
International Journal of Smart Home

Vol.8, No.3 (2014), pp.223-234

http://dx.doi.org/10.14257/ijsh.2014.8.3.21

ISSN: 1975-4094 IJSH

Copyright ⓒ 2014 SERSC

Design and Implementation of HTML5 based SVM for Integrating

Runtime of Smart Devices and Web Environments

Yunsik Son
1
, Seman Oh

2
 and Yangsun Lee

3*

1,2
Dept. of Computer Engineering, Dongguk University

26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, KOREA
1,2

{sonbug,smoh}@dongguk.edu
3
Dept. of of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA
3*

Corresponding Author: yslee@skuniv.ac.kr

Abstract

Current mobile environments, smart device platforms and web based platform are

emerged. The smart device platforms are represented by Apple’s iOS and Google's Android,

and web based platform’s core is HTML5. Our previous researches are focused on

integrating the developmental environments of smart devices and producing the same runtime

environment.

The Smart Cross Platform - our research result - guarantees content compatibility on

various smart devices and supports multiple programming languages like C/C++, Java, and

Objective-C which is a solution to increase developmental productivity. The SVM (Smart

Virtual Machine) is the core virtual machine of the smart cross platform. But the Smart Cross

Platform and the SVM is not cover the web environment like HTML5.

In this paper, a technique which allows previous SVM which operates on smart devices to

operate on web environment is introduced. In order to provide SVM in a web environment, an

interpreter includes SIL code that was designed and implemented in JavaScript. Each SIL

code’s semantics are reflected by JavaScript and an HTML5 based API and event model was

combined to construct the overall SVM.

In the whole design and implementation of the SVM which operates in the web based

environment, this paper focuses on the interpreter which is a method to execute the contents.

The implemented interpreter loads the SVM contents, creates a list of commands, analyzes on

a stack base, executes the commands and reflects the results on the internal memory and

status.

Keywords: Smart Cross Platform, SVM, Interpreter, HTML5, Web based Virtual Machine

1. Introduction

The smart cross platform is a virtual machine based solution which allows execution of

same contents on various smart devices. The research team built a smart cross platform in iOS

and Android through previous research and developed a compiler to support contents

composed of C/C++, Java, and Objective-C language [1].

In this paper, a technique is introduced in which the previous research was extended to

allow the smart cross platform built for smart device OS purposes to run in web environment.

Currently, HTML5 which represents web technique is quickly going through standardization

and its influence as an open platform is gradually increasing [2, 3]. Thus, the objective of this

research is to extend HTML5 which is an open platform to be supported by the smart cross

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3 (2014)

224 Copyright ⓒ 2014 SERSC

platform’s SVM and execute the smart cross platform purpose contents effectively in the

HTML5. Especially, in this paper, the execution technique of the SVM (Smart Virtual

Machine) which can be executed on a web base is focused from a design and implementation

perspective.

The composition of this thesis is as follows. First in chapter 2, the smart cross platform and

HTML5 technique in this research are introduced. In chapter 3, the interpreter model is

introduced and explains the design and implementation. In chapter 4, the experiment with the

implemented interpreter are introduced. Lastly in chapter 5, the conclusion of this research

and further research is discussed.

2. Related Researches

2.1. Smart Cross Platform

The smart cross platform’s objective is to effectively execute game and multimedia

contents as a contents execution platform developed by the research team on various OS and

devices. Also it does not depend on specific development language and supports numerous

programming languages.

For this, the smart cross platform executes contents as a virtual machine base using the

SVM. It supports numerous languages using the compiler set. Also, it is a concept of

connecting various languages, compilers and virtual machines. The middle language is

defined as SIL and programs are converted into SIL code which is converted into the

executable file format SEF by the assembler which is executed in the SVM. Figure 1 shows

the smart cross platform’s model [4, 5].

Figure 1. Smart Cross Platform Model

Currently, the smart cross platform can be executed in Windows, iOS and Android. The

programming language and compilers supported are C/C++, Java and Objective-C [6, 7]. In

this research, techniques to extend the execution environment from previous Windows and

smart device purpose OS to web bases are introduced. Through this, previously developed

contents can be executed in web browsers supporting HTML5 without any further

modification.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3. (2014)

Copyright ⓒ 2014 SERSC 225

2.2. HTML5

HTML5 is the next version of HTML which is a World Wide Web core markup language.

The root comes from the web application 1.0 of WHATWG in 2004 as a working detail

operation task [2, 3].

