
International Journal of Smart Home

Vol. 9, No. 10, (2015), pp. 179-188

http://dx.doi.org/10.14257/ijsh.2015.9.10.20

ISSN: 1975-4094 IJSH

Copyright ⓒ 2015 SERSC

A Novel Task Communication and Scheduling Algorithm for NoC-

based MPSoC

1
Weihua Zhang,

1
Gengxin Sun and

2
Sheng Bin

1
 International College of Qingdao University, Qingdao, China

2
Software Technical College of Qingdao University, Qingdao, China

zhangweihua@qdu.edu.cn

Abstract

With the high performance demand, recent embedded systems are mostly based on

NoC (Network-on-Chip) architectures, which would bring complex on-chip

communication and scheduling problems. In this paper, a novel task scheduling algorithm

which statically schedules both communication transactions and computation tasks onto

heterogeneous NoC architectures under real-time constraints is presented. Our algorithm

is capable of assigning tasks onto different processing elements (PE) automatically and

scheduling their execution. We map tasks onto an 8× 8 NoC-based MPSoC to show that

our scheduling algorithm leads to reduction in the total execution time, energy

consumption. Experimental results show that for a multimedia application, more than

40% energy savings have been observed compared to the schedules generated by a

standard scheduler.

Keywords: NoC, MPSoC, heterogeneous architectures, task scheduling algorithm,

energy consumption

1. Introduction

The multiprocessor System-on-Chip (MPSoC) is a system-on-a-chip which uses

multiple processors (multi-core), usually targeted for embedded applications. It is used by

platforms that contain multiple, usually heterogeneous processing elements (PEs). The

first appearance of MPSoC has been since the early 1990s, with the development of

technics, the number of PEs inside a chip is increasing day after day, which led to the

complexity of interconnection topologies and communication infrastructure between PEs.

The communication infrastructure can be bus-based, point-to-point or Network-on-Chip

(NoC)-based. Thereinto, the NoC is the most advantageous communication infrastructure

as it has several advantages over others.

NoC is a communication subsystem on a chip, NoC technology applies networking

theory and methods to on-chip communication and brings notable improvements over

conventional bus and crossbar interconnections. NoC improves the scalability of MPSoC,

and the power efficiency of complex MPSoC compared to other designs.

Although NoC can borrow concepts and techniques from the well-established domain

of computer networking, it is impractical to blindly reuse features of computer networks

and symmetric multiprocessors. In particular, NoC switches should be small, energy-

efficient, and fast. The routing algorithms should be implemented by simple logic, and the

number of data buffers should be minimal. Network topology and properties may be

application-specific.

NoC is physically constituted of network adapters, routing nodes, and links allowing to

connect the routing nodes [1-2]. The fundamentals NoC components are shown as Fig. 1.

International Journal of Smart Home

Vol. 9, No. 10, (2015)

180 Copyright ⓒ 2015 SERSC

Figure 1. The Fundamentals NoC Components

Network adapter is the implementation of the interface connecting routing node to

network, whose role is interfacing cores and network in a standardized way. A network

adapter contains two sub blocs: core interface and network interface. Routers constitute

the most important element in the NoC architecture. They allow the implementation of the

routing strategy and the flow control algorithm.

Topology of NoC means interconnections between the different nodes, which can be

unidirectional or bidirectional. It can be regular like “Spidergon”, “Mesh”, “Torus” and

“Tree” or irregular. Topology of Noc has a direct impact on its performances [3]. The

“Spidergon” topology is based on an even number of nodes, where each node is

connected, rather than to its two neighbors by unidirectional links [4]. “Mesh” is a simple

topology which allows access to all resources. It is characterized by its scalability [5].

“Torus” is proposed to reduce latencies of “Mesh” topology while retaining its simplicity

[6]. The only difference between the two topologies “Mesh” and “Torus” is that for

“Torus”, edge routers of one side are connected to edge routers of the opposite side. Each

router in this topology is connected to 4 neighbor’s routers and to a core through

input/output channels. In the “Tree” topology, the routers are placed on the nodes and the

terminals on the leaves [7]. Each node is defined by its two coordinates (,)n p : n to

indicate the node level, p to indicate its position.

