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Abstract 

Federal Kalman filter is often used in multi-sensor wireless localization system. In this 

paper, we estimate the target location in non line of sight (NLOS) propagation. An approach 

based on federal Kalman filter is proposed, which is called smooth-federal Kalman filter. 

Federal Kalman filter uses standard Kalman filter in local filter to processes data in a 

forward recursion. Kalman smoother which processes data in a backward recursion is 

addressed in ordinary federal Kalman filter. Simulation and comparison results show that the 

estimation of the proposed approach performs superior to federal Kalman filter in NLOS 

propagation. 
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1. Introduction 

Wireless localization is achieved by using measurements from target to anchors. In general, 

localization can be obtained by using time of arrival (TOA) measurements [1-2], time 

difference of arrival (TDOA) measurements [3-4], angle of arrival (AOA) measurements [5-6], 

received signal strength (RSS) measurements [7-8], or a combination of above [9]. In this 

paper we consider using TDOA measurements. 

R. E. Kalman first introduced Kalman filter [10] in his paper in 1960. Kalman filter uses 

priori information to obtain prediction information in the first step. And then, Kalman filter 

processes measurement information and prediction information in update step. Kalman 

smoother is a smoother which can reduce divergence and improve the accuracy of a filter. The 

difference between Kalman filter and Kalman smoother is that the recursion in Kalman filter is 

forward but backward in Kalman smoother. Kalman smoother is introduced by Rauch, Tung 

and Striebel in 1965 [11], so it is also named RTS smoother. 

Based on Kalman filter, people utilized information fusion technique to produce centralized 

Kalman filter [12] and decentralized Kalman filter [13]. In 1998, N. A. Carlson [14-15] 

proposed federal Kalman filter on the basis of decentralized Kalman filter. Federal Kalman 

filter applies information allocation technique, besides it consists of a master filter and several 

local filters. It is should be pointed out that our algorithm is based on [16]. 

This paper focuses on the improvement of federal Kalman filter in wireless localization. The 

rest of the paper is organized as follows. Section 2 describes federal Kalman filter architecture. 

In Section 3, we improve the performance of federal Kalman filter by using Kalman smoother. 

Simulation results are presented in Section 4 in order to evaluate the performance of the 

improvement based on federal Kalman filter. Finally, conclusions are drawn in Section 5. 
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2. Federal Kalman Filter Architecture 

Federal Kalman filter is a special kind of decentralized Kalman filter, which is made up of a 

master filter and a couple of local filters. In fact, we adapt standard Kalman filters as local 

filters in the first stage. It’s noteworthy that, by using noise variance upper bound technique, 

each local filter is independent with each other. The structure of local filters is decentralized 

and parallel. Moreover, each local filter is connected with a specific sensor and a reference 

sensor. Time update and measurement update are carried out in all local filters, resulting in 

producing suboptimal estimates. Master filter fuses those suboptimal estimates from local 

filters, thus, global optimal estimation is obtained. More importantly, master filter sends global 

optimal estimate back to each local filter to form an iterative procedure, including information 

allocation technique. Figure 1 shows the architecture of federal Kalman filter. According to the 

strategy of information allocation, federal Kalman filter can be divided into four modes, 

corresponding to four architectures. 
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Figure 1. The Structure of Federal Kalman Filter 

3. Algorithm based on Federal Kalman Filter 

 

3.1. NLOS Alleviation 

NLOS propagation generates from obstacles between target and anchor, which result in 

large scale error in TDOA measurements. Since TDOA measurements are not accuracy, the 

performance of federal Kalman filter in localization would be severely impaired. Then, 

Kalman filter is considered in the first place to reduce NLOS bias through optimal estimation. 

The algorithm of Kalman filter has two steps: In the prediction step, the priori information is 

used to predict the next state of the system.  

                                                 (1) 

                                                    (2) 
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The update step estimates the current state of the system.      

                                   (3) 

                                   (4) 

                                               (5) 

The specific process of Kalman filter can be read in [10]. By using Kalman filter optimal 

TDOA measurements are obtained, which turns out to be more precise than originals. 

 

3.2. Information Allocation 

Subsystem is made up of a reference sensor and some common sensors. Each sensor 

estimates the target location by MMSEE [17] algorithm in different environment. Note that 

target location obtained by reference sensor should be more reliable than other sensors. It 

usually obtains from master filter after initialization. Local filter  processes output from 

reference sensor and output from sensor .  

                                                         (6)

 

Where  denotes the estimate from local filter .  denotes the estimate from 

reference sensor processed by local filter .  denotes the estimate from sensor  

processed by local filter .  

We should give the initial value in the first place. Initial suboptimal covariance  is 

obtained from local filters. Then initial optimal covariance  is obtained by (14).  

After initialization, optimal covariance  is allocated to master filter and all local filters. 

                                              (7) 

 is the local filter information allocation coefficient,  is the master filter information 

allocation coefficient. And N is the sum of local filters.  and  meet the information 

allocation principle: 

                                              (8) 

Allocation coefficient is usually calculated by . It is easy to understand that 

the high accuracy the local filter has, the larger allocation coefficient should be. Besides, 

covariance  shows the estimate accuracy of a local filter. Therefore, we calculate allocation 

coefficient as follows. 

                                                                      (9) 

3.3. Measurement Update 

Measurement update occurs only in local filters.  

                                     (10) 

Where ,  denotes the covariance of local filter ,  denotes 

measurement covariance,  denotes measurement matrix. 
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3.4. Time Update 

Master filter and local filters execute time update independently. 

