International Journal of Smart Home
Vol.8, No.2 (2014), pp.23-32
http://dx.doi.org/10.14257/ijsh.2014.8.2.04

Design and Implementation of the Smart Virtual Machine on iOS
Platform for the Mobile Game Portability

Yunsik Son', JaeHyun Kim? and YangSun Lee®"

Dept. of Computer Engineering, Dongguk University
26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Korea
’Dept. of of Computer Engineering, Seokyeong University
16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Korea
sonbug@dongguk.edu, *statsr@skuniv.ac.kr, yslee@skuniv.ac.kr \/‘

Abstract m;
Development of computing environments and mobile devices\ead to rapi h of smart

device, mobile OS and application market. Especially, th biTg platfor or with major
runners of Apple and Google, compose the core tec or mobathations iOS and
Android represent mobile platforms each suppof indivi ﬁv tion environment,
development tools and development methodoloaj. icatio d& ontents developed in

each platform inevitably have exclusive prafemies inet ther platforms. Therefore,

generally it is not possible to execute a mqbi ication o ifferent platform. In order to
provide service to multiple platforms by ity, d nal costs and development period
is required. Particularly, the lifespan evelo atlon of mobile applications are
becoming shorter at this point,i r@c Theref ast development and deployment is
required and has been standin weak Smart Cross Platform is a virtual machine
based solution developed to r e thi s. In this paper, Smart Cross Platform's
content execution com Smart achine based on an independent neutral
language was de3|gned plemente e run in iOS. In the Smart Virtual Machine, the
programmer can rogram%bemg restricted to the development language of a
particular platfo onme g it is easier to port previous contents or provide

service of a Q ram t e platforms.
Keywords: Smart Devi @ irtual Machine, Intermediated Code, Contents Reusability

1 Introductlo$
Current vices, Google's Android platform based on Java, Apple's iOS using
ObjECtIV %Ve been released and have constructed a dominant environment [1]. Also
recen @osoft has announced a platform Windows Phone using C# as the main language
prewous smart device platforms have independent application development
ment - develop language, tools - and individual characteristics per platform. Each
p atlon must go through a defined development process in order to be executed in a
certain platform. The object code also has to be created separately depending on the platform.
Therefore, in order to provide service to different platforms even if the content is the same,
depending on the object device, separate development environments must be used to re-
develop which shows a weakness in efficiency.

“ Corresponding Author

ISSN: 1975-4094 |JSH
Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.2 (2014)

The Smart Cross Platform was developed as a solution to resolve this weakness [3, 4]. It
supports various programming languages and is not restricted to a certain platform, aiming to
execute contents independent of platforms. To do this, the smart cross platform provides a
compiler which creates intermediate language as object code and has a virtual machine as an
important component which interprets intermediate language on a stack base[5-7].

The paper is organized as follows. In Chapter 2, Smart cross platform, SVM to load iOS,
intermediate language used in SVM and execution file formats are examined. In Chapter 3,
the structure of SVM and optimization techniques to enhance the execution performance are
examined. In Chapter 4, results of contents run using the SVM implemented shown. Lastly in
Chapter 5, the conclusion of the paper and future direction of research are discussed.

2. Researches

2.1. Smart Cross Platform

The Smart Cross Platform was developed by our researchiteam as
virtual machines for smart devices. It is composed of thr
virtual machine. It supports C/C++ and Java programming | s for contents
development [6, 7]. Contents made of each Ianguago vert termediate code by
the compiler. SIL is used as intermediate code whic accom e procedural language

and object orientated language. Intermediate is conyerged to execution format by the
assembler and executed in the SVM. Figuge S smart c\ latform’s model.

Contents Compiler

Virtual
Machine

CIC+
program
(*.c/*.cpp)

f Assembler

Smart
: r{ Virtual
— |
A

SEF Q-Iachine,
Java @ (*..sef)
program —
(*.java) Java
Compiler|
VAN VAN .