2. Related Work

How to mapping applications’ tasks onto MPSoC platform is the most important

research field of MPSoC. It can be accomplished at either static (design-time) or dynamic

(run-time) mapping techniques. In dynamic approaches, tasks are loaded into the system

at run-time. In heterogeneous MPSoC, task migration is used to improve the

performance by relocating a task from one PE to another PE. Task migration can also

be used to insert a new task into the system at run-time [8].

In view of some optimization criteria, such as reducing energy consumption and

reducing total execution time, tasks are mapped onto the MPSoC platform. Static

mapping techniques [9-11] for NoC-based MPSoC are presented for a long time, but

static mapping techniques are not suitable for configuration change over time and requires

run-time mapping of applications. Run-time mapping techniques are required for adaptive

systems, such as networking and multimedia applications, where the workloads are

dynamic. For dynamic mapping techniques, Chou [12] propose a run-time mapping

strategy that allows homogeneous MPSoC system to better respond to real-time changes.

Mehran [13] present a Dynamic Spiral Mapping heuristic algorithm for 2D mesh

topologies, which try to place the communicating tasks close to each other. Others run-

time mapping techniques for mapping tasks onto heterogeneous MPSoC also have been

developed. Smit [14] present a run-time task assignment algorithm that maps a task

before all other tasks that need the scarce resources for heterogeneous multi-core

architectures. Faruque [15] present a run-time agent based distributed application

International Journal of Smart Home

 Vol. 9, No. 10, (2015)

Copyright ⓒ 2015 SERSC 181

mapping technique for large MPSoC such as 32 × 32 systems. Nollet [16] present the task

migration mechanism which uses task migration points as a point of reference for

migrating a task from one PE to another. For the target MPSoC architecture which

contains software and hardware PEs, Carvalho [17] present heuristic algorithm for run-

time mapping of tasks in NoC-based heterogeneous MPSoC. In this architecture, each PE

can support only one task, and tasks are mapped on the fly, according to the

communication requests in the NoC links.

3. NoC-Based Target MPSoC Architecture

Our MPSoC is composed of 16 processing nodes connected by a 2-D Mesh Network

on Chip as shown in Fig. 2.

Figure 2. Our MPSoC Architecture

Each processing node was capable of supporting more than one either software tasks or

hardware tasks. Software tasks execute in instruction set processors (ISP) and hardware

tasks execute in reconfigurable areas (RA) or in dedicated IP-cores (IP). Among the

available processing nodes, one of them is used as the Master Processor that is

responsible for task mapping and scheduling. For propose of describe better our tasks

scheduling algorithm, the abstract view of the NoC architecture can be shown in Figure 3.

Figure 3. Abstract view of the NoC architecture

The PEs in the tiles of the NoC are heterogeneous. Because of the different

performance, it would take different computation time and energy to execute the same

task on different tiles.

For performance evaluation purposes, any task running on an embedded system can be

described as a Communication Task Graph (CTG). The example can be seen right part of

Figure 3. Given a CTG and a target MPSoC architecture, one important problem is how to

schedule the tasks onto the target architecture. It is always called as the “scheduling

problem” for NoC architectures.

International Journal of Smart Home

Vol. 9, No. 10, (2015)

182 Copyright ⓒ 2015 SERSC

4. Task Communication and Scheduling Algorithm for NoC-based

MPSoC Architecture

The task scheduling problem is a traditional topic, but almost all previous work focuses

on maximizing the performance. The algorithms developed this way are not suitable for

embedded applications, because in which a common objective is to minimize the energy

consumption of systems. Moreover, most previous work neglects the inter-processors

communication during the scheduling process, in fact considering communication effects

is critical for NoC architectures. In this paper, a novel algorithm, whose primary objective

of scheduling is minimizing the energy consumption for NoC architecture, is proposed.

4.1. Energy Modeling for NoC Architecture

In energy model for NoC, the bit energy (bitE) metric is defined as the energy

consumed when one bit of data is transferred through the router. For NoC with buffers

implemented by registers bitE should be calculated as follows:

bit bitbit S LE E E  (1)

Where
bitSE and

bitLE represent respectively the energy consumed on the switch and

on the link between tiles.

By using Eq. (1), the average energy consumption for sending one bit of data from tile

it to tile jt can be analytically calculated as follows:

,
(1)i j

bit bit

t t

bit hops S hops LE n E n E     (2)

Where hopsn is the number of routers the bit passes on its way from it to tile jt .

