International Journal of Smart Home
Vol.8, No.3 (2014), pp.151-162
http://dx.doi.org/10.14257/ijsh.2014.8.3.14

Multi-armed Bandit Online Learning Based on POMDP in Cognitive
Radio

Juan Zhang', Hesong-Jiang" ,Hong Jiang * Chunmei Chen*

'the Open Fund of Robot Technology Used for Special Environment Key Laboratory
of Sichuan Province , School of Information Engineering, Southwest University of
Science and Technology, Mianyang, China

!zhangjuan@swust.edu.cn, 2 jianghesong@swust.edu.cn, * jianghong@swu ,

chenchunmei@swust.edu.cn @

Abstract \* ‘ @

In cognitive radio, most of existing research efforfs=dewoted to pec sharing have two
weakness as follows. First, they are largely formula a Mar\ ision process (MDP),
which requires a complete knowledge of chanql &Cond, mostef the studies are online

learning based on perceived channel. To sol e abov blems, a new algorithm is
proposed in this paper: if the authorized iSts in the ¢ nt channel, Second user will
send conservatively in low rate, or send swel sending conservatively, the state
of the channel is not directly observ ns out to be Partially Observable
Markov Decision Process ( e flrst es ish the optimal threshold when the
channel is known, then consujg;& timal t%’mssmn when the channel is unknown and
model for multi-armed bandit get I K-conservative policy through the UCB
algorithm and improve th vergenc\$eg etd by UCB-TUNED algorithm. Simulation and
analysis results show t@ the sage result of K-conservative policy no matter the multi-

armed bandit onlln& ng und fully known channel or the optimal threshold policy
under known cha% the sa we improve the convergence speed by UCB-TUNED
algorithm.

Keywords: spectru @mg, multi-armed bandit, online learning, Partially Observable
Markov Decision Pr @.
1. Introduc io&
rs, the wireless device (smart mobile phone and tablet computer) popularity
increase in demand for more bandwidth, and spectrum resources become fewer
al available for distribution, which caused the spectrum resources nervous, but on the
o@and, utilization rate of wireless spectrum is very low. According to [1], the spectrum
utilization rate of more than 90% allocated is serious shortage. Dynamic spectrum access
technology solves a lot of contradictions between the spectrum utilization and spectrum
scarcity. The most promising realization in dynamic spectrum is the cognitive radio (CR).
Spectrum sharing is the key technology of the effective use of idle frequency band to improve
the spectrum utilization in cognitive radio system.

At present, domestic and foreign researchers have proposed a variety of spectrum sharing
model, [2, 3] researched the heuristic algorithm based on graph coloring and biology. [4, 5]
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proposed respectively based on the auction mechanism of economics and game theory. [6] put
forward spectrum sharing model of cross layer optimization. These models allow
unauthorized users share the authorized users of the band without causing harmful
interference to licensed users, but not to analyze the configuration parameters of the channel
model in the process of transmission. [7] considered GE attenuation to minimize the
transmission channel capacity and delay and modeled as partially observable markov decision
process (POMDP) by single threshold strategy for the analysis of various parameters. [8]
considered the non-Bayesian perception problems with unknown parameters, and achieved
approximate logarithmic regret value through online learning, but did not consider the
optimal transmission of different channel condition.

According to the above problem, this paper proposes online learning scheme of the optimal
transmission based on unknown Gilbert-Elliott channel: modeling network channel @s@n
POMDP and K arm bandit algorithm can be converted to k conservative strategv nd

UCB-Tuned algorithm are adopted to realize and optimize. 0
2. The System Model %’

Assumptions in the authorized user network, each h@ ithy 0 states, namely
binary Gilbert - Elliott markov chain: as shown i@ 1, S, indicates that the
current channel is free; if S=0, indicates that the c t state | . A0 is the transition

probability from busy to idle state , (1 - A1) @ state ‘tra%'ion probability from idle to

busy. O

2.1. POMDP Mddel GQ

In POMDP, una I@ed users (SU) make use of the existing part of the information,
history action arﬁediately return values to make decisions. As shown in Figure 2 for
POMDP model [18], b is a belief state and a probability distribution of all status in set S. SU's
probability\E-(s) in state s, and Xses b(s)=1.0 .All possible belief state constitutes the
belief s r presentation of B(s) ={b: X _ g b(s) =1.0,Vs,b(s) > 0} .According to [9],
belj fée Is a sufficient statistic of the optimal operation strategy for A*.

