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Abstract @

*

This paper presents a new Discriminative Random Fiel \Q s) fram . Based on the
DRFs framework proposed by Kumar and Hebert, %Win improyements have been
conducted. Firstly, the interaction potential and the a ed p odel are simplified.
Secondly, we reduce the dimension of the multi-scate” features, weg-tefinedimension of the

single-scale feature, and increase the color featixe of Bui . Thirdly,the quasi-Newton
method with linear search and gradient de@ method a dopted to solve parameters,
whichget a simple model and achieve go rm c@nally, the partition function of the
DRF is eliminatedby using Pseudo-lik %@ rameter learning. The simulation
results show thatthe proposed @ false po rate is lower than the method from
Kumar and Hebert, while the ﬁ: e and (@tlon ratearehigher than their experimental
effects after these improvements

Keywords: Building c@tlon @mage classification; quasi-newton method;

pseudo-likelihood meth *

1. Introductio \Q
Bmldmg ’ in ngtu

vision, patter ogniti

have been applied to

cene is a very active research in some fields such as computer
hine learning, and image processing. Probabilistic methods
lem with varying degrees of success, which are Markov random
fields (MRFs) [1], nal random fields (CRFs) and discriminative random field (DRFs).

MRF builds m@ith the interaction of image elements (pixels or areas),which is used to
process image ant is applied widely [2-4].In 2001, Lafferty et al. proposed a classic
Condition om Field (CRF) model [5], which is the probabilistic models evolved from
the MR ntially, CRF is a MRF model under the conditions of the given observation set.
CRRi forward to improve the Maximum Entropy Markov Model (MEMM) and solve he
I@as problem based on the directed graph model. Under normal circumstances, the CRF
canget better effective than the MRF image processing effects since avoid improperly
modeling brings deviation due to the use of the observation field of global information. CRF
directly on the posterior probability is modeled as a MRF instead of modeling on the prior
probability and likelihood function individually.

CRF was primarily applied to one-dimensional signal processing, such as voice data
processing. In 2003, Kumar and Hebert [6] made CRF apply to two-dimensional signal
processing and created the DRF framework. It is the primary difference between DRF and CRF
that CRF is one-dimensional while DRF is two-dimensional, that creates a loop graph which
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has given rise great difficulties to the parameter learning and reasoning calculation. Association
potential and interaction potential all adopted the local discriminative classifier, which can take
advantage of the interrelated knowledge from special field to make appropriate design, and not
rigidly adhere to a fixed from [7].

This paper will make several improvements in the DRFs framework proposed by Kumar and
Hebert. Which include simplifying the interaction potential and the associated potential model,
changing the features extraction strategies and parameter learning methods. The simulation
results show that the proposed algorithm’s undetected rate and false detection rate are lower
than the method from Kumar and Hebert, and detection effect is also better than their
experimental effects after these improvements.

2. Image Model ¢

The description of an image will follow the notation and work of Kumar and [6].
Images are composed of sites (not necessarily individual pixels), and the cI jeation of an
image consists of determining the correct Iabels of each site in mage denote the
label of the timage site, then x;{—1, 1}, indicatin %& is na r man-made,
respectively. Observed data from an image 5|te ii observed data is
generated from the feature vectors of the image sﬂes@ \(

Before proceeding to the model of an image the f ing defi a CRF is given (taken
directly from [6]). %

Definition of a CRF: Let G=(S, E) be a uch that \ dexed by the vertices of G.
Then (x, y) is said to be a conditional r field i en conditioned on y, the random

variables obey the Markov property raph: p ( |y, xs-) =p( |y, %),

where S—{i} is the set of all node | ept the n is the set of neighbors of the node i
in G, and :represents the set% of the& inset 2.
X

When modeling an image wit RF. set corresponds to the set of image sites,
and the edge set correspo o the ¢ tions between neighboring sites. In Kumar and

Hebert’s DRF model ges they Bse the Hamersley-Clifford theorem [8] and the
assumption that onl secli entlals are non-zero, that is, only immediate neighbors
interact. From thi&btain a tribution over the labels given observations y which
can be writte