HTML5 as an improved from the previous HTML which shows text and hyperlinks to a

web programming language which can show and implement multimedia and applications.

Also, it autonomously provides audio, video, graphic handling, location information and other

functions. Therefore, no additional plug-in or libraries are required. The script language itself

is enough to implement various functions. Especially, web browsers supporting HTML5

allow same applications to be executed which gives it a characteristic of being hardware and

operating system independent platform. The figure below shows the major features provided

by HTML5.

Figure 2. Components of HTML5

As shown in the Figure 2, the HTML is composed of early WHATWG HTML5 spec W3C

provided functions, Web SQL and HTTP Caching and additional functions provided. HTML5

is an advancement from the previous markup language which is used to create documents to a

language which provides applications [2].

Understanding the structure of HTML5 based applications is important in order to support

SVM for web bases. In HTML5, each application is composed of HTML, CSS3 and

JavaScript. HTML composes the entire frame of the web page using various components and

properties. CSS3 is used to express the web page’s exterior and design components.

JavaScript is used to compose the web pages dynamically as program writing and events

handling methods.

3. Design and Implementation of the SVM Interpreter

The web based SVM (Smart Virtual Machine) interpreter executes the contents through a

stack based operation. In order to do this, the interpreter loads the SEF file and executes the

relevant command. The results are reflected on the memory model and interpreter status. In

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3 (2014)

226 Copyright ⓒ 2014 SERSC

this chapter, the characteristics of the SEF format which is an executable file and information

for the interpreter will be looked into. Also, the interpreter model’s design and

implementation process will be introduced.

3.1. SIL(Smart Intermediate Language) & SEF(Smart Executable Format)

SIL is the virtual machine code for SVM that was designed as a standardized virtual

machine code model for ordinary smart devices and embedded systems [8, 9]. SIL is a

stack based command set which holds independence as a language, hardware and a

platform and defined based on the analysis of existing virtual machine codes such as

bytecod, .NET IL and etc., SIL is composed of a meta-code which carries out particular jobs

such as class creation and an operation code with responds to actual commands. An operation

code has an abstract form which is not subordinated to specific hardware or source languages.

It is defined in mnemonic to heighten readability and applies a consistent name rule to make

debugging in assembly language levels easier. In addition, it has a short form operation code

for optimization. SIL has 6 groups (except optimization group) of operation codes.

SEF is a smart cross platform executable file format. The SEF standard has a large effect

on the implementation of SVM and interpreter. The structure of the SEF composed of the

header domain which expresses the SEF file’s composition, programming segment and debug

domain which expressed debugging information. The content execution code exists in the

program segment which is divided into code and data expression domains. The figure below

shows a simplified SEF structure.

Figure 3. SEF Structure

3.2. Interpreter Model

Main purpose of the interpreter as a core module of SVM is executes instructions in the

given contents, and the position of the interpreter on SVM is shown in following figure.

Interpreter is a component to execute the SIL code actually, and it has subroutines for the

each instruction. The subroutines matched with instructions that are simulate the instruction’s

semantics using loaded meta information on the memory while running the content. On while

the content executing, generated or evaluated data are stored in stack and heap [10-12]. Figure

4 shows a SVM model structure with an interpreter.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3. (2014)

Copyright ⓒ 2014 SERSC 227

Figure 4. SVM Model Structure with an Interpreter

Figure 5 shows execution steps of the interpreter. The interpreter takes the starting address

of the program extracted for the SEF file and saves it in the program counter. The value is

used to execute the calculation code of the corresponding code section. Each calculation code

has an execution function which the function table is mapped to. The calculation code

execution is implemented by the calling of the mapped function.

Figure 5. Interpreter Execution Model

Currently, the SIL (Smart Intermediate Language) calculation code is divided into 198

stack command, calculation command, flow control command, format conversion command,

object command and others. Each function mapped to the calculation code must be

implemented in the inside the interpreter.

During the execution of the calculation code, each function converts the interpreter’s status

and internal memory model to fit the calculation code’s meaning structure. A series of

calculation code execution allows the execution of the contents. The interpreter is executed

until the exit corresponding calculation code appears or reaches the exit address of the code

section. All the steps are implemented in JavaScript to allow execution in HTML5.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3 (2014)

228 Copyright ⓒ 2014 SERSC

3.3. Memory Model of Interpreter

The interpreter’s memory model was designed as a runtime workspace structure which is

independent of hardware and platform. Runtime workspace is mainly composed of three

components; runtime stack, activation record and display vector. The memory model and

relationship between each components are shown in the Figure 6.

