
International Journal of Smart Home

Vol.8, No.2 (2014), pp.77-90

http://dx.doi.org/10.14257/ijsh.2014.8.2.09

ISSN: 1975-4094 IJSH

Copyright ⓒ 2014 SERSC

Proposal for Improving Connectivity and adding Authentication and

Security to KNXNet/IP Protocol

J. A. Nazabal, F. Falcone, C. Fernández-Valdivielso and I. R. Matías

Electrical and Electronic Engineering Department, Public University of Navarra,

Campus de Arrosadia 31006, Pamplona, Spain

juanantonio.nazabal@unavarra.es

Abstract

KNXnet/IP protocol defines mechanisms for using KNX Home and Building Automation

technology on top of the IP protocol using client/server architecture. Due the nature of

KNXnet/IP protocol it presents some connectivity and security problems inherent to the

protocol definition. In this work we propose some mechanisms for trying to fix these problems

and finally we implement and test them using real KNX devices.

Keywords: KNX, Building Automation, KNXNet/IP, Interface

1. Introduction

KNX is a Home and building automation standard for a typical application area of

environmental control of building lighting/shading services, as well as heating, ventilation

and air conditioning (HVAC). KNX is an approved standard in Europe (CENELEC EN

50090 [1] and CEN EN 13321-1 [2]), USA (ANSI/ASHRAE 135 [3]) and China (GB/Z

20965 [4]) as well as an international standard (ISO/IEC 14543-3 [5]), confirming its

relevance in the home and building automation sector. Nowadays, other building service

types like safety (e.g., fire alarm) and security critical (e.g., access control or intrusion alarm)

systems have been only implemented by dedicated standalone systems. The information flow

exchanged in some of these environments is critical, as it may lead to execution of commands

into actuators and/or access to private and secret information.

The need to protect critical data exchanged between some devices belonging to home and

building environments has led to the need to introduce secure transmission inside

communication systems. For securing a data transmission, authentication and security

mechanisms are needed. Security protects all the data during transmission while

authentication guarantees that the devices are permitted to access the information. KNX

devices are provided by a large number of manufacturers, offering more functionality within

the home automation system and the standardization guarantees that the different

manufacturers’ products may be interconnected together. This means there are no limitations

to a single manufacturer and if a manufacturer ceases to trade or offer a particular product, the

same or similar products are available from other manufacturers. The KNX Device Network

results from the formal merger of the 3 leading systems for Home and Building Automation

(EIB, EHS, BatiBus) into the specification of the new KNX Association and has more than 20

years of experience in the market, so it is a robust and well proven technology. It is also

royalty-free and entirely independent of any specific microprocessor platform or even

architecture and may be flexibly adapted to present an optimal solution for each application

domain and installation. KNX is equipped with a powerful toolkit for network management

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

78 Copyright ⓒ 2014 SERSC

that specifies a set of mechanisms to discover, set or retrieve configuration data actively via

the network.

There are several different physical transmission mediums that have been foreseen in the

KNX standard: PLC 110 powerline [6], RF Radio Frequency [7], TP 1 twisted pair [8] and IP.

Usually the most commonly used media is twisted pair and the information flows along the

KNX bus installed in the building. If somebody wants to access that information he/she must

be physically there and will need to have access to the network wires, which in nearly all

cases is impossible as the wires are inside a building or buried underground. Something

similar happens with powerline and wireless mediums. They have a limited range and if a

possible attacker wants to make malicious actions into the KNX installation, he/she will need

to be into the building for having access to the KNX bus. This is indeed a problem but in most

of the cases it has not really big importance and no extra actions are needed. However, when

using IP medium the scenario changes. In this case, the information flows all over Internet

and can potentially be accessed from anywhere. Having this idea in mind it is easy to see that

some extra security mechanisms are needed.