For 2D mesh networks with minimal routing, Eq. (2) is determined by the Manhattan

distance between it and jt .In this paper, the energy model described in Eq. (1) is chosen

as it provides an efficient approximation for the NoC architectures under consideration

with reasonable accuracy.

4.2. Formulation Definition of Scheduling Algorithm

Given the CTG of an application and a target NoC architecture, a feasible schedule

such that the application energy consumption is minimized under performance constraints

need to be proposed.

For scheduling algorithm, each task it should firstly determine that which PE in the

NoC should it be scheduled to, and the time slot when the task will be executed on the PE.

Then, the time slot for all the communication transactions in the application should be

determined. For example in Figure 3, if 2t and 3t are both assigned to the same PE

location (2,3), our algorithm should determine which one should be executed first, if tasks

1t , 3t and 4t are assigned to PEs respectively at locations (3,1), (2,2) and (2,3), then our

algorithm need to determine the execution order of communication transaction 1,3c and

1,4c on the link from PE (3,1) to PE (3,2).

To formulate better our algorithm, following terms are defined:

International Journal of Smart Home

 Vol. 9, No. 10, (2015)

Copyright ⓒ 2015 SERSC 183

Definition 1: A Communication Task Graph (CTG) (,)G T C is a directed acyclic

graph, where each node represents a computational module of the application referred to

as a task it T .

Each directed arc ,i jc C represents the communication dependency between it and

jt .The direction from
it to jt indicates that the task jt cannot start before

it is finished.

Each ,i jc associated with a nonzero value ,()i jv c , which stands for the communication

bits from ic to jc .It denotes that jt can start only after it has finished and transferred

,()i jv c bits of date to task jt .

Definition 2: An Architecture Characterization Graph (ACG) (,)G P R is a directed

graph, where each node ip P represents one PE in the architecture, and each directed

arc ,i jr R represents the route from ip to jp . Each ,i jr associated with it metric

,()i je r stands for the average energy consumption of sending one bit of data from

ip to jp .

Definition 3: Communication transaction 1, 1i jc is said to be compatible with another

communication transaction 2, 2i jc if and only if their execution times do not overlap or

their routing paths.

Definition 4: Task it is said to be compatible with task jt if and only if their

execution times do not overlap or they are assigned onto different PEs.

Through above definitions, our scheduling algorithm for heterogeneous NoC

architectures under some constraints can be formulated as follows:

,

(), ()min{ ()},() ()
i j

i j
i

t t

c
t

i
Energy e ri jti

v ce  




   
(3)

Eq. (2) represents that given a CTG and an ACG, a mapping function () from tasks

(T) to PEs (P) with a start time for each task and communication transactions.

Since finding optimal schedule for a multi-processor system that consumes the

minimum energy is a NP-hard problem, a heuristic algorithm which is capable of finding

satisfactory solutions with reasonable short computation time would be proposed in the

following.

4.3. Energy-Aware Task Scheduling Algorithm

Our energy-aware scheduling algorithm is based on slack-budgeting which allocates

more slack to those tasks whose mapping onto PEs has a larger impact on energy

consumption; our proposed algorithm can be divided into the following three steps during

scheduling:

Step 1. Budget slack allocation for each task

International Journal of Smart Home

Vol. 9, No. 10, (2015)

184 Copyright ⓒ 2015 SERSC

In this step, firstly for each task ti, there are three metrics need to be calculated:
ieVAR

and
ir

VAR are individually the variance of the energy consumption and the execution

time of it on different PEs.
it

M is the mean execution time of task it on different PEs.

Task
it is assigned a weight

i i it e tW VAR VAR  by the calculated
ieVAR and

ir
VAR ,

the higher this weight, the higher the priority the task should have in selecting the PE. We

can calculate the slack for different paths, and then allocate the slack to different tasks

based on their respective weights by
it

M of different tasks. With these weights, the

budgeted deadline (BD) of each task is calculated.

Step 2. Task scheduling

Firstly, generating the Ready Tasks List (RTL), that is, the tasks whose precedent tasks

have already been scheduled. Let (,)F i k be the earliest finish time of task it if it is

assigned to PE kp .For each combination of task it RTL and PE kp P , calculate its

(,)F i k as:

(,) (,) i

kF i k DRT i k r  (4)

where
i

kr is the execution time of task it on PE kp . DRT represents the data ready

time, which is defined as the latest arrival time of all the receiving communication

transactions of the corresponding task.