Figure 6. Interpreter Memory Configuration

Runtime stack is a memory space for operands used by the interpreter when carrying out

calculations and it also contains information related to function call chain. The information is

composed of reference information of activation record which is a storage space for local

variables and display vector which is used to refer to higher blocks or global variables within

functions.

Next, activation record is a space to store local variables. When a function is called for,

one activation record is assigned and when a function is finished and stack frame is

withdrawn, the activation record is also cleared. Figure 7 shows the configuration of runtime

stack with multiple stack frames, and Figure 8 depicts the configuration of runtime stack with

multiple stack frames, and an object reference Model on the HTML5 base SVM.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3. (2014)

Copyright ⓒ 2014 SERSC 229

Figure 7. Structure of Runtime Stack with Multiple Stack Frame

Figure 8. Object Reference Model on the HTML5 base SVM

Lastly, the display vector is information used to maintain stack chain between data domain

for each stack frame. It is used to refer whole variable and local variable information.

Other than runtime workspace, a technique for referring specific memory when executing

contents must be provided. Especially, the previous SVM interpreter was implemented in

C/C++ while the web based interpreter was implemented in JavaScript. Therefore, the

approach method to the memory provided by referring to the C/C++ can’t be used. The figure

8 below shows the JavaScript based memory approach method implemented for this purpose.

Array reference information and index information are expressed in object form, and

using the arithmetic operation for C/C++’s pointer was created.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3 (2014)

230 Copyright ⓒ 2014 SERSC

4. Experiments

In this paper, an interpreter for a web based SVM was designed and implemented. In this

chapter, an experiment was carried out to test if the implemented interpreter was suitable as

the executable technique on the web based smart cross platform. The experimental game

content was composed in C language and was implemented as an event operating method.

Next, the results from executing the same contents on previous iOS SVM [4, 5] and using

the interpreter implemented in this research to execute in the web browser are compared.

Figure 9 shows the results of the same contents executed on the web browser.

Figure 9. Execution Results for “Aiolos” Game on iOS SVM and HTML5 SVM
(Google Chrome)

a) Internet Explorer b) Firefox

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3. (2014)

Copyright ⓒ 2014 SERSC 231

c) iOS SVM

Figure 10. Execution Results for “GazaGaza” Game on HTML5 SVM & iOS SVM

Figure 11. Execution Results for “Joro” Game on HTML5 SVM (Google Chrome
& iPad2)

Figure 10 is screenshots for puzzle game content “GazaGaza”. The screenshots show

equivalent execution results of implemented SVM in 2 kind of different web browsers. Figure

10 c) is the execution results on the iOS SVM developed in previous research, and a) and b)

are the running results on the HTML5 SVM. Through the figures, it can be seen that

implemented SVM in this paper can execute the same content and generating equivalent

results.

Lastly, the following Figure 11 shows the execution results on web browser provided by

iOS and Android. Implemented HTML5 base SVM can be executed on the browsers with

given experimental content “Joro”. Upper figures are result of execution on Samsung Galaxy

Tab 10.1, and bottoms are running result on iPad2.

Along with the results of executing the same contents, the performance of the web

base interpreter is also an important index of evaluation. The table below provides data

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3 (2014)

232 Copyright ⓒ 2014 SERSC

to analyze the performance of the implemented interpreter. Each content have an

average performance of 20fps.

5. Conclusions

The smart cross platform is a solution which allows contents developed in various

languages such as C/C++, Java, Objective-C and etc. to be executed on various OS and

devices. In this thesis, the smart cross platform was extended to allow execution on web

base by designing and implementing an interpreter.

With this, the smart cross platform can be used to execute developed contents on web

browsers supporting Windows, iOS, Android and HTML5 and the results from the

experiment were used to verify. Therefore, an environment where all OS with HTML5

based web browsers installed which can execute same contents can be provided

In the future, optimization of an execution engine with JavaScript characteristics

applied which will operate more efficiently than the web based interpreter . Also the

native interface techniques to use HTML5 internal libraries within the contents will be

researched.

Acknowledgements

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and future

Planning(No.2013R1A2A2A01067205).

References

[1] Y. S. Son and Y. S. Lee, “A Study on the Smart Virtual Machine for Smart Devices”, Information: An

International Interdisciplinary Journal, vol. 16, no. 1465, (2013).

[2] HTML Standard, http://www.whatwg.org/.

[3] Open Web Resource Site, http://www.html5rocks.com/.

