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Abstract 

With the high performance demand, recent embedded systems are mostly based on 

NoC (Network-on-Chip) architectures, which would bring complex on-chip 

communication and scheduling problems. In this paper, a novel task scheduling algorithm 

which statically schedules both communication transactions and computation tasks onto 

heterogeneous NoC architectures under real-time constraints is presented. Our algorithm 

is capable of assigning tasks onto different processing elements (PE) automatically and 

scheduling their execution. We map tasks onto an 8×  8 NoC-based MPSoC to show that 

our scheduling algorithm leads to reduction in the total execution time, energy 

consumption. Experimental results show that for a multimedia application, more than 

40% energy savings have been observed compared to the schedules generated by a 

standard scheduler. 
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1. Introduction 

The multiprocessor System-on-Chip (MPSoC) is a system-on-a-chip which uses 

multiple processors (multi-core), usually targeted for embedded applications. It is used by 

platforms that contain multiple, usually heterogeneous processing elements (PEs). The 

first appearance of MPSoC has been since the early 1990s, with the development of 

technics, the number of PEs inside a chip is increasing day after day, which led to the 

complexity of interconnection topologies and communication infrastructure between PEs. 

The communication infrastructure can be bus-based, point-to-point or Network-on-Chip 

(NoC)-based. Thereinto, the NoC is the most advantageous communication infrastructure 

as it has several advantages over others. 

NoC is a communication subsystem on a chip, NoC technology applies networking 

theory and methods to on-chip communication and brings notable improvements over 

conventional bus and crossbar interconnections. NoC improves the scalability of MPSoC, 

and the power efficiency of complex MPSoC compared to other designs. 

Although NoC can borrow concepts and techniques from the well-established domain 

of computer networking, it is impractical to blindly reuse features of computer networks 

and symmetric multiprocessors. In particular, NoC switches should be small, energy-

efficient, and fast. The routing algorithms should be implemented by simple logic, and the 

number of data buffers should be minimal. Network topology and properties may be 

application-specific. 

NoC is physically constituted of network adapters, routing nodes, and links allowing to 

connect the routing nodes [1-2]. The fundamentals NoC components are shown as Fig. 1. 
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Figure 1. The Fundamentals NoC Components 

Network adapter is the implementation of the interface connecting routing node to 

network, whose role is interfacing cores and network in a standardized way. A network 

adapter contains two sub blocs: core interface and network interface. Routers constitute 

the most important element in the NoC architecture. They allow the implementation of the 

routing strategy and the flow control algorithm. 

Topology of NoC means interconnections between the different nodes, which can be 

unidirectional or bidirectional. It can be regular like “Spidergon”, “Mesh”, “Torus” and 

“Tree” or irregular. Topology of Noc has a direct impact on its performances [3]. The 

“Spidergon” topology is based on an even number of nodes, where each node is 

connected, rather than to its two neighbors by unidirectional links [4]. “Mesh” is a simple 

topology which allows access to all resources. It is characterized by its scalability [5]. 

“Torus” is proposed to reduce latencies of “Mesh” topology while retaining its simplicity 

[6]. The only difference between the two topologies “Mesh” and “Torus” is that for 

“Torus”, edge routers of one side are connected to edge routers of the opposite side. Each 

router in this topology is connected to 4 neighbor’s routers and to a core through 

input/output channels. In the “Tree” topology, the routers are placed on the nodes and the 

terminals on the leaves [7]. Each node is defined by its two coordinates ( , )n p : n  to 

indicate the node level, p  to indicate its position. 

 

2. Related Work 

How to mapping applications’ tasks onto MPSoC platform is the most important 

research field of MPSoC. It can be accomplished at either static (design-time) or dynamic 

(run-time) mapping techniques. In dynamic approaches, tasks are loaded into the system 

at run-time. In heterogeneous MPSoC, task migration is used to improve the 

performance by relocating a task from one PE to another PE. Task migration can also 

be used to insert a new task into the system at run-time [8]. 

In view of some optimization criteria, such as reducing energy consumption and 

reducing total execution time, tasks are mapped onto the MPSoC platform. Static 

mapping techniques [9-11] for NoC-based MPSoC are presented for a long time, but 

static mapping techniques are not suitable for configuration change over time and requires 

run-time mapping of applications. Run-time mapping techniques are required for adaptive 

systems, such as networking and multimedia applications, where the workloads are 

dynamic. For dynamic mapping techniques, Chou [12] propose a run-time mapping 

strategy that allows homogeneous MPSoC system to better respond to real-time changes. 