% odel is described as:1) the state estimator (SE) : P X AXB(S)—B(S), where P is
the“ednfidence probability, namely the state estimator (SE) is responsible for update the
current belief b according to the last action, belief state and the current observation.
2)the strategy wn:B(S)— A, namely using the strategy = to choose the action a in the
current belief state b,and the return of R (B, a)which is expressed

asr(b,s)=>_._.b(s)r(s,a).

seS
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Figure 2. POMDP Model

2.2. Channel Modeling based on POMDP

The assumption that the current channel is Gilbert-Elliott channel which has Iue
Markov chain state: when the S=1, the current channel is in the idle, na q channel
condition is good, in which the data can be transmitted successfully in hig ile S=0,
it indicates that the current channel is busy, namely SU c state IS@ nly in which
yl

SU can transmit successfully the data at a lower rate . Tra(& abilit ressed as:

o [Py, PM'I |'1—/1 Aq |
LP P, 1—/1 A,

where a=A;-Ag,assuming that the channel is §y relatec@l a>0.

At the beginning of each time slot, S to m% actlon selection:

(1)Send Conservatively (SC): SU tr t data at eed. In this action, no matter what is
the state of the current channel, data traasmission could be achieved, and returns R1.
Therefore, SU cannot learn th neI state’i I\ action.

(2) Sending aggressively (| SU trafgmits data at high speed. If the channel condition is
good, SU high-speed, dﬁ@smlsm ccessful, and gets the return R2, and R2>R1,; if
oor 5&/
ty

the channel conditi d data transmission will cause greatly the error rate
and packet loss r get the alue C. Therefore, in the action of SU can obtain the

next state thr nm
When se conser @& state of the channel cannot be directly observed, so the
problem is modeled as DP model. The POMDP model is the conditional probability of

the good channel st ich is given in all the case of historical observation and action and
expressed as b t = 1 | Ht], where Ht is all historical actions and observations
information befor&ghe first t slot. When sending aggressively, SU can learn the channel state.
Therefore, he channel state is good, the belief is A1; the belief is A0 when the channel
state is p pected return is expressed as:

O R A=sC
@ RCb, A) = 4( ' ‘ )
(bR, ~ (1-b)C A =SA

where by is the belief in good state and Ay is the action at time t.
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3. The known Channel State of the Optimal Transmission Threshold
Strategy

The most typical MAB question is: a gambling machine has the K arms, from which the
gambler chooses to operate an arm to get reward, which is from the relevant distribution of
the arm, and gambling does not know the reward expectations size of each distribution arm.
In a specific period of time, gambling can only operate one arm; gamblers find the greatest
reward of the arm as soon as possible, and gambling.

3.1. K Conservative Strategy Structure Modeling

In this section, we will discuss the K-conservative policy, where K is the number of time
slots to send conservatively after a failure, before sending aggressively again is as Shown in

Figure 3. ?\

Figure 3. K Conserva@Qllcy Ma@/ Chain

last failure. There are K+ 2 states i arko State 0 corresponds to the moment

that sending aggressively fails aRdW\t §oes ba ndlng conservatively stage. State K-1
corresponds to that the trans as alread conservatlvely for K time slots, and it will

The states are the number of time SIE \fch tz |tter has sent conservatively since

send aggressively next t|m If the r sends aggressively and succeeds, it goes to
state SA and continues aggres at the next time slot; otherwise it goes back to
state 0. The probabili abtransmittel stays in state SA is A 1. The transmitter has to wait K

time slots before sgndli aggres@y gain, so the probabilities from state i to state i+1 is
always 1 whe @\

