for Response Time

For the creating time of context-aware application (TV Left On Notification

Service), the steps from getting details of the pre-context (Pre-STEP) to the context

registration (step1) cost 67.14 seconds. The step of connecting a context with an

operation cost 54.24 seconds. The total creating time is 121.38 seconds.

Object Details evaluation object creating time

Realization of TV Left Notification Service (by using continuous timing constrains context)

Pre-STEP Getting details of the pre-context ■
67.14 seconds

STEP1 Register TvLeftOn Context ■

STEP2 Connecting TvLeftOn context with Notify context ■ 54.24 seconds

STEP3 Calling method of context-aware application - -

Table 3. The Evaluation Objects for Creating Time

The evaluation result shows that the response time of each method is very short

for the application. So we believe that the influence from response performance is

small, and that the validity and efficiency of our proposal are enough to develop

high-level context-aware application in HNS.

6. Conclusions and Future Work

6.1 Conclusions

In our early study, a new high-level context is combined with one or multiple pre-

existing contexts. Thus the developer needs to know the details about these contexts,

and needs to have the ability to analyze and implement complex logic to detect

high-level timing constraints context.

For this purpose, we present a method to solve the issues described in chapter 3.

The goal of this proposal is to assist the developer to create high-level timing

constraints context much more easily.

International Journal of Smart Home

Vol. 9, No. 12, (2015)

242 Copyright ⓒ 2015 SERSC

our proposal includes two main web services, ContextRegistry service and

TimingContextSensor service. ContextRegistry service is to collectively manage the

information of a pre-existing context of HNS. TimingContextSensor service is to

register new timing constraints context and create the context-aware application by

using these contexts.

ContextRegistry service includes three main methods: getContextList() method,

getContextStatus() method and getSensorList() method. GetContextList() method is

to get the details of pre-existing context, such as context name, context condition

expression and URL for acquiring context status. GetContextStatus () method is to

get the status to indicate a context is established or not. GetSensorList () method is

to get the details of a sensor service which was registered by a context.

Considering the special nature of timing constraints context, we also proposed

TimingContextSensor service that includes a registerSequentialContext() method

and a registerContinuousContext() method. Both methods are used to register timing

constraints context more easily in HNS.

As a case study, we created two context-aware applications using the pre-existing

timing constraints contexts in our lab. One is the automatic light service used to

switch on or off the lights when somebody enters or leaves the room. Another is TV

left on notification service which gives a notification when the TV is on for 600

seconds with nobody in the room. Moreover, we measured the response time of each

method in the TimingContextSensor service and the creation time of the above context-

aware applications. The evaluation result proved the effectiveness of this proposal from

performance aspect.

6.2 Future Work

Although the creating of context-aware application became easier than before

depending on the above proposal, the condition of each context itself becomes more and

more complex. It's difficult to inspect conflict between contexts beforehand. Because of

this, we plan to develop a framework in order to inspect conflict between pre-contexts

beforehand in context-aware application creating process in our future research。

Furthermore, even the creating process is easier than before, it still needs several

minutes to complete the whole steps. If a developer is unaccustomed to the developing

process, it is possible to cause some mistakes in the context-aware application. Thus,

another future work is the improvement plan to develop a GUI to support context-aware

application development.

Acknowledgements

This research was partially supported by the Scientific Research Start Funds of

LuoYang Institute of Science and Technology (No.14308051); the Japan Ministry of

Education, Science, Sports, and Culture [Grant-in-Aid for Scientific Research (B)

(No.26280115, No.15H02701), Young Scientists (B) (No.26730155)]; and the

International scientific and technological cooperation project (2015) supported by

Science and Technology Department of Henan Province, China.

References

[1] B. Yan, M. Nakamura, L. D. Bousquet and K. I. Matsumoto, “Validating Safety for Integrated Services

of Home Network System Using JML”, Journal of Information Processing (JIP), vol. 49, no. 6, (2008),

pp. 1751-1762.

[2] B. Yan, M. Nakamura and K. I. Matsumoto, “Deriving Safety Properties for Home Network System

Based on Goal-Oriented Hazard Analysis Model”, International Journal of Smart Home, vol. 3, no. 1,

(2009), pp. 67-80.

[3] B. Yan, M. Nakamura, L. D. Bousquet and K. I. Matsumoto, “Improving Reusability of Hazard Analysis

Model with Hazard Template for Deriving Safety Properties of Home Network System”, International

International Journal of Smart Home

Vol. 9, No. 12, (2015)

Copyright ⓒ 2015 SERSC 243

Journal of Smart Home, vol. 3, no. 2, (2009), pp. 71-88.

[4] L. D. Bousquet, M. Nakamura, B. Yan and H. Igaki, “Using Formal Methods to Increase Confidence in

a Home Network System Implementation: a Case Study”, Innovations in Systems and Software

Engineering (ISSE Journal), vol. 5, no. 3, (2009), pp. 181-196.