(5 [E5 JeN;
With a slight abu@otaﬂon, in the rest of the paper we will call  the association potential
and the interactipn potential. There has only relation with a single variable , the

associates Wi pair of adjacent variables and x; the is the neighborhood of the
variable they are associated with the observed quantity not just. That note that the DRF
|I

%
Pxly) =%E}-'P Z@Q +Z Z I[j'{x[ij'J}’}}{l:]

ca with the rich features. Here we call Z the partition function, which is actually the
S all y’s values. The Z can be defined as,

Z= Zexp[z.nf] {xl_}:]-l—ZZILJ {_r .-,}r}}':z:]

[ES [E5 JEN;
Here Z is a normalizing factor, it plays mainly standardized role so that the p(x| satisfies the
conditions that the sum of the probability is one. That reflects the characteristics of the DRF
modeling the p(x| directly. The x is fixed in the reasoning process, the joint probability
distribution  plx,established by this generative model like the HMM need to enumerate all
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values of x so that it can’t reasoning due to the complex model. Furthermore, and may
contain a variety of useful characteristics, which includes the complex dependencies on
observed data as well as between observation data and the unknown data. It can be seen that for
the DRF can directly make conditional probability model to simplify the reasoning calculation,
at the same time to express complex features. But the normativity for the sum of probability to
be one no longer exists after directly using these complex characteristics, when the y takes over
the various values, the potential function can’t equal to 1, and so the DRF need to be
normalized. However, it brings difficulties to the DRF that the partition function needs to
enumerate all y’s values. This is the cost for the DRF to get some advantages.

2.1. Association Potential

In the DRF framework, the association potential A {x;, is modeled w h\?{
discriminative model that it establishes the relationship of the site with ¢ %ﬁe ized
Linear Models (GLM) are used extensively in statistics to model the class po@ iven the
observations [9]. For eachsite i, let  f;( be a function that ma e,obse n a feature

vector such that : y — .. Using the logistic function as the I| local ¢ sterlor can be

modeled as,
P (xly) = |w:.+u’1"fm|_ o‘( (w0 + @] S? \\>/

Where w = (mﬁ, ware the model paramete»Qo extend logistic model to induce a
nonlinear decision boundary in the feature.s ansfor eature vector at each site i is

defined as,
he) = 1,03 (£:0)), o BRI ®

Where @, |are arbitrary nonlg @ tions. Tﬁ‘@\st element of the transformed vector is

kept as one to accommodate t ame Further, since  x; € {—1,, the probability
in Eq. (3) can be compactly expressed asQ

A (x9) = log(Px; [y log (G(}% (}3"} (5)

Where fi{ is a i-Stale fea% which is actmg on the three scales. Each scale
c (e=12,is cor ing to togram site .. To get a measure of interaction between
sites and thei urs, m e features were extracted from orientation histograms of
block sizes 132 @1 64 xt, about the center of each image site. Due to the
information on the thre ées, f:(has drawn two characteristics: intra-scale features and
inter-scale features.

2.2. Interaction Pgténtial

The ass potential judge only from local features without global view so that you
easily dr ragmented labels, and some blocks away from the building is improperly
s building. However, the buildings are organic combine complete objects usually,

ideati ilding. , ildi
distribution from the overall, which is defined as,

Is should gather distribution, the interaction potential is a constraint identification
I{xhx}-J}-‘} = JH {f{xix}. + ('l — H}(ZG (xt-xz.f,al’ui}.(}r}} - 1}} (5}

Where is the weight as balance between the association potential s and interaction
potential . Includes two parts, one part is called I sing model, which is independent of the
observed data, penalizes every dissimilar pair of labels by the cost and supports the similar

labels together. And the other part is cr(xt-xz-vfuf}-(y, which is similar to association
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potential, and is discriminant model about a pair of labels. It depends on the observed data and
is used to smooth adjustment of the extreme constraint | sing model.
we  are interested in learning a  pairwise  discriminative model

p(xi- =xi-|1,t;i(y},1,t-}-(}:where iy —i Note that by choosing the function - to be
different from used in Eq.(3), information different from can be used to model the relations
between pairs of sites. By extracting different features,  will obtain different information
with, However, Kumar and Hebert adopted simply the completely equivalent feature of and