There is ates, €g te corresponds to a belief and an action; belief and action
determine the “€xpected (total-discounted reward. Thus given K, there are K+2 different
expected total- dISCOU ards

3.2. The Challerf@the K Conservative Strategy

In this se&&, we will discuss how to find the optimal policy if the underlying channel’s
transition bilities are unknown. To find the optimal K, we use the idea of mapping each
K- ongervative policy to a countable multi-armed bandit of countable time horizon. Now
& two challenges: (1).The number of arms can be infinite. (2). To get the true total
disce ted reward, each arm requires to be continuing played until time goes to infinity. To
address these two challenges, we weaken our objective to find a suboptimal which is an(OPT-
¢-5) approximation of the optimal arm instead. Theorem 1 and theorem 2 address the two
challenges respectively.

Theorem 1: Given an € and bound B on a, there exists v K= Kmax, the best arm in the
arm set C={0,1,...,K,SC} is an (OPT-¢) arm.
Proof: If K>Kopt, the optimal arm is already included in the arm sets.
If Kopt = oo,Let arm SC correspond to the always sending conservatively policy.
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If K<Kopt<ee suppose that transmitter has already sent conservatively for n time slots,

7T 7T
v KPP by v K (p)
[ Kopt Kopt 1T K 1
1-p Kopt 1-5 K K
:l —_——————— |_
LRl - + B Vo T (p))J |LR1 - + BNV AT (p) |
R Kopt
K 1 _ ,Kopt—K Kopt oK K
- B a- g )+ B Vo T (P) =BV, (T7 (pP)

when T(p)>p, V(T(p))=Vsa(T(p));

*
when T(p)<p, V(T(p)) = RJ/(1-B); ?\V
Vsa(T(p)) > Ri/(1-B); 0

T T o N
v OPt(py_v k(p)<ﬁK[vSA(TK pt(p))—vs >>1\/@

|

K oP K O \/
AN (P)-TH (PR, +C + AV (1)~ ) \

p—xo C'=R2+CHB(V(LL)- V(kO)) Q .

Kopt ¢
v K°"‘(p) "k (py<pK pé\QK\@2+C+ﬁ(V(ﬂ)V(l D))
1
a<B,T"(4,) =T(T""(4,)) —@:7‘5 ?»o/(ls&)\\
\ )

7 b opt

v KoPt oy v ik(py< ¥ @T (agne’ X +tlcr_
@ot RS

when K = log | \Q P “v K(p)<e

C'

Theorem Zm=G e a 8 th&ists vV T= Tmax,an arm for the finite horizon total
discounted @m up to is at most & away from the infinite horizon total discounted
reward.

Proof ®
N

3 T 1T 1
E _ |m t o | t B |
Y B R ,AMDb =p|-E X P RCbAIIb =P =E | y pRCb AIIb =D
ﬁh:o %.t 0 | lt: tt 0 | 7z (o1 1 t't 0
O L J L max J
T

1 [T ]

|max |

~E,| X ,BR(b A Ibg = b

t=0 ] [ t=0 ]

/1

when _ _ log 2G-A)
B R,
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[ o

:
E | = ﬂR(b ,AD|b_ =p|-E s B'RCb ,AD|b. = p
|_t—0 t 0 _ t t (0]

3.3. UCB Algorithm

UCB (Upper Confidence Bound) algorithm is a class of algorithms to solve the MAB
collectively, based on currently available information, and tries to strike a balance between
the exploitation and exploration with an adjustment of the value.

Generally speaking, the arm will be chosen according to the largest UCB value, which is be
based on the average income of each arm of the current value (i.e., its performance to date),
plus an additional parameter, which will be relatively reduced with increasing the number of
each arm selected. UCB is expressed by the formula: \/

where x is the i arm average earnings so fa? s the uu of times which the i arm is
tested, N is the total number of all arms cur ng testeh et formula (3) of the value of

x -2t
1

the largest arm will be selected the next the past performance of the arm,
namely the exploitation; after the |t jUSt ters namely exploration.
e ment is better allocation strategy. The

UCB-TUNED formula is as f

@z (_ @J 2logn (5)
\Q‘
Pt
O{ - g

2 —
| ((17ﬁ)Ai+c\2 logn (1 @)
|7| |+ m|n{—,V_(n_))}
| 4 '
)

While the UCB-TUNED comgar h UCB

C

1
n.