KNX security problem has been already studied before and some different solutions have

been proposed [9-11]. In this work we present a specific solution for KNXnet/IP security

problem in particular that can be easily extended to KNX telegrams as well. We also

propose a solution to KNXnet/IP connectivity problems that appear when using

dynamic IP addressing.

2. KNXNet/IP Protocol

KNXnet/IP specification [12-14] defines the integration of KNX protocol

implementation on top of the Internet Protocol (IP). The KNXnet/IP protocol is used to

tunnel or route KNX data over the widely spread Internet , enabling remote access and

maintenance across long distances, as well as usage as high speed backbone for KNX

networks. It is possible to use raw IP, TCP and UDP packets for transporting

KNXNet/IP frames but from an application point of view it is much easier to simply

exclude raw IP and restrict the specification to TCP and UDP.

KNXNet/IP has client/server architecture and Figure 1 shows the procedure for

establishing a link. All KNXnet/IP frames shall have a common header, consisting of

the protocol version, payload length information, and the KNXnet/IP service type

identifier. Tunnelling consists in sending a single KNX frame into an IP frame and

waiting until the response arrives or a timeout is reached and the implementation of

Tunnelling on KNX Data Link Layer is mandatory. KNX frames shall always be sent

within a TUNNELLING_REQUEST frame and the KNX frame shall be in cEMI

format. The cEMI format shall be supported by all KNXnet/IP devices.

 Figure 1. KNXNet/IP Client/Server Link Establishment

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 79

3. Connectivity

Let’s explain the connection procedure in KNXNet/IP protocol. First KNXNet/IP client

sends a CONNECT_REQUEST frame to server’s well known IP address. This frame contains

client’s IP address that will be used by the server for communicating with it the rest of the

connection time. Next server responses sending to the client a CONNECT_RESPONSE

frame that contains the status of the request and the Communication Channel identifier

associated to that connection and used for identification as long as the link is up. Both client

and server must store and use this Communication Channel because it will be used the rest of

the connection, including it into exchanged frames for authentication purpose.

Analyzing this connection procedure it can be appreciated two important facts that can lead

to connection problems. The first one is that server’s IP address must be well known by the

client and it also must remain without any change all the connection time. The second one is

that server acquires client’s IP address only once, after receiving the corresponding

CONNECT_REQUEST frame, and uses it the rest of the connection time. If client’s IP

address changes during the connection, server will send the rest of the frames to the wrong

old IP address, leading to a serious connection problem. Nowadays there are several different

technologies for accessing Internet. In many of them, like DSL, GPRS, etc., the Internet

Service Provider (ISP) assigns dynamic IP addresses to connected devices. These dynamic IP

addresses change with the pass of the time and the amount of time that they remain without

any change will depend on the technology and the ISP used.

As we said before, the client must know all the time server’s IP address and if it has a

dynamic IP address this represent a connection problem. One possible solution is for the

server to use a Dynamic Domain Name System (DDNS) service. Dynamic DNS is simply a

DNS server that allows you to very rapidly change the mapping between a network name and

an IP address. This is used to provide a persistent network name for a resource that may

change location on the network. Normally this is useful for devices using an ISP which only

provides dynamic IPs.

Dynamic DNS providers offer a software client program that is executed into the client

device and periodically checks client’s public IP address. When this program detects an IP

address change, it warns DDNS provider's system and it updates new IP address in the

associated network name. Depending on the provider, hostname is registered within a domain

owned by this provider, or within the customer's own domain name. Often they use an HTTP

service request since even restrictive environments usually allow HTTP service. The provider

might use RFC 2136 [15] to update the DNS servers. If we are using dynamic IP addresses

and client and / or server’s IP address changes without the other’s knowledge, the rest of the

data packets will be sent to the old wrong IP address representing an important connection

problem. We must provide a mechanism for determining when the IP addresses has change

and communicating it to the other part. For that purpose, both client and server must check

their IP address periodically asking for their current addresses to an external server that

provides this service. There are many of well know web pages that support this functionality.