For each task it in the RTL, calculate its metric ()minF i :

()min min{ (,)}F i F i k k  (5)

If there are tasks which satisfy ()minF i iBD , then the task which has the largest value

of ()minF i iBD is selected and assign it to the PE that corresponds to ()minF i .On the

other hand, if all the tasks in the RTL satisfies ()minF i iBD , then the following way to

select the next task to be scheduled would be used.

First, for each it in the RTL, a list iL is generated which contains a list of PEs. Each

PE kp in that list must satisfy the condition ()minF i iBD . Thus, this list gives all the

PEs that if task it is scheduled onto any of the tiles, its deadline could be satisfied. Next,

for each task it , let 1

iE to be the minimum energy consumption if it is scheduled onto a

tile in the list iL . And 2

iE is the second minimum energy consumption, a metric

2 1

i i i

E E E   is calculated for each task. Finally, the task in the RTL which has the

largest E and the task is assigned to the PE which leads to 1

iE energy consumption is

selected.

Step 3. Revise procedure

Since the optimization objective for our scheduling algorithm is the energy

consumption minimization, there may be occasional deadline misses if just relying on

aforementioned two steps. So a revise procedure which can be used to fix the missed

deadlines is presented. The revise procedure has two main components: local task

swapping (LTS) and global task migration (GTM). The relationship between LTS and

GTM is shown in Figure 4.

International Journal of Smart Home

 Vol. 9, No. 10, (2015)

Copyright ⓒ 2015 SERSC 185

Figure 4. Flow of revise procedure

In the LTS mode, the procedure would pick up each critical task and swap its order of

execution with other non-critical tasks assigned to the same PE. It will let the critical

tasks execute earlier than non-critical tasks so that the deadline misses can be reduced. If

one PE is so heavily loaded that no matter how one change the execution order of the

tasks on that PE, the deadline misses can not be fixed by LTS. In this case, GTM is used

to identify a critical task and migrate it to other PEs. To reduce its impact on increase of

energy, the destinations PEs are tried in the increasing order of the execution and

communication energy. If the migration of the task reduces deadline misses, it would be

accepted. Otherwise, the next task would be selected.

5. Experiment and Analysis

For evaluating effectiveness of our algorithm, several experiments on random task sets

and a set of generic multimedia systems are implemented.

5.1. Random Benchmarks Experiment Results

Two categories of random benchmarks were generated using TGFF [18]. Each

category contains 10 randomly generated benchmarks and there are around 500 tasks with

about 1000 communication transactions in each benchmark.

Both of the two categories of benchmarks are to be scheduled onto a 8×8

heterogeneous NoC. For evaluating robustness of our algorithm, various parameters are

used in TGFF to generate benchmarks with different topologies and task/communication

distributions. To evaluate our algorithm, we implemented a standard Earliest Deadline

First (EDF) scheduler and compared with two versions of our algorithm EAS and EAS-

base (with or without revise procedure) in terms of energy figures and deadline misses.

The comparison of energy consumption of the scheduling algorithms generated for two

categories benchmarks is shown respectively in Figure 5 and Figure 6.

Figure 1. Comparison by Using Category I Benchmarks

International Journal of Smart Home

Vol. 9, No. 10, (2015)

186 Copyright ⓒ 2015 SERSC

Figure 2. Comparison Using Category II Benchmarks

As shown in Figure 5 and Figure 6, the energy generated by EDF consume, on average,

55% and 39% more energy compared to those generated by our algorithms, for category I

and category II of benchmarks respectively.

5.2. Multimedia System Experiment Results

For evaluating our algorithm for real-world applications, a set of generic Multimedia

System Benchmarks (MSB) is applied. The experimental system which we consider

consists of an MP3/H263 audio/video (A/V) encoder pair. For seeing the trade-off

between the energy savings and the performance constraints, the following experiment on

the integrated MSB application is performed. Starting with a given encoding rate and

decoding rate, we slowly increase encoding rate and decoding rate and then observe its

impact on the energy savings, which are shown in Figure 7.

Figure 3. Performance and Energy Tradeoff

From Figure 7, we can note that as the performance requirements become more

stringent, the schedule generated by EAS consumes more energy consumption as the

scheduler has less flexibility in assigning and ordering the execution of

tasks/communication.