L R, +C J n, i

)
Vi -1 =ty )

4. Simulati n&ts\ults

This s@n compares the two methods of optimal transmission: one is offline algorithm of
the op ransmission threshold strategy put forward [11], and the other is online learning
i of K arm machine.

T TN

4.1. The off-line Algorithm for Optimal Transmission Threshold Strategy

According to [11], the simulation environment of the single threshold is established as
follows:
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Parameter settings:

Table 1 shows the configuration parameters used in simulation of threshold structure of the
optimal policy. We assume that the channel is positive correlation, which means A1>A0. The
value of A1 is shown in Table 1.

Table 1. Parameters Setting of the Optimal Threshold Strategy

Type Value Type Value
10 0.01:0.05:0.9 C 0.5
! 20(1):0.05:0.99 B 0.75
R1 1 n 1:100008, o

R2 2 Kopt 0,1,2,?F

Algorithm steps:
Step 1: Initialization parameters R1,R2,C, B A oA 1, ap%;
Step 2: Definition of Karray, the purpose is to store @ apd K hich meet the
conditions.
Step 3: for ii=1:length(A 0) O \\/
for jj=1:length(\ 1)
when n=1:10000,Calcu (A o) ’\6
when n=1:10000,Calt nV(A
when Tk-1(A0)< p O%(XO)E. lation Kopt;
end for {% s<\\
end for
A@ . \%

Simulation analysis:

According to the abov@gorithm s’@get Figure 4 and Table 2.

. E\Q *ﬂ T | | ‘K t(006‘086)
—#%Kopt(0.06,0.86)==

Kopt(0.16,0.96)=3 |

' Kopt(0.26,0.86)=2

= == = =

=1
=0
=4

—Kopt(0.16,0.91
=t

@; - - Kopt(0.36,0.91
45 N ~y —+ Kopt(0.61,0.66

V(p)
o~
V“f :

/;;"
— / —
Q ) 3

25/ [ [ [ [ [ [ [ [ [
0 2 4 6 8 K 10 12 14 16 18 20

Figure 4. The Expected Discount Total Return of the Threshold Optimal
Strategy
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Table 2. The Optimal Strategy of the Threshold Structure

A0 Al p Kopt
0.01 0.06 0.6000 )
0.16 0.91 0.4553
0.16 0.96 0.4597
0.26 0.86 0.5060
0.36 0.91 0.5446
0.61 0.66 0.6023

O INW| >~

Figure 4 and Table 2 can get the following conclusion:

L 4

® when A 0=0.01, A 1=0.06, n—> o , T"(2,)—> 4, , so always keer,
namerKOpt S oo 0

® when\ 0=0.61,\ 1=0.66, says the channel condhi&'s’good@always sends

aggressively, Kopt =0;
® when A 0=0.16, A 1=0.91, K = @ndlng leely after sending

conservatively 4 slots, and the total dISC eward c in the maximum.
® The corresponding optimal K step c f ine obtal under different channel state
through single threshold.

4.2. Online Learning Algorlth &rm Gam&u Machine in the Unknown Channel
State

The learning algorithm onllne mblmg machine is proposed. The specific
simulation enwronment |s sho ble 1.