When the client or the server detects that the IP address has changed, we propose the use of

the frame shown in Figure 2 for informing the other part the new IP address to use in the

future. For future references, we will call this frame

ADDRESS_CHANGE_NOTIFICATION and the associated service type identifier 020bh.

The first 6 bytes represent the typical KNXNe/IP header and next byte represents the

communication channel identifier.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

80 Copyright ⓒ 2014 SERSC

1 06h Header Size

2 11h Protocol Version

3 02h
Service Type Identifier 020Bh

4 0Bh

5 00h
Payload Length 7 Octets

6 07h

7 01h
Communication Channel

Identifier, e. g. 01h

Figure 2. ADDRESS_CHANGE_NOTIFICATION Frame

When an ADDRESS_CHANGE_NOTIFICATION frame is received, the receiving part

must update the others new IP address and send back an acknowledge frame. For future

references, we will call this frame ADDRESS_CHANGE_NOTIFICATION_ACK and the

associated service type identifier 020Ch. The proposed frame structure is shown in Figure 3

and the last byte represents the status code of the IP address updating procedure. If no error

has been encountered, the value of this code is 00h. When an

ADDRESS_CHANGE_NOTIFICATION frame is received and depending if TCP or UDP

protocol is used different actions must be taken.

1 06h Header Size

2 11h Protocol Version

3 02h
Service Type Identifier 020Ch

4 0Ch

5 00h
Payload Length 8 Octets

6 08h

7 01h
Communication Channel

Identifier, e. g. 01h

8 00h Status Code (NO_ERROR)

Figure 3. ADDRESS_CHANGE_NOTIFICATION_ACK Frame

TCP protocol is a reliable, complex and heavy protocol that presents a connection

establishment procedure. To establish a connection, each device must exchange some

signaling packets and if IP address changes, TCP socket changes as well and TCP session

connection breaks. In this case, the device whose IP address has changed must send a

DISCONNET_REQUEST and close the link. UDP protocol is a non reliable, simple and

lightweight protocol that has no connection establishment procedure. In the case of using this

protocol, the old UDP socket can be replaced with the newer one with the updated IP address,

without any further problem.

Also and due the nature of the data sending procedure in UDP protocol, we propose that

when KNXNet/IP server receives a data request frame from the client, it should retrieve the

IP address from the request UDP packet that contains the request frame and send the response

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 81

to the same IP address. Doing so, the connection problems when the client has a dynamic IP

address and requests data will be fixed.

4. Security

For protecting the information exchanged between KNXNet/IP client and server the data

must be encrypted. Doing so, a possible attacker maybe have access to encrypted data but

cannot retrieve the original information from it or inject malicious code into the IP packets for

unwanted activation of KNX actuators [9-11].

In this work we propose to use a Symmetric-key algorithm for encrypting everything but

the KNXNet/IP header. Reading the header we can access protocol version field and

determine if the frame is using the old protocol or the new proposed one and needs

decryption. Symmetric-key algorithms use the same cryptographic key for both encryption

and decryption. The key represent a shared secret between two or more parties that can be

used to protect private information in an unsecure medium. Symmetric-key encryption can

use either block ciphers or stream ciphers. Block ciphers take a number of bits and encrypt

them as a single unit, padding the plaintext so that it is a multiple of the block size and stream

ciphers encrypt the bits one at a time. There are many different Symmetric-key block ciphers

but one of the most widely used is AES.

In 1997, National Institute of Standards and Technology (NIST) initiated a process to

select a symmetric-key encryption algorithm to be used to protect sensitive information and

develop an Advanced Encryption Standard (AES). The winner algorithm selected was

Rijndael (now known as just AES) among four other finalists: MARS, RC6, Serpent and

Twofish [16]. There is a lot of literature about these algorithms, with different benchmarks

and analysis [16, 17] and it is complicated resuming all in only a few lines but basically the

most secure but also slowest is Serpent, Rijndael is the fastest and Twofish represents a

middle road.