We 1. System Configuration of the Smart Cross Platform

Sm s platform compiles an application program and is composed of three parts. A
compi reating SAF format file composed of SIL(Smart Intermediate Language), an
as ler converting SAF(Smart Assembly Format) file to a SEF(Smart Executable Format),

and a virtual machine executing SEF format file entered [4, 8]. The SVM system is designed
as a hierarchical model minimizing burden created during the process of retargeting other
devices and operating environment.

SIL from compiling and translating process is converted to SEF, an execution format, by
the assembler and SVM executes the program entered by SEF.

24 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.2 (2014)

2.2.10S

iOS[1] is an operating system built into Apple’s smart phone iPhone, digital media player
iPod touch and tablet computer iPad. iOS acts as a middle role for the hardware and
application shown on the screen. The application is not directly connected to the hardware,
but connected through the interface. iOS technique implementation is a bundle of classes
composed of four layers: Core OS layer, Core service layer, media layer and Cocoa Touch
layer.

Cocoa Touch

*
Media ?\/
Core Services 0
&S N @

Core OS Q
N
Figure 2. i0S Archite%fa‘/e Layer

*
The Core OS and Core Services layers.ac ndamentzN%rfaces of i0S providing file
accessibility, low level data type, Bonj service twork socket, core foundation,
CFNetwork, SQL.ite, POSIX thread, L@ocke % . The media layer provides 2D/3D

drawing, audio and video relate d |nclu penGL ES, Quartz, and Core Audio,
Core Animation libraries. The Tqu yer is a fundamental infrastructure for

applications providing file ma ment operations, access to the user’s contact,
photo information, acceler ers and prowdes UIKit framework, windows, views,
controls, and the control sstop o ers.

2.3. SIL&SEF \Q

SIL and 5@ ach jn diate language and execution format for SVM. First, SIL is
an intermedi guage ual machine code method. As a standardized model of virtual
machine codes for ge art phones and embedded systems, it is designed for language,
hardware and platf ependency. In order for SIL to accommodate various programming
languages, it is based on analysis of previous virtual machine codes such as .NET IL
[9, 10], byte codev[11, 12] and etc. To accommodate all object orientated language and

d defined with mnemonics with high legibility. Figure 3 shows the SIL’s operation

ategorles It is mainly grouped into: 5 main operation code for executing commands,

other operation code for stack management and short form operation code for optimization.

SIL has meta code other than operation code which perform specific work such as class and
method declaration.

E(EE . Pugging which is assembly language level, simple, a consistent naming rule was
co

Copyright © 2014 SERSC 25

International Journal of Smart Home
Vol.8, No.2 (2014)

SIL Operation Code

~
:' _________________________ IIr _________________________ 1
! Stack Operations(59) i: Arithmetic Operations(87) i
U e e e e =
R N !
! Flow-Control Operations{21) 1! Type-Conversion Operations(22) ,
|_________________________alL_________________________I
""""""""""""" {742
i Object Operations(a) :E Misc. Stack Operations(4) |
L S

\. J
Figure 3. Category of Operation Codes \/,
Programs composed of SIL code are converted to SEF by the assembler. SEE, al ution
file format in SVM, is composed of the header domain which expresseq t F file’s

information. The program segment is divided into three se s expresgingrcode and data

[13]. Figure 4 below shows a simple diagram of the Sé@t

Header Segtion
4_‘?%
Pro§ @gment N

composition, program segment and debugging segment %hich e
r

%

Sy

<
’\\Q \Q Debugsecnon

Q igure 4. Structure of SEF

The header domai sses the detailed composition information of the program
segment, records info ion of the program’s entry point. It also reads the SEF file’s header
domain informati estimates the total memory size required and makes it easy to

approach the det entry point
The pro domain is a format which is loaded and executed in the SVM memory and is
compose of code and data. The SEF program domain separates symbol table and

ormation unnecessary for execution and is designed to minimize the memory
required to load SVM memory. Depending on the nature of the elements
ing the program domain, it is divided into RO, RW and ZI domain. The RO section
stores code and literal data with read-only characteristic. The RW section stores data of global
variables which have initial values in the source code with read-write characteristic. The ZI
domain stands for global variables which do not have initial values in the source code.