6. Conclusion

In this paper, an efficient energy-aware scheduling algorithm which statically

schedules tasks onto heterogeneous NoC architectures is proposed. Although our

International Journal of Smart Home

 Vol. 9, No. 10, (2015)

Copyright ⓒ 2015 SERSC 187

experiments have been evaluated on the architectures interconnected by 2D mesh

networks, our algorithm can be adapted to other regular architectures with different

network topologies. We have investigated different scenarios depending on

performance metrics and they show that improvement in the energy savings

compared to the traditional scheduler.

References

[1] T. Bjerregaard, “A Survey of Research and Practices of Network on-Chip”, ACM Computing Surveys,

vol. 3, no. 38, (2006).

[2] N. Concer, “Equalized, a Novel Routing Algorithm For The Spidergon Network On Chip. Proceedings

of Design”, Automation and Test in Europe Conference and Exhibition, ACM, (2009).

[3] F. Karim, “An interconnect architecture for networking systems on chips”, Micro IEEE, vol. 5, no. 22,

(2002).

[4] M. Moadeli, “An Analytical Performance Model for the Spidergon NoC”, Proceedings of 21st

International Conference on Advanced Networking and Applications, (2007).

[5] F. Karim, M. Root and C. Mesh, “Interconnection Architectures for Network-on-Chip Systems”, World

Academy of Science, Engineering and Technology, vol. 54, (2009).

[6] M. Aghatabar, “An Empirical Investigation of Mesh and Torus NoC Topologies under Different

Routing Algorithms and Traffic Models”, Proceedings of the 10th Digital System Design Architectures,

Methods and Tools Conference, (2007).

[7] P. Pande, “Design of a switch for network on chip applications”, Proceedings of the 2003 IEEE

International Symposium on Circuits and Systems, (2003).

[8] H. Kalte and M. Porrmann, “Context saving and restoring for multitasking in reconfigurable systems”,

Proceedings of FPL, (2005).

[9] V. Nollet, “Run-time management of a mpsoc containing fpga fabric tiles”, IEEE Trans. VLSI Syst. vol.

1, no. 16, (2008).

[10] C. Marcon, “Time and energy efficient mapping of embedded applications onto nocs”, Proceedings of

ASP-DAC, (2005).

[11] M. Ruggiero, “A fast and accurate technique for mapping parallel applications on stream-oriented

mpsoc platforms with communication awareness”, Int. J. Parallel Progr. vol. 1, no. 36, (2008).

[12] C. L. Chou and R. Marculescu, “User-aware dynamic task allocation in networks-onchip”, Proceedings

of DATE, (2008).

[13] A. Mehran, “A heuristic dynamic spiral mapping algorithm for network on chip”, IEICE Electron. Exp.

vol. 5, no. 13, (2008).

[14] G. J. Smit, “Multi-core architectures and streaming applications”, Proceedings of International

Workshop on System Level Interconnect Prediction. (2008).

[15] M. A. Faruque, “Adam, run-time agent-based distributed application mapping for on-chip

communication”, Proceedings of the DAC, (2008).

[16] V. Nollet, “Centralized run-time resource management in a network-onchip containing reconfigurable

hardware tiles”, Proceedings of the DATE. (2005).

[17] E. Carvalho and F. Moraes, “Congestion-aware task mapping in heterogeneous mpsocs”, Proceedings of

International Symposium on SoC. (2008).

[18] R. P. Dick, D. L. Rhodes and W. Wolf, “TGFF, task graphs for free”, Proceedings of International

Workshop on Hardware/Software Codesign, (1998).

Authors

 Weihua Zhang, is currently an Associate Professor in the

School of Computer Science and Engineering at Qingdao University.

His main research interests include complex networks, web

information retrieval and data mining.

International Journal of Smart Home

Vol. 9, No. 10, (2015)

188 Copyright ⓒ 2015 SERSC

Gengxin Sun, received his Ph.D. degree in Computer Science

from Qingdao University, China in 2013. He is currently an

Associate Professor in the School of Computer Science and

Engineering at Qingdao University. His main research interests

include embedded system, operating system, complex networks,

web information retrieval and data mining.

Sheng Bin, received her Ph.D. degree in Computer Science from

Shandong University of Science and Technology, China in 2009.

She is currently a lecturer in the School of Software Technology at

Qingdao University, China. Her main research interests include

embedded system, operating system, complex networks, cloud

computing and data mining.