There are also several different Symmetric-key stream ciphers and the most widely used

are represented in the eSTREAM contest for a new stream cipher standard [18]. All of the

candidates are divided in two different categories. One category, called Profile 1, contains

four of the proposals algorithms suited to achieve fast encryption in software: HC-128,

Rabbit, Salsa20/12 and SOSEMANUK. The other one, called Profile 2, contains the

algorithms that offer an efficient hardware implementation: Grain v1, MICKEY 2.0 and

Trivium.

There are many research documents analyzing the performance of these algorithms [18,

20] and the expectations from an efficient cryptographic algorithm will differ depending on

the specific application. It is very difficult to expect that a single implementation will satisfy

all requirements. In this work we have chose Salsa20 because it has, in general, better

performance that AES. It also has very good software performance [21], medium/high speed

and medium area in hardware Field Programmable Gate Arrays (FPGA) implementations

[22] and is a promising alternative for the AES cipher in 8-bit AVR Microcontrollers [23].

Encrypting KNXNet/IP payload may avoid an unauthorized access to the information that

transports but cannot prevent for unknown clients from establishing connections with the

server and ask for information, even if they cannot decrypt it. The solution to that problem is

to add an authentication mechanism.

5. Authentication

For providing KNXNet/IP protocol an authentication procedure we are going to

employ Public-key cryptography. These kinds of algorithms require two different keys,

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

82 Copyright ⓒ 2014 SERSC

one of which is secret and one of which is public, and the key pair is mathematically

linked. The public key is used for encrypting the plaintext and the associated private

key decrypts the ciphertext. The public key may be published using an unsecure

medium without compromising security, while the private key must remain secret and

not be revealed to anyone not authorized to access the information. Public -key

cryptography uses asymmetric key algorithms based on mathematical relationships

problems in which it is computationally easy to generate the public and private keys, to

decrypt the message using the private key and to encrypt the message using the public

key, but it is extremely difficult to derive the private key or the encrypted message

based only on their knowledge of the public key. There are many different algorithms

available and Table 1 shows the most commonly used ones.

Table 1. Public-key Encryption Algorithms

Algorithm Names Theory

RSA RSA problem

ECC Elliptic Curves

Diffie–Hellman Discrete logarithm

NTRU Shortest vector

There are many research documents that analyze the performance [24, 25] and shows

practical comparisons [26] between these algorithms. In this work we have chose

NTRU because it has better performance that the rest of competitors [27, 28] and even

other symmetric key encryption algorithms [29]. Now that the encryption algorithm has

been selected, it is time for explaining the proposed authenticat ion connection

procedure.

First client must create a NTRU key pair and then send to the server a modified

proposed CONNECT_REQUEST frame, shown in Figure 4. The first byte after the

header represents the host protocol used, the next one indicates the connection type and

the last one represents the KNX layer. Finally, the rest of the bytes represent the

client’s NTRU public key.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 83

1 06h Header Size

2 11h Protocol Version

3 02h
Service Type Identifier 0205h

4 05h

5 ...
Payload Length

6 …

7 01h
Host Protocol Code, e.g. 01h, for

UDP over IPv4

8 04h
Connection Type Code, e.g. 04h,

TUNNEL_CONNECTION

9 02h
KNX Layer, e.g.

TUNNEL_LINKLAYER

10 …

Client’s NTRU Public Key …

N …

Figure 4. CONNECT_REQUEST Frame

After the server receives a CONNECT_REQUEST frame, it must retrieve client’s

NTRU Public Key, generate a binary random sequence and encrypt it with that key.

Then it must send to the client an AUTHETICATION_REQUEST frame with the

structure shown in Figure 5. The first byte after the header represents the temporal

Communication Channel assigned to the connection and the next one indicates if any

kind of error has occurred. Finally, the rest of the bytes represent the NTRU encrypted

binary random sequence.