[5] B. Yan, H. P. Yao, M. Nakamura and S. Matsumoto, “A proposal for deriving timing constraint context

on using multiple sensor web servers in Service-Oriented Home Network”, International Journal of

Smart Home, vol. 9, no. 8, (2015).

[6] B. N. Schilit, N. Adams and R. Want, “Context-Aware Computing Applications”, Proceedings of the 1st

IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), (1994); Washington, DC,

USA.

[7] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of context and context-awareness”,

Proceesing of the 1st International Symposium on Handheld and Ubiquitous Computing (HUC), (1999);

Karlsruhe, Germany.

[8] H. Sakamoto, H. Igaki and M. Nakamura, “A Sensor Service Framework for Context-aware

Applications”, Technical Report of the Institute of Electronics, Information and Communication

Engineers, vol. 108, no. 458, (2009), pp. 381-386.

[9] T. Erl, “Service-Oriented Architecture: Concepts, Technology and Design”, Prentice Hall, (2008).

[10] H. Sakamoto, H. Igaki and M. Nakamura, “SMuP:A Service-oriented Platform for Sensor Service

Mashups”, Winter workshop in Kurasiki, vol. 2010, no. 3, (2010), pp. 73-74.

[11] A. Tanaka, M. Nakamura, H. Igaki and K. I. Matsumoto, “Adapting Conventional Home Appliances to

Home Network Systems Using Web Services”, Technical Report of the Institute of Electronics,

Information and Communication Engineers, vol. 105, no. 628, (2006), pp. 67-72.

[12] M. Fukuda, H. Seto, H. Sakamoto, H. Igaki and M. Nakamura, “A Looking Back Service for Power

Consumption Logs in Home Network System”, Technical Report of the Institute of Electronics,

Information and Communication Engineers, vol. 109, no. 272, (2009), pp. 29-34.

[13] M. Nakamura, H. Igaki, H. Tamada and K. I. Matsumoto, “Implementing Integrated Services of

Networked Home Appliances Using Service-oriented Architecture”, the Journal of Information

Processing Society of Japan, vol. 46, no. 2, (2015), pp. 314-326.

[14] Phidgets Inc. Unique and Easy to Use USB Interface, http://www.phidgets.com/.

[15] S. Matsuo, H. Seto, H. Sakamoto, H. Igaki and M. Nakamura, “Sensor search with spatial information

and support by showing similar parameter for building sensor context”, Technical Report of the Institute

of Electronics, Information and Communication Engineers, vol. 109, no. 327, (2009), pp. 59-64.

Authors

Ben Yan, he received the B.E. degree in Henan University of

Science and Technology, China, in 1999, M.E. degree in Department

of Information Science Okayama University of Science, Japan, in

2006, and Ph.D. degree in the Graduate School of Information

Science at Nara Institute of Science and Technology, Japan, in 2008.

From 2009 to 2014, he worked for Panasonic Group, SANYO

Information Technology Solutions Co., Ltd, Osaka, Japan. He is

currently a professor in the Department of Computer and Information

Engineering at Luoyang Institute of Science and Technology (LIT).

His main research interests include the service-oriented architecture,

the V&V of home network systems, and requirements engineering for

safety critical systems.

HuaPing Yao, she received the B.E. degree in Henan

University of Science and Technology, China, in 1999, M.E.

degree in Department of Information Science Okayama

University of Science, Japan, in 2006. From 2006 to 2014, he

worked for CSI and Trend Creates Co., Ltd, Osaka, Japan. She is

currently a lecturer in the Department of Computer and

Information Engineering at Luoyang Institute of Science and

Technology (LIT). Her main research interests include the e-

learning, software engineering and home network system.

International Journal of Smart Home

Vol. 9, No. 12, (2015)

244 Copyright ⓒ 2015 SERSC

Masahide Nakamura, he received the B.E., M.E., and Ph.D.

degrees in Information and Computer Sciences from Osaka

University, Japan, in 1994, 1996, 1999, respectively. From 1999

to 2000, he has been a post-doctoral fellow in SITE at University

of Ottawa, Canada. He joined Cyber media Center at Osaka

University from 2000 to 2002. From 2002 to 2007, he worked for

the Graduate School of Information Science at Nara Institute of

Science and Technology, Japan. He is currently an associate

professor in the Graduate School of System Informatics at Kobe

University. His research interests include the service /cloud

computing, smart home, smart city, and life log. He is a member

of the IEEE, IEICE and IPSJ.

Shinsuke Matsumoto, he received the B.E. degree in

computer science from Kyoto Sangyo University in 2006. He

received M.E. and Ph.D. degrees in information science from

Nara Institute of Science and Technology in 2008 and 2010,

respectively. He is currently an assistant professor in the

Graduate School of System Informatics at Kobe University. His

research interests include software engineering, mining software

repository and cloud computing.