Mehran [13] present a Dynamic Spiral Mapping heuristic algorithm for 2D mesh 

topologies, which try to place the communicating tasks close to each other. Others run-

time mapping techniques for mapping tasks onto heterogeneous MPSoC also have been 

developed. Smit [14] present a run-time task assignment algorithm that maps a task 

before all other tasks that need the scarce resources for heterogeneous multi-core 

architectures. Faruque [15] present a run-time agent based distributed application 
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mapping technique for large MPSoC such as 32 × 32 systems. Nollet [16] present the task 

migration mechanism which uses task migration points as a point of reference for 

migrating a task from one PE to another. For the target MPSoC architecture which 

contains software and hardware PEs, Carvalho [17] present heuristic algorithm for run-

time mapping of tasks in NoC-based heterogeneous MPSoC. In this architecture, each PE 

can support only one task, and tasks are mapped on the fly, according to the 

communication requests in the NoC links. 

 

3. NoC-Based Target MPSoC Architecture 

Our MPSoC is composed of 16 processing nodes connected by a 2-D Mesh Network 

on Chip as shown in Fig. 2. 

 

Figure 2. Our MPSoC Architecture 

Each processing node was capable of supporting more than one either software tasks or 

hardware tasks. Software tasks execute in instruction set processors (ISP) and hardware 

tasks execute in reconfigurable areas (RA) or in dedicated IP-cores (IP). Among the 

available processing nodes, one of them is used as the Master Processor that is 

responsible for task mapping and scheduling. For propose of describe better our tasks 

scheduling algorithm, the abstract view of the NoC architecture can be shown in Figure 3. 

 

 

Figure 3. Abstract view of the NoC architecture 

The PEs in the tiles of the NoC are heterogeneous. Because of the different 

performance, it would take different computation time and energy to execute the same 

task on different tiles. 

For performance evaluation purposes, any task running on an embedded system can be 

described as a Communication Task Graph (CTG). The example can be seen right part of 

Figure 3. Given a CTG and a target MPSoC architecture, one important problem is how to 

schedule the tasks onto the target architecture. It is always called as the “scheduling 

problem” for NoC architectures. 
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4. Task Communication and Scheduling Algorithm for NoC-based 

MPSoC Architecture 

The task scheduling problem is a traditional topic, but almost all previous work focuses 

on maximizing the performance. The algorithms developed this way are not suitable for 

embedded applications, because in which a common objective is to minimize the energy 

consumption of systems. Moreover, most previous work neglects the inter-processors 

communication during the scheduling process, in fact considering communication effects 

is critical for NoC architectures. In this paper, a novel algorithm, whose primary objective 

of scheduling is minimizing the energy consumption for NoC architecture, is proposed. 

 

4.1. Energy Modeling for NoC Architecture 

In energy model for NoC, the bit energy ( bitE  ) metric is defined as the energy 

consumed when one bit of data is transferred through the router. For NoC with buffers 

implemented by registers bitE  should be calculated as follows: 

bit bitbit S LE E E   (1) 

Where 
bitSE  and 

bitLE  represent respectively the energy consumed on the switch and 

on the link between tiles. 

By using Eq. (1), the average energy consumption for sending one bit of data from tile 

it  to tile jt  can be analytically calculated as follows: 

,
( 1)i j

bit bit

t t

bit hops S hops LE n E n E      (2) 

Where hopsn  is the number of routers the bit passes on its way from it  to tile jt . 

For 2D mesh networks with minimal routing, Eq. (2) is determined by the Manhattan 

distance between it  and jt .In this paper, the energy model described in Eq. (1) is chosen 

as it provides an efficient approximation for the NoC architectures under consideration 

with reasonable accuracy. 

 

4.2. Formulation Definition of Scheduling Algorithm 

Given the CTG of an application and a target NoC architecture, a feasible schedule 

such that the application energy consumption is minimized under performance constraints 

need to be proposed. 

For scheduling algorithm, each task it  should firstly determine that which PE in the 

NoC should it be scheduled to, and the time slot when the task will be executed on the PE. 