1. Actually they spliced together 1, {with 1;{to formlong 21 + vector, the first term is

1 as well as Let }-{wi(}r},w}-(y be a new feature vector such that
u;;:R” X R™ — Rdenoting this feature vector as  u;;{ for simplification. v and u are aII

parameter vectors, thus, ZG(xz-xz- v (ywill map G(xi-xz- vTu;; (v to the rang
i.e. is in the same range of  x; where 0 = K =, which gives the flexibility eI by
allowing the learning algorithm to adjust the relative co butlons %se wo terms

according to the training data.

2.3. Simply Model Q

The experimental results from Kumar and Hebert that the aI value of K is 0.83,
which indicates that between the | sing model i ndent of ghserved data and the other part
dependent on the observed data exists red y. We h eated Kumar’s experiment,
which confirmed that the impact of K on t ctive f jon extremum is minimal. Further,

it notes that Eq.(6) unnecessarily adopt i E\ time. So that, we deleted the Ising
S€ a smo effect regardless of the observed and
th

items, because there is no reason to
deny any discontinuity. Moreove
modeled as,

f{xz,xy}:} = X;%; r,ru

In the same t| cratro ntral is simplified as,
Ay, }-'} = }(8}
So, the D del is

®® P(xly) = % exp sz-wrha () + Z Z x0Ty ¢(9)
iES

iES jEN;

3. Fe xtraction

@ar and Hebert used the multi-scale characteristics of 14 dimensions, and reached up to
119N%dimensions after the quadratic transformation, with the addition of 28 dimensions
characteristics of interaction potential, totally there were characteristics of 147 dimensions. But
the parameters has 151(149 plus 2) dimensions, which caused great difficulties for parameter
learning. Moreover, if it was not optimized, the three scales calculation is equivalent to 21
times of the size of the original block. Based on these considerations, it has been simplified in

this paper, using a single-scale features i.e. 16 16 blocks inter-scale feature. Such

considerations also because that the interaction potential includes the characteristic information
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of the domain blocks, so it was considered redundant that the associated potential contained
multi-scale information.

This paper defines a single scale 10-dimensional feature. The characteristics in the scale of
the former four dimensions are substantially similar to the original paper [6]. In addition, it also
contains the strongest gradient orientation, density, shape consistency, color monotonicity, the
primary colors, and secondary colors. First, the paper cuts the value of the partial derivative
matrix obtained, that is, the absolute values of the partial derivative both in the x-direction and
y-direction are smaller than a certain threshold value are truncated to 0, therefore leaving only
the strong gradient portion, which forms a sparse matrix. Denseness refers to the gradient
non-zero number of pixels after processed within the range of four neighbor fields, then making
average value within the block is the denseness, and its variance is the shape consistency So
the continuous lines have large dense values and the scattered multi-point gap is smaller; the
simple lines will have smaller shape consistency value while the values of messy
bigger. The original paper did not use the color feature, but in fact the color, els very
important for the recognition. This paper statistics the color histogram, the o@ otonicity

refers to the number of the histogram sites whose value { 0 divid number of
straight square column which is greater than the averag rit e two primary
colors which is used to the interaction potential. 9\{
Original features = (Gradient mean, gradlent ’e rig Wc aracter, verticality,
0

main gradient orientation, denseness, shape consistency color m nicity, primary colors,
secondary colors )T

In the original paper[6], the associated” p@lal featukes s equwalent to the interaction

potential features f. The f is defined s, —(Gmﬁ%&nean, gradient variance, right angel
character, verticality, densenﬁ@! consi%:y, color monotonicity)T is defined as,