Parameter settin Q
Consideri onverg the algorithm, so the total running time slot is set to
T*inter=10°.
Table 3. Param ttlngs of Online Learning Algorithm of K Arm Gambling
Machine
T%‘ Value Type Value
107 The total number of the 30
. tested arm: armnu
S r of each arm 100 the slot number of each zeros(la)rmno,
ru at least: TMAX arm: NI
he boundary value of a:B 0.8 inter inter=100,
€ 0.02 d 0.02

Algorithm steps:
Step 1: Initialization parameters A0. A1, T, TMAX,armnu,ts,NI;
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Step 1:The algorithm is online learning method based on the unknown channel state of
POMDP model, so each arm gets a reward or punishment in the generation of action
according to the observed state

Step 1: Initialize each arm of the UCB value;

Step 1: for kk=1: inter do

for ts=1:T-TMAX

Select the maximum UCB value or UCB-TUNED value as the optimal arm, and run the

current optimal armby |, @-4)A +c  [2in(n) and
R, +C n,

(1 . ((lfﬁ)ﬁ_\i.y+c N ((17ﬂ)K+C\2 logn i 1
ucCB — Tuned :|—27‘:1 |7| |+ mln{—.vl(ni))}
n, R, + C J € R, + C J n, 4 .
end for \/
end for ?“
Simulation Analysis: * 0

According to the above algorithm steps draw diagrams 5-8;
As shown in Figure 5 for the UCB algorithm, thej orfmance o

and A,=0.91 channel state. The arm 1 is the optimal ec dition, and arm 1 is
selected to tend to 1 with increasing operating time e using her arm is selected to
tend to 1the rate tends to 0. The same method obtame er A0 and Al corresponding

optimal arm. .

1 T T T Allllt T T W@Y—Yﬁ@ﬁﬁ_‘_‘_ﬁ_‘_ﬂ—'—ﬁ_‘_ﬁ
—Kopt(0.36,0.91)=otfer AT

 Kopt(0.36,0.91 ‘\6 et |

o
©
T

2
N
{5//

o
N
I

; l 10 100 Time 10 10 10
O igure 5. The Optimal Arm in the Same Channel State

shows the convergence of the corresponding optimal arm to get different Ay and Ay
ch state, seen from the diagram, as time increases, the optimal arm was selected to run
longer than gradually tends to 1.
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l N T T T T T T 3 T T
——Kopt(0.36,0.91)=1
08| Kopt(0.26,0.86)=2
| |~ Kopt(0.16,0.86)=3 o
T
. ~F+ Kopt(0.16,0.91)=4 7
2 0.6 A =i
€ ! 2
& S
5 t N
g 041 7+ Jrg
O'Zﬁ . EE |
b A A ek S AR
10" 10° 10°  Time 10’ 10° 10°

0
*
Figure 6. The Optimal Arm in the Different Channel State \/

Figure 7 shows the convergence speed of all the arm is faster, compared i@ e5UCB
algorithms by UCB - turned algorithm in the samelq and, el‘conditio

— Kopt(0.36,0.91)=others
——Kopt(0.36,0.91)=1

0.8

o
o
T

Percentage

o
N
T

0
10

0\ 10°
Figure 7 @ptimal@in the Same Channel State by UCB-TUNED

Figure 8 s@the co ce speed of all the arm is faster compared with Figure 6 UCB
algorithm by UCB - t% gorithm in the differentd andA; channel condition.

8

* Time 10’ 10 10

1 e ' t — =gssasy
> :@DDBE’“
~—— Kopt(0.36,0.91)=1 T
<7 Kopt(0.26,0.86)=2 7oA i
~— Kopt(0.16,0.86)=3 w2
- Kopt(0.16,0.91)=4 /A UP
5]
£ v
3
e 4
& 04 i
0.2 |
o). il f o occcer P S e e +ocococcenk f s occcee
10 10° 10°  Time 10’ 10° 10°

Figure 8. The Optimal Arm in the Different Channel State by UCB-TUNED
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5. Conclusions

The optimum transmission is mostly based on full knowledge of channel modeling.
Aiming at the cognitive radio environment is not entirely the case, the channel is modeled as
a partially observable Markov process, and the online learning method of optimum
transmission is based on the multi armed bandit. Simulation results show that, when the
channel is not completely known case, the online learning algorithm of multi-armed bandit
can get the optimal K strategy. At the same time, this paper improves the convergence of K
step conservative strategy optimal transmission by UCB-TUNED method.4.
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