Then, the time slot for all the communication transactions in the application should be 

determined. For example in Figure 3, if 2t  and 3t  are both assigned to the same PE 

location (2,3), our algorithm should determine which one should be executed first, if tasks 

1t , 3t  and 4t  are assigned to PEs respectively at locations (3,1), (2,2) and (2,3), then our 

algorithm need to determine the execution order of communication transaction 1,3c  and 

1,4c  on the link from PE (3,1) to PE (3,2). 

To formulate better our algorithm, following terms are defined: 
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Definition 1: A Communication Task Graph (CTG) ( , )G T C  is a directed acyclic 

graph, where each node represents a computational module of the application referred to 

as a task it T . 

Each directed arc ,i jc C  represents the communication dependency between it  and 

jt .The direction from 
it  to jt  indicates that the task jt  cannot start before 

it  is finished. 

Each ,i jc  associated with a nonzero value ,( )i jv c , which stands for the communication 

bits from ic  to jc .It denotes that jt can start only after it has finished and transferred 

,( )i jv c  bits of date to task jt . 

Definition 2: An Architecture Characterization Graph (ACG) ( , )G P R  is a directed 

graph, where each node ip P  represents one PE in the architecture, and each directed 

arc ,i jr R  represents the route from ip  to jp . Each ,i jr  associated with it metric 

,( )i je r  stands for the average energy consumption of sending one bit of data from 

ip  to jp . 

Definition 3: Communication transaction 1, 1i jc  is said to be compatible with another 

communication transaction 2, 2i jc  if and only if their execution times do not overlap or 

their routing paths. 

Definition 4: Task it  is said to be compatible with task jt  if and only if their 

execution times do not overlap or they are assigned onto different PEs. 

Through above definitions, our scheduling algorithm for heterogeneous NoC 

architectures under some constraints can be formulated as follows: 

,

( ), ( )min{ ( )},( ) ( )
i j

i j
i

t t

c
t

i
Energy e ri jti

v ce  




     
(3) 

Eq. (2) represents that given a CTG and an ACG, a mapping function ( )  from tasks 

(T ) to PEs ( P ) with a start time for each task and communication transactions. 

Since finding optimal schedule for a multi-processor system that consumes the 

minimum energy is a NP-hard problem, a heuristic algorithm which is capable of finding 

satisfactory solutions with reasonable short computation time would be proposed in the 

following. 

 

4.3. Energy-Aware Task Scheduling Algorithm 

Our energy-aware scheduling algorithm is based on slack-budgeting which allocates 

more slack to those tasks whose mapping onto PEs has a larger impact on energy 

consumption; our proposed algorithm can be divided into the following three steps during 

scheduling: 

Step 1. Budget slack allocation for each task 
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In this step, firstly for each task ti, there are three metrics need to be calculated: 
ieVAR  

and 
ir

VAR  are individually the variance of the energy consumption and the execution 

time of it  on different PEs. 
it

M  is the mean execution time of task it  on different PEs. 

Task 
it  is assigned a weight 

i i it e tW VAR VAR   by the calculated 
ieVAR  and 

ir
VAR , 

the higher this weight, the higher the priority the task should have in selecting the PE. We 

can calculate the slack for different paths, and then allocate the slack to different tasks 

based on their respective weights by 
it

M  of different tasks. With these weights, the 

budgeted deadline (BD) of each task is calculated. 

Step 2. Task scheduling 

Firstly, generating the Ready Tasks List (RTL), that is, the tasks whose precedent tasks 

have already been scheduled. Let ( , )F i k  be the earliest finish time of task it  if it is 

assigned to PE kp .For each combination of task it RTL  and PE kp P , calculate its 

( , )F i k  as: 

( , ) ( , ) i

kF i k DRT i k r   (4) 

where 
i

kr  is the execution time of task it  on PE kp . DRT  represents the data ready 

time, which is defined as the latest arrival time of all the receiving communication 

transactions of the corresponding task. 

For each task it  in the RTL, calculate its metric ( )minF i : 

( )min min{ ( , )}F i F i k k   (5) 

If there are tasks which satisfy ( )minF i iBD , then the task which has the largest value 

of ( )minF i iBD is selected and assign it to the PE that corresponds to ( )minF i .On the 

other hand, if all the tasks in the RTL satisfies ( )minF i iBD , then the following way to 

select the next task to be scheduled would be used. 