=(Gradient mean, gradle riance, r@lentdlrectlon denseness, shape consistency,

color monoton|C|ty colo econdary colors)T. If do not perform a non-linear

transformation t@ [ -T) T, the last-dimensional feature of u
is not simply r subtrz@n gut take the smallest color difference, min {| primary cal

primary cl, ry caolisecondary c|, | secondary caleprimary c|

colcsecondary c |}. So the u has 8 dimensions instead of 9 dimensions.

nally has 8dimensions too. When performing a nonlinear transformation, h and u
aneously doing quadratic transformation, but in the original paper [6], u didn’t do the
no ear transformation as the dimension of h was high enough. In this paper, h and u are
made non-linear transformation to get a total of only 90 dimensions.
At last, we normalized each dimensional feature extracted, by the formula,
pr = T 1)
f o max{f™} - min{f"]
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Where the i is the i-dimensional feature, the m is the number of image; normalization is
made in an image. Normalization is helpful to parameter learning and the parameters learned
are also comparable, that is proven in the analysis of experimental results.

4. Parameter Learning

This paper conducts supervised learning through m artificial identified images by
pseudo-likelihood, but the objective function is the logarithmic likelihood,

M
Liw,v) = szg a xtf"”wrhi(ym}+zx?‘x}mtﬂfui}-(}rm} (11)

m=1ieS j=N *

The parameter to be solved by,

%Jv} % w v} (12)
This article solves parameters by a quasi-Newton m \ ine search and

gradient descent algorithm. Parameter partial derivat
J"’I

G(’—%&[ﬁ'm})xf‘hi (y™)(13)

c1iES

 EI5aGncrri
=1ieX jEN

The form of the above part‘PAwau %Ier than the original paper, and the second
derivative is less than zero the exc the mixed second derivative), the experiments
results shows that all Io ima of jective function are global maxima.

5. Eliminate P \}n Fu

Since u5| ihood to carry the parameter learning, we can completely
eliminate the tlon fu In this case by the logistic function. Finally, the modeling may

be defined as,

1
@ P{xz'|x,".l'[.l }:I- = s E—ql:/xb.x\ > = G(Q{:x“x,'-,-l.l}}) (15}

g(x,, x,.,-[,}-‘} =x;w h(v)+ Z x5 X0 Uy 5, (16)

O JjEN
@luse the value of q{xl,xnl,; may not be in the range of  [0,, that does not comply with
the probability definition. So it may be mapped to the legitimate range with the logistic
function, this avoids the problems of partition function. Now, we will prove that the model
without partition function is equivalent to it with the partition function.
The process of demonstration is as,
If Q(xz} = A(xi.l}?} + E_J'E;"."[ f'[xbx}-,_' then
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P'(x,

X g ¥ E} = ZEEXP{Q{XJ}
B exp{Q(x )}
B exp{Q(xf}i} + exp{Q(—x )}

T1+ explQ(—x;) + Qlx )}
And

Q—x) — Q(x) = 24 x'Th(y) + foj{;"ﬁrruij(}’} )
JEN

if there is {ﬁ = g then the two is equivalent. That’s over.

‘\/’
6. Experiments and Discussion 0
6.1. Input Image and Feature Calculation \s ¢
The training and the test set all contained 81 image e@y size pixels, all from
the Corel image database. Each image was divided i rla B%L% 6pixels blocks, and
we call each such block an image site. The ground truth=was gen%%@ y hand-labeling every
site in each image as a structured or non-struc block, T, hole training set contained

31,104 blocks from the non-structured class rom the red class respectively. The
experimental procedure is as follows, firs t trainmyimage and label data, after reading

the labeled graph, they were converte resen N -building and1 presents building,
that is consistent with the above. Se@, calcula%\ original features based on the above
context’s methods, we selected 1 of ghe dient histogram and selected 10 colors from
color histogram. Thirdly, calcﬁbﬁ;’ the valu@and u. Fourthly, if you wanted to make the
non-linear conversion you Id make ratic mapping. Fifthly, inference and sampling by
Gibbs. Finally, calculatig ect rate, positive and detection rate. The above process

took about 1.5 second age averagely, while the process took more than a dozen seconds
with faithful to th@
6.2. Experin@(

featﬁ@tr tion methods.