1 06h Header Size

2 11h Protocol Version

3 02h
Service Type Identifier 020Dh

4 0Dh

5 …
Payload Length

6 …

7 01h
Communication Channel

Identifier, e. g. 01h

8 00h Status Code (NO_ERROR)

9
Random Sequence encrypted with

Client’s Public Key
 …

N …

 Figure 5. AUTHETICATION_REQUEST Frame

When the client receives an AUTHETICATION_REQUEST frame, it must retrieve

the NTRU encrypted random sequence, decrypt it with the client’s secret private key

and encrypt it with the same Salsa20 key that both client and server pre-share and

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

84 Copyright ⓒ 2014 SERSC

already know. Then it must send to the client an AUTHETICATION_RESPONSE

frame with the structure shown in Figure 6.

1 06h Header Size

2 11h Protocol Version

3 02h
Service Type Identifier 020Eh

4 0Eh

5 …
Payload Length

6 …

7 01h
Communication Channel

Identifier, e. g. 01h

8 00h Status Code (NO_ERROR)

9 …
Random Sequence encrypted with

Salsa20 Key
 …

N …

Figure 6. AUTHETICATION_RESPONSE Frame

The first byte after the header represents the temporal Communication Channel, the

next one indicates the presence of errors and the rest of the bytes represent the Salsa20

encrypted random sequence. When server receives an AUTHETICATION_RESPONSE

Frame, it must retrieve the Salsa20 encrypted random sequence, decrypt it and compare

it with the original random sequence generated. If the sequences are similar that

indicates that both client and server know and has the same Salsa20 key and the

authentication is complete. After the server receives an

AUTHETICATION_RESPONSE Frame, it sends a CONNECT_RESPONSE frame to

the client indicating if the connection is authorized or not. The proposed frame structure

is shown in Figure 7. The first byte after the header represents the Communication

Channel, the next one indicates if the connection is authorized or not and the last byte

represent the connection type.

1 06h Header Size

2 11h Protocol Version

3 02h
Service Type Identifier 0206h

4 06h

5 00h
Payload Length 10 Octets

6 0Ah

7 01h
Communication Channel

Identifier, e. g. 01h

8 00h Status Code (AUTHORIZED)

9 01h
Host Protocol Code, e.g. 01h, for

UDP over IPv4

10 0x04
Connection Type Code, e.g. 04h,

TUNNEL_CONNECTION

Figure 7. CONNECT_RESPONSE Frame

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 85

6. Implementation

For analyzing the feasibility of the proposed protocol a real implementation has been

developed, shown in Figure 8. First a minimum KNX installation has been used that

consists on a 4 analog input channels device, model 2214 REG A, by Jung and an 8

channel switch actuator device, model SA/S 8.10.1, by Siemens. For accessing the KNX

bus the KNX installation has also a USB / KNX interface, model 2130 USB REG by

Jung. This interface is connected via an USB cable to an old Pentium 4 Personal

computer (PC) with 1 Gbyte of RAM and windows XP SP3 installed. A Java

application that implements the server part of the proposed new KNXNet/IP version

protocol has also been developed.

That application runs into the PC and access KNX data via the USB / KNX interface

and implements KNX standard Application Note 037/02 [30]. As the USB / KNX

interface appears in Windows XP as a Human Interface Device (HID), the application

uses Javahidapi [31] library for interacting with it . It also uses Bouncy Castle Crypto

[32] Java library for implementing Salsa20 encryption algorithm and NTRU Java

library provided by “The NTRU Project” webpage [33].

Figure 8. Developed Installation for Protocol Testing

For giving the server a static and well known network name “no-ip” site [34] that

offers free dynamic DNS service has been used. First the service and the network name

must be configured and then a small Dynamic Update Client (DUC) program must be

correctly installed. Both the client and the server must have a mechanism for alerting

the other part when their IP address has changed. As it was said before, the need to

check their address periodically in an external web server dedicated to that purpose is

imperative.