First, for each it  in the RTL, a list iL  is generated which contains a list of PEs. Each 

PE kp  in that list must satisfy the condition ( )minF i iBD . Thus, this list gives all the 

PEs that if task it  is scheduled onto any of the tiles, its deadline could be satisfied. Next, 

for each task it , let 1

iE  to be the minimum energy consumption if it is scheduled onto a 

tile in the list iL . And 2

iE  is the second minimum energy consumption, a metric 

2 1

i i i

E E E    is calculated for each task. Finally, the task in the RTL which has the 

largest E  and the task is assigned to the PE which leads to 1

iE  energy consumption is 

selected. 

Step 3. Revise procedure 

Since the optimization objective for our scheduling algorithm is the energy 

consumption minimization, there may be occasional deadline misses if just relying on 

aforementioned two steps. So a revise procedure which can be used to fix the missed 

deadlines is presented. The revise procedure has two main components: local task 

swapping (LTS) and global task migration (GTM). The relationship between LTS and 

GTM is shown in Figure 4. 
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Figure 4. Flow of revise procedure 

In the LTS mode, the procedure would pick up each critical task and swap its order of 

execution with other non-critical tasks assigned to the same PE. It will let the critical 

tasks execute earlier than non-critical tasks so that the deadline misses can be reduced. If 

one PE is so heavily loaded that no matter how one change the execution order of the 

tasks on that PE, the deadline misses can not be fixed by LTS. In this case, GTM is used 

to identify a critical task and migrate it to other PEs. To reduce its impact on increase of 

energy, the destinations PEs are tried in the increasing order of the execution and 

communication energy. If the migration of the task reduces deadline misses, it would be 

accepted. Otherwise, the next task would be selected. 

 

5. Experiment and Analysis 

For evaluating effectiveness of our algorithm, several experiments on random task sets 

and a set of generic multimedia systems are implemented. 

 

5.1. Random Benchmarks Experiment Results 

Two categories of random benchmarks were generated using TGFF [18]. Each 

category contains 10 randomly generated benchmarks and there are around 500 tasks with 

about 1000 communication transactions in each benchmark. 

Both of the two categories of benchmarks are to be scheduled onto a 8×8 

heterogeneous NoC. For evaluating robustness of our algorithm, various parameters are 

used in TGFF to generate benchmarks with different topologies and task/communication 

distributions. To evaluate our algorithm, we implemented a standard Earliest Deadline 

First (EDF) scheduler and compared with two versions of our algorithm EAS and EAS-

base (with or without revise procedure) in terms of energy figures and deadline misses. 

The comparison of energy consumption of the scheduling algorithms generated for two 

categories benchmarks is shown respectively in Figure 5 and Figure 6. 

 

 

Figure 1. Comparison by Using Category I Benchmarks 
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Figure 2. Comparison Using Category II Benchmarks 

As shown in Figure 5 and Figure 6, the energy generated by EDF consume, on average, 

55% and 39% more energy compared to those generated by our algorithms, for category I 

and category II of benchmarks respectively.  

 

5.2. Multimedia System Experiment Results 

For evaluating our algorithm for real-world applications, a set of generic Multimedia 

System Benchmarks (MSB) is applied. The experimental system which we consider 

consists of an MP3/H263 audio/video (A/V) encoder pair. For seeing the trade-off 

between the energy savings and the performance constraints, the following experiment on 

the integrated MSB application is performed. Starting with a given encoding rate and 

decoding rate, we slowly increase encoding rate and decoding rate and then observe its 

impact on the energy savings, which are shown in Figure 7. 

 

 

Figure 3. Performance and Energy Tradeoff 

From Figure 7, we can note that as the performance requirements become more 

stringent, the schedule generated by EAS consumes more energy consumption as the 

scheduler has less flexibility in assigning and ordering the execution of 

tasks/communication. 

 

6. Conclusion 

In this paper, an efficient energy-aware scheduling algorithm which statically 

schedules tasks onto heterogeneous NoC architectures is proposed. Although our 
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experiments have been evaluated on the architectures interconnected by 2D mesh 

networks, our algorithm can be adapted to other regular architectures with different 

network topologies. We have investigated different scenarios depending on 

performance metrics and they show that improvement in the energy savings 

compared to the traditional scheduler. 
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