esults @

6.2.1. Feature Extracti Glts: Feature Extraction has a great effect on detection results, so
we developed a vi ion experiment platform to observe meticulously of the feature
extraction proce;&shown in Figure 1, the current process is the ninth and the fifteenth
blocks of the first picture, the white box deviation to right of central in the upper two pictures
indicates thﬁkuent block, and it is moving along with the experimental image processing
block picture shows the original image, the upper left image is grayscale picture for
featur action. From left to right in the lower is the gradient histogram, color histogram, the

tensity of the current block and grayscale respectively. The bottom shows some of
the“gdtures extracted, which are respectively the gradient mean, gradient variance, right angle
character, verticality, denseness, shape consistency, color monotonicity from left to right.
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Figure 1. Feature Extraction Experiment Platform

*

Before feature extraction, the partial derivative matrix was processed in the dir Mf X
and y. The absolute values which are less than 40% of the strongest partial derj} t?v%ere all
set to 0, so as to project the intensity gradient and form a sparse partial d i@ gradient)
matrix. The value of 40% is empirical value which set up aceotdiig to ob i0mS. Processing
results is shown in figure 2.By the top two figures (a) a , t is sho at most of the
information is preserved after the cut-off value, and the images ha\m little differences.
But the vast majority of the details are all excluded,

an seew figure (c) and figure
(d). The gradient matrix vast majority is non—ze;o valtie before prgcessing in the figure (c)

which was all white, but after processed, the vas rity bec zero, leaving a clear outline

of the major information. The bottom twa fi (e) and f?Qq (F) are similar to the above,

Gradient direction also becomes zero aft \ ssed T mpare of computing performance

and results is shown in Table 1, which E%pted t% tic nonlinear mapping features and
a

guasi-Newton method. After cut ﬁ% ime of ¢ ting value saved 2/3 and the value of
logarithmic likelihood was 0.5@3 an hef%

00 ®
e 2. Gradient intercept contrast, the left column of the picture shows the
original situation, the right column is the situation after the process of cut-off;
the top pictures of (a) and (b)are grayscale pictures which mapped to the rang
of [0, 255]; pictures (c) and (d)are binary image ,that grayscale gradient nonzero
is 255, otherwise, gray is 0. The bottom pictures of (e) and (f) are gradient
direction graph. The direction of the [0, Tr] corresponding to the gradient
histogram subscript [1, 16], the subscript value representing the direction is
mapped to the rang of [0,255].
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Now, we analysis what the various features played a role. For analysis, we did not make a
non-linear mapping to features. Because of the features carried out normalization processing,
the symbols and the value of the parameters learned could reflect effect of feature. Parameter
results are shown in Table 2 (obtained by the gradient descent method).

Table 1.Gradient Cut-off and Results Contrast

The mean time The value of
(each image) pseudo-likelihood
Notcut-off 5s -2159.47
Cut-off 1.4s -2171.42

Because the reference numerals of the building is a positive number 1 and all the features age
non-negative, so is the positive value, which shows that i play a positive role in dj aN(ant
buildings (the bigger of feature value, the more likely it is the building), o %,‘at the
opposite side (the smaller of the feature values, the more likely it is a buildin@ to make
the logistic function and logarithmic likelihood to be greater, The table at the first
five parameters of are positive (bias constants are no tures), the eter of shape
conformability is negative, this is coincide with'g al desi RF. Only color

monotonic is contrary with the original intention. Wej jht that Ing’s color is single;
instead, the building’s color in the natural scener ttled Bu results from Figure 2
show that the more mottled color of building is %Ilke adb