There are many of them available and the mechanism for obtaining the IP address is

basically the same: first make a GET HTTP request to the service and then receive the

IP address as a character string. In this work “dyndns” site that provides automation

service [35] has been used with good results. It is also possible to easily implement one

of these services programming a PHP script and putting it into a web server. This last

option has been tried also and custom PHP script put running into “FreeHostingEU”

web hosting site [36] with also good results. Because it was developed for testing

purposes only, the free plan was selected that allows 4000 MB of monthly data transfer

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

86 Copyright ⓒ 2014 SERSC

and the service has limited resources. For testing this installation a java application that

implements the client part of the proposed new KNXNet/IP version protocol has also

been developed.

7. Results and Conclusions

For testing the correct structure and the content of the KNXNet/IP frames exchanged

between the client and the server, the Wireshark [36] network protocol analyzer tool has been

used. Maybe the most complex and interesting data exchange is given at the link

establishment procedure and figures from Figures 9 to 12 shows a Wireshark capture of the

frames involved in it. Due the big data amount content in the captured

CONNECT_REQUEST and AUTHENTICATION_REQUEST frames, the associated figures

shows only a portion of the original data but enough for giving a hint of their structure.

As can be seen it Figure 9, CONNECT_REQUEST frame data is totally unencrypted but

does not contain any critical information, just only the client’s public key stored as a byte

array of the encoded “EncryptionPublicKey” [33] Java class associated to it. This byte array

has a 608 byte length but is not a problem because a UDP packet can carry as much data as

65536 bytes. Figure 10 shows AUTHENTICATION_REQUEST frame structure and how all

the data is encrypted but the header using the previously received client’s public key. Doing

so, nobody but the client can have access to the temporal communication channel identifier

associated to that connection.

Figure 9. Captured CONNECT_REQUEST frame

Figure 10. Captured AUTHENTICATION_REQUEST Frame

In Figure 11 it can be appreciated how every data but the header is al so encrypted but

this time using the Salsa20 Key. This key has a length of 32 bytes only and the size of

the encrypted data is small if comparing with using NTRU. Finally Figure 12 shows

DISCONNECT_REQUEST frame structure, this time encrypted with the Salsa20 Key

that will be used for the rest of the connection.

As can be appreciated, the payload information is protected. If a possible attacker

knows the frame structures and tries to access, for example, the Communication

Channel identifier, the value obtained will be different every time and erroneous. As

conclusion it can be said that the new proposed KNXNet/IP protocol works well, at

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 87

least in the testing installation that has been prepared in this work for that purpose.

When establishing a link between the server and a KNXNet/IP client implemented in an

old Pentium 4 PC, sharing the same LAN, the time lapse since the first

CONNECT_REQUEST frame is sent until the last CONNECT_RESPONSE frame is

received is only of 115 milliseconds.

Figure 11. Captured AUTHETICATION_RESPONSE frame

Figure 12. Captured CONNECT_RESPONSE Frame

Nowadays NTRU and Salsa20 encryption algorithms are considerate secure and there

is no effective attack known that can break them so it is considered that the encryption

used in this proposal is secure enough. Maybe the main problem, derived from the

protocol implementation, is that both the client and the server must share the same

Salsa20 key and for that reason they need to previously exchange it via a secure

channel. Avoiding this in authentication procedures is complicated because both the

client and the server parts must share some common secret knowledge for determining

the authentication.

If more security is needed, the random sequence exchanged in the authentication

procedure can be used as a Communication Channel Key for encrypting the data the rest

of the connection time and use the other Salsa key as an authentication key. Because a

different random Communication Channel Key is used for each different client and

connection time, no one else can access the encrypted information even if knowing the

authentication key.