                                                     (11) 

                                                    (12) 

Where  represents state shift matrix,  represents the estimate of target,  

represents system noise matrix,  represents system control matrix,  represents system 

covariance matrix. 

 

3.5. Global Optimal Fusion 

Suboptimal estimate  and suboptimal covariance  from local filters are sent to master 

filter. Global optimal estimate  and global optimal covariance  are achieved by 

applying information fusion technique. 

                                                    (13) 

                                                            (14) 

3.6. Improvement by Kalman Smoother 

Federal Kalman filter applies Kalman filter processing data forward going from the first 

measurement towards the last one in each local filter. However, we use a Kalman smoother 

which processes data in the opposite direction after a Kalman filter in each local filter. This 

algorithm begins with the forward filtered estimate. The recursion procedure of Kalman 

smoother is given below. 

                                               (15) 

                                                 (16) 

                                                  (17) 

                                    (18) 

                                    (19) 

Where  is the Kalman smoother estimate,  is the Kalman smoother estimate 

covariance,  is the Kalman filter estimate,  is the Kalman filter estimate 

covariance,  is the Kalman smoother gain. Figure 2 shows the new structure of federal 

Kalman filter. 
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Figure 2. The Structure of Smooth-federal Kalman Filter 

4. Simulations 

We conduct our simulations in NLOS propagation. In NLOS propagation, TDOA model 

can be written as 

                                   (20) 

Where  denotes the propagation time from target to anchor ,  denotes noise. 

 denotes the NLOS bias between anchor  and anchor 1. The relationship between 

anchor i and anchor 1 can be written as 

                                 (21) 

Where , ,  denotes the range difference between anchor  and 

anchor 1,  is the true distance between anchor  and target,  denotes signal propagation 

velocity.                                     

We simulate three (N=3) different noises to produce three environments. Then, each 

sensor (including a reference sensor) estimates the target location in an environment, 

respectively. Target is supposed to run by 1.4 m/s in the system where lays four (M=4) 

distributed anchors. Four anchors locate at [18, 85], [90, 90], [30, 25] and [100, 8], 

respectively. All results are averages of 50000 independent runs. The performance of the 

proposed approach is evaluated in terms of standard deviation and mean error.  

In the first stage of simulation we show the NLOS alleviation by using Kalman filter. In 

figure 3, the green dots represent the real range difference between anchor 1 and anchor 2, the 

red dots represent the measured range difference in NLOS propagation, and the blue dots 

represent the measured range difference processed by Kalman filter. It’s obvious that Kalman 

filter has a remarkable effect on NLOS bias. 
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Figure 3. Kalman Filter on Reducing NLOS Bias 

Figure 4 gives the velocity comparison curves of smooth-federal Kalman filter and federal 

Kalman filter, where red dot is the real velocity of target, blue dot is the target velocity 

processed smooth-federal Kalman filter, green dot is the target velocity processed federal 

Kalman filter. Thus smooth-federal Kalman filter has a good velocity estimation than federal 

Kalman filter. 
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Figure 4. Velocity by Smooth-federal Kalman Filter 

Figure 5 shows standard deviation against NLOS bias for both two approaches. The 

standard deviation of the smooth-federal Kalman filter is smaller than federal Kalman filter as 

NLOS bias increases. And the gap between the smooth-federal Kalman filter and federal 

Kalman filter is becoming larger when NLOS bias turns larger. In this case, the proposed 

approach outperforms federal Kalman filter in different NLOS propagation. As a matter of fact, 

standard deviation shows the location stability capability. Thus, we can conclude that the 

localization of the smooth-federal Kalman filter is more stable when NLOS environment is 

more serious. From this view of point, smooth-federal Kalman filter is more stable than federal 

Kalman filter. 
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Figure 5. Standard Deviation against NLOS Bias 

Mean error is used to evaluate the precision of localization. No matter how NLOS bias 

changes, the mean error of smooth-federal Kalman filter is smaller than federal Kalman filter 

in Figure 6, which points to the fact that the location accuracy of smooth-federal Kalman filter 

is better than federal Kalman filter. 
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Figure 6. Mean Error against NLOS Bias 

Table 1 and Table 2 show the standard deviation and mean error of smooth-federal Kalman 

filter and federal Kalman filter when reference sensor uses different target location. We can 

also draw the same conclusion that smooth-federal Kalman filter performs better than federal 

Kalman filter from Table 1 and Table 2. 

Table 1. Standard Deviation Comparison 

NLOS bias(meter) 4 6 8 10 12 14 

smooth-federal 

Kalman(meter) 

0.4341 

 

0.5829 

 

0.7643 

 

0.9498 

 

1.1458 

 

1.3979 

 

federal  

Kalman(meter) 

0.7569 

 

0.9801 

 

1.1685 

 

1.4082 

 

1.7076 

 

2.0013 
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Table 2. Mean Error Comparison 

NLOS 

bias(meter) 

4 6 8 10 12 14 

smooth-federal 

Kalman(meter) 

0.8824 

 

1.2719 

 

1.5936 

 

1.8945 

 

2.2129 

 

2.7802 

 

federal  

Kalman(meter) 

1.8851 

 

2.2396 

 

2.6032 

 

2.9849 

 

3.4484 

 

4.1331 

 

 

5. Conclusion 

In wireless localization, NLOS propagation is a dominant source of location errors. It 

usually exists in indoor environment or urban environment. In this paper, we focus on 

mitigating NLOS propagation by addressing smooth-federal Kalman filter. The simulation 

results have proved that by using smooth-federal Kalman filter a good localization 

performance in NLOS propagation can be achieved. 
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