In addition, the greater of the absolute f the pa ers, the better of degree of

distinction, and the discrimination of gr% ean, gradhient variance, verticality and color

monotonicity are very much, and rig s cha seness and shape consistency are
not meaningful. About v, the grad'eré@n differe d the color difference played a leading
role, especially the difference {fﬁs up ; , that illustrates vis playing a good role on
discriminating the pair of label |ste% is feature was not used in [6].
. 2 Pa\a er Learning Results
N\ Para L v
Q Bias con ’ -0.37446 -1.6367
O Gragiept mean 0.73043 0.96767
adiefit Variance 0.39499 0.1386
t angle 0.16329 0.13081
V ertlcallty 0.48225 -0.26965
h &7 Denseness 0.043644 0.28458
¥ Shape consistency -0.15547 -0.1808

Color monotonicity 0.78158 1.1522
6.2.2. Pa Er Learning Method Contrast: The quasi-Newton method BFGS was
ely superior to other method from Table 3.

harder to close to the optimal value until the later period.

Table 3. Parameter Learning Method contrast

. Gradient

Methods Quasi-Newton Descent
Iteration times 35 51
Linear searchmean times 4 6.5
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Logarithm
Pseudo-likelihood ~2264.6 ~2292.83
Gradient vector norm 8.78 18.1
Time-consuming 456.41s 1006.4s

6.2.3. Detection Results: The standards to measure the results of good or bad are all different,
there is no a standard to fully reflect the problem. There are three amounts to represent the
detection results of structure are as following,
Correct rate (CR), it is correct even if be equal to the label number. Each image’s correct
number is divided by the label total number (16  24), and then count mean of all images.
False positive (FP), it is the probability of which the non-building is mistakenly regarded asa

building.
Detection rate (DR), it is the probability of which the building is correctly iden
building. The number of blocks in the area of the building whose label is correct di Y the

which stated that characteristics defined in this paper have linear jb@Qedrscope without
guadratic nonlinear mapping. In addition, parameter leafn eth do¥not significantly
affect the pros and cons of the test results. P mean is@T n value,of the’formula (14) which
calculated by pseudo-likelihood, to some extent, lects @\ rect rate of learning
parameters on the judgment of the training im The difference between the P mean and

total number of buildings blocks. g Q
As shown in the table 4, the non-linear features did not bringhg)ut subs% rovement,

correct rate might explain shortcomings of th S algorlﬂ‘% hat reasoning algorithm can
be enhanced in the future. The time-consu of Gi alg rithm is about 0.4s per image
equally.

‘@\4 DeE&!t \sults

meter
Feature learning @ FP DR P(Mean)

method

‘x\' Quasi-%n 86.7% | 10.8% | 66.1% 92578
(\\°€ o O

dignt & o 0 o | 92894
Mt 85.3% | 13.1% | 72.5% %

Qsi-Newton 86.0% | 10.5% | 50.9% | "o’

Q%¢> Gradient 93.004

0 0 0
Descent 88.2% | 8.4% | 66.1% %

As shown in tf@gure 4, the detection result of the improved DRF proposed in this paper
compared tb%detectlon results from Kumar’s experiments. The "'real situation”, refers to the
manually@o ated results, are from http://www.cs.cmu.edu/~skumar/, which we painted on
the b e corresponding position on the original image. For this sample image, the

rate (marks on the house) from this paper is better than Kumar and Hebert [6],
ho r the false detection rate (marks on the tree) is too bad. Tim Rees [10] of UBC repeated
the experiment of Kumar and Hebert [6] too, the detection results from this paper was
compared with his results in Figure 5.
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s@ed with Tim Rees [10]
The left is result of Tim R%s&@&dle is the résults of this paper, and the right is a real

| \
Figure 5. Results of the qu

situation. .

7. Conclusion @ 5\\0\

In this paper, wes‘r tan imprm‘% Discriminative Random Fields (DRFs). Based on the

DRFs framework d by al, we do the following modification. We simplified
the interacti al and_the aSsociated potential model, reduced the dimension of the
multi-scale @s, impg l@e color feature of building and adopted the quasi-Newton
method with lifi€ar search abd gradient descent method to solve parameters. The simulation
results show that the d on results are better than Kumar experimental effects. The next step

is to extend the accommodate multiclass classification problems. In the future, we
also should seek Better building features (such as texture features etc.) for image classification.
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