The weakest point in the protocol authentication is the link establishment procedure

because is when the Authentication Key is used and can be retrieved in the encryption

is broken. The rest of the connection time, if an attacker breaks the encryption it will

merely have access to a Key valid only for that client and that link. The price to pay for

having more security is that the authentication mechanism is more complex and more

resources are needed for using and storing different Salsa20 keys and the associated

encryption structures per active link. It is complicated integrating this authentication

mechanism in a compatible way into KNX telegrams but it can be feasible using the

same encryption system for protecting KNX telegrams payload.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

88 Copyright ⓒ 2014 SERSC

Depending on the modulation technique, access type or collision control of the

medium used, the KNX telegram structure can have some extra preamble or envelope

sequence but the standard structure is shown in Figure 13.

0 1 2 3 4 5 6 7 8 … N-1 N ≤ 22

Control

Field

Source

Address

Destination

Address

Address Type,

NPCI, Length
TPCI APCI Data / APCI Data

Frame

Check

Figure 13. KNX LPDU standard frame structure [38]

A simple but effective security mechanism could consist in encrypting everything but

the control field using a common Salsa20 key shared by all the KNX installation

devices. For compatibility, a bit within the control field could be used for indicating

that the telegram is encrypted. For example, the bit number 4 is always set to “1” and

could be set to “0” for indicating that the telegram is encrypted.

For future works it would be a good idea testing the proposed KNXNet/IP protocol

using different hardware implementations. A good candidate for accessing the KNX bus

could be the bus coupler unit TP-UART 2 [39] and for implementing the protocol,

maybe an 8 bit or an ARM microprocessor.

Acknowledgements

This work was supported by the Spanish Economy and Competitivity Ministry

AIB2010NZ-00328.include necessary peripheral observations in the text (within parentheses,

if you prefer, as in this sentence).

References

[1] Cenelec EN 50090, Home and Building Electronic System (HBES), (2005).

[2] Cenelec EN 13321-1, Open Data Communication in Building Automation, Controls and Building

Management, HBES, (2006).

[3] ANSI/ASHRAE 135, BACnet-A Data Communication Protocol for Building Automation and Control

Networks, (2008).

[4] GB/Z 20965, Control network HBES technology specification—Home and building control system, (2007).

[5] ISO/IEC 1454-3, Home Electronic System (HSE) Architecture, (2006).

[6] KNX Association, KNX Standard, System specifications: Communication media Powerline, Chapter 3/2/3,

(2008).

[7] KNX Association, KNX Standard, System specifications: Communication media Radio Frequency, Chapter

3/2/5, (2008).

[8] KNX Association, KNX Standard, System specifications: Communication media Twisted pair 1, Chapter

3/2/2, (2008).

[9] S. Cavalieri and G. Cutuli, “Implementing encryption and authentication in KNX using Diffie-Hellman and

AES algorithms, 2009. IECON '09. 35th Annual Conference of IEEE, Porto, Portugal, (2009).

[10] D. Lechner, W. Granzer and W. Kastner, “Security for KNXnet/IP, KNX Scientific Conference, Sint-

Katelijne-Waver, Belgium, (2008).

[11] S. Cavalieri and G. Cutuli, “Introducing Security and Authentication in KNX”, KNX Scientific Conference,

Sint-Katelijne-Waver, Belgium, (2008).

[12] KNX Association, KNX Standard, KNXNet/IP: Overview, Chapter 3/8/1, (2009).

[13] KNX Association, KNX Standard, KNXNet/IP: Core, Chapter 3/8/2, (2009).

[14] KNX Association, KNX Standard, KNXNet/IP: Tunneling, Chapter 3/8/4, (2009).

[15] RFC 2136, Dynamic Updates in the Domain Name System (DNS UPDATE), (1997).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 89

[16] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti and E. Roback, “Report on the

development of the Advanced Encryption Standard (AES)”, National Institute of Standards and Technology,

vol. 106, no. 3, pp. 511.

[17] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, T. Kohno and M. Stay, “The Twofish

Team's Final Comments on AES Selection”, available at

http://csrc.nist.gov/archive/aes/round2/comments/20000515-bschneier.pdf, last accessed: 25 January 2013,

(2000) May 15.