[4] S. M. Han, Y. S. Son and Y.S. Lee, “Design and Implementation of the Smart Virtual Machine for Smart

Cross Platform”, Journal of Korea Multimedia Society, vol. 16, no. 190, (2013).

[5] Y. S. Son, J. H. Kim and Y. S. Lee, “Design and Implementation of the Smart Virtual Machine on iOS

Platform for the Mobile Game Portability”, International Journal of Smart Home, vol. 8, no. 23, (2014).

[6] Apple, iOS Reference Library, iOS Technology Overview, http://developer.apple.com/devcenter/ios.

[7] Goole, Android-An Open Handset Alliance Project, http://code.google.com/intl/ko/android/.

[8] Y. S. Son and Y. S. Lee, “A Study on the Smart Virtual Machine for Executing Virtual Machine Codes on

Smart Platforms”, International Journal of Smart Home, vol. 6, no. 93, (2012).

[9] S. L. Yun, D. G. Nam, S. M. Oh and J. S. Kim, “Virtual Machine Code for Embedded Systems,”

International Conference on CIMCA, Osaka, Japan, (2004).

[10] Y. S. Lee, “The Virtual Machine Technology for Embedded Systems”, Journal of the Korea Multimedia

Society, vol. 6, (2002), pp. 36-44.

[11] Y. S. Son and Y. S. Lee, “Design and Implementation of the Virtual Machine for Smart Devices”, Proc. of the

2011 Fall Conference, Korea Multimedia Society, (2011).

[12] J. E. Smith, “Virtual Machines”, Morgan Kaufmann, (2005).

[13] Y. S. Son and Y. S. Lee, “An Objective-C Compiler to Generate Platform-Independent Codes in Smart Device

Environments”, Information: An International Interdisciplinary Journal, vol. 16, no. 1459, (2013).

[14] M. Berndl, B. Vitale, M. Zaleski and A. Brown, “Context Threading: A Flexible and Efficient Dispatch

Technique for Virtual Machine Interpreters”, International Symposium on Code Generation and Optimization,

(2005).

[15] Y. S. Son and Y. S. Lee, “The Contents Execution Technique for the Web-based Smart Virtual Machine”,

Workshop on Multimedia, (2014).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

http://www.whatwg.org/
http://www.html5rocks.com/
http://code.google.com/intl/ko/android/

International Journal of Smart Home

Vol.8, No.3. (2014)

Copyright ⓒ 2014 SERSC 233

Authors

Yunsik Son, He received the B.S. degree from the Dept. of

Computer Science, Dongguk University, Seoul, Korea, in 2004, and

M.S. and Ph.D. degrees from the Dept. of Computer Engineering,

Dongguk University, Seoul, Korea in 2006 and 2009, respectively.

Currently, he is a Researcher of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas

include smart system solutions, secure software, programming

languages, compiler construction, and mobile/embedded systems.

Seman Oh, He received the B.S. degree from the Seoul National

University, Seoul, Korea, in 1977, and M.S. and Ph.D. degrees from the

Dept. of Computer Science, Korea Advanced Institute of Science and

Technology, Seoul, Korea in 1979 and 1985, respectively. He was a

Dean of the Dept. of Computer Science and Engineering, Graduate

School, Dongguk University from 1993-1999, a Director of SIGPL in

Korea Institute of Information Scientists and Engineers from 2001-2003,

a Director of SIGGAME in Korea Information Processing Society from

2004-2005. Currently, he is a Professor of the Dept. of Computer Science

and Engineering, Dongguk University, Seoul, Korea. His research areas

include smart system solutions, programming languages, and embedded

systems.

YangSun Lee, He received the B.S. degree from the Dept. of

Computer Science, Dongguk University, Seoul, Korea, in 1985, and

M.S. and Ph.D. degrees from Dept. of Computer Engineering,

Dongguk University, Seoul, Korea in 1987 and 2003, respectively.

He was a Manager of the Computer Center, Seokyeong University

from 1996-2000, a Director of Korea Multimedia Society from

2004-2014, a Vice President of Korea Multimedia Society from

2005-2006, 2009. Also, he was a Director of Korea Information

Processing Society from 2006-2013 and a President of a Society for

the Study of Game at Korea Information Processing Society from

2006-2010. And, he was a Director of Smart Developer Association

from 2011-2014. Currently, he is a Professor of Dept. of Computer

Engineering, Seokyeong University, Seoul, Korea. His research

areas include smart mobile system solutions, programming

languages, and embedded systems.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.3 (2014)

234 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