[18] The eSTREAM Portfolio in 2012, available at http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf, last

accessed: 25 January 2013, (2012) January.

[19] P. Mukherjee, “An Overview of eSTREAM Ciphers”, available at http://cs.au.dk/~pratyay/eSTREAM.pdf,

last accessed: (2013) January 25.

[20] T. Good and M. Benaissa, “Hardware Results for Selected Stream Cipher Candidates”, The SASC 2007

Workshop Record, Ruhr University Bochum, Germany, (2007).

[21] D. J. Bernstein, Salsa20/8 and Salsa20/12, Available at http://cr.yp.to/snuffle/812.pdf, last accessed: (2013)

January 25.

[22] M. Rogawski, Hardware evaluation of eSTREAM Candidates: Grain, Lex, Mickey128, Salsa20 and Trivium,

The SASC 2007 Workshop Record, Ruhr University Bochum, Germany, (2007).

[23] G. Meiser, T. Eisenbarth, K. Lemke-Rust, C. Paar and H. Görtz, “Efficient implementation of eSTREAM

ciphers on 8-bit AVR microcontrollers, IEEE Third International Symposium on Industrial Embedded

Systems - SIES 2008, Montpellier / La Grande Motte, France, (2008).

[24] C. Narasimham and J. Pradhan, “Performance Analysis of Public key Cryptographic Systems RSA and

NTRU, IJCSNS International Journal of Computer Science and Network Security, vol. 7, no. 8, (2007).

[25] C. Narasimham and J. Pradhan, “Evaluation of Performance Characteristics of Cryptosystem Using Text

Files”, Journal of Theoretical and Applied Information Technology, vol. 4, no. 1, (2008).

[26] C P. Karu and J. Loikkanen, Practical comparison of fast public-key cryptosystems, Seminar on Network

Security, Telecommunications Software and Multimedia Laboratory, Kelsinki University of Technology,

Kelsinki, Finland, (2000).

[27] J. Hermans, F. Vercauteren and B. Preneel, “Speed records for NTRU”, Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5985

LNCS, pp. 73-88.

[28] R. D'Souza, “The NTRU Cryptosystem: Implementation and Comparative Analysis, Available at

http://teal.gmu.edu/courses/ECE543/project/reports_2001/dsouza.pdf , last accessed: (2013) January 25.

[29] Y. Mote, P. Nehete and S. Gaikwad, “Superior Security Data Encryption Algorithm (NTRU)”, International

Journal of Engineering Sciences, vol. 6, (2012).

[30] “KNX on USB Protocol Specification & KNX USB Interface Device Requirements”, Application Note

037/02 Rev., vol. 4, (2003).

[31] Javahidapi Library, http://code.google.com/p/javahidapi/, last accessed: (2013) January 25.

[32] Bouncy Castle Crypto Library, http://www.bouncycastle.org/, last accessed: (2013) January 25.

[33] The NTRU Library, http://tbuktu.github.com/ntru/, last accessed: (2013) January 25.

[34] “no-ip” free Dynamic DNS, http://www.noip.com/, last accessed: (2013) January 25.

[35] “dyndns” free Dynamic DNS automation service, http://checkip.dyndns.org/, last accessed: (2013) January

25.

[36] “FreeHostingEU” Free Web Hosting, http://www.freehostingeu.com/, last accessed: (2013) January 25.

[37] Wireshark, http://www.wireshark.org/, last accessed: (2013) January 25.

[38] KNX Association, KNX Standard, Architecture, Chapter 3/1/1, (2009).

[39] KNX EIB TP-UART 2-IC technical data, www.hqs.sbt.siemens.com/Lowvoltage/gamma_product_data/

gamma-b2b/TPUART2_technical-data.pdf, last accessed: (2013) January 25.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

http://www.hqs.sbt.siemens.com/Lowvoltage/gamma_product_data/

International Journal of Smart Home

Vol.8, No.2 (2014)

90 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