The debugging domain expresses debugging information for application programs saved as
SEF. It is not loaded in SVM’s execution memory and is used by IDE(Integrated
Development Environment) or debugging tools. Depending on the SVM compile option, the
debugging domain in SEF exists optionally and does not affect execution.

26 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.2 (2014)

3. Smart Virtual Machine for iOS Platform

In this chapter, iOS platform with SVM loaded will be introduced. First, SVM system’s
composition and each module’s function are introduced. Next, performance enhance
technique applied to interpretation routine is shown.

3.1. Implementation of the iOS SVM

A Smart Virtual Machine uses the execution file created by the smart cross platform’s
core, compiler and assembler. The file is entered and the contents are executed and the results
are given as an output. The Smart Virtual Machine is composed of SEF loader, interpreter,
internal library, runtime environment. The runtime environment is composed of memory
manager, thread scheduler and event handler. Figure 5 shows the structure of tthl

machine. v

Smart Virtual Machine
Built-\yrary

N

Interpreter

(Execution Engine)
— <
| EMF '

N Q‘ Native Platform
é' < g J

Q Fig@s. ystem Architecture of SVM
First, the SEF loader

alidates integrity of the content and loads to the memory converts to
an internal data struc ﬂ“;, F(Executable Memory Format). EMF is managed in a double
linked list of meta{data”and SIL command. Next, the interpreter is the core module of the
virtual machine Which actually calculates and executes the SIL code. It has been implemented
by making al process operations for each SIL code and refers to meta data saved by the
loader an utes commands. Data during processing is stored in stacks and heaps and if an
error during processing, an exception raises. The exception prints a corresponding
the exception handler and exits.
al of 198 instructions are supported by the smart virtual machine and are divided into
stack instructions, calculation instructions, flow control instructions, type conversion
instructions and object instructions. In the internal library, an API set of ANSI C library and
graphic, sound, file, network, character string, font, math and etc. A total of 16 groups, 425
API are provided for language in order to execute contents. Lastly, the runtime environment
is composed of memory manager, thread scheduler and event handler. When the interpreter
executes the SIL command, it receives support from the program’s runtime environment.
First, in the memory manager of the runtime environment, depending on each command, a

Copyright © 2014 SERSC 27

International Journal of Smart Home
Vol.8, No.2 (2014)

stack calculation process takes place. Constant pool information from global domain, object
information from heap domain, variable information from local domain and are divided into
activation record, operation stack and display vector and processed. The event handler catches
events during the process of content execution and in order to process these, handlers from
within the program are called and event-driven content action is supported.

3.2. Optimization Technique for Interpretation Routine

Next, the optimization for SVM interpretation routine is as follows. Looking from the
content portability aspect, the SVM has a big advantage since it supports various
programming languages and uses virtual machine based execution method. However, it
executes software interpretation using the commands in the contents which has a very low
performance compared to the general native execution method. Therefore, to ®ghance

performance, optimization technique is very important and in this paper, mterpreta tine
optimization was applied [14, 15]. Figure 6 shows the model of mterpretatl e model
applied.

<</

SEF Image Interpretation Routine
|
~4
[\\\ Mapping Table
]
¥

ptimiz%ﬂodel for Interpretation

tch method generally used for executing VM has a
the lookup routine when it loads the command and uses
ands or execute API. The lookup routine is a Hotspot which
e. To resolve this problem, in the optimized model, the
corresponding routin tion was modeled and mapping tabulated to reduce cost for
executing the com alling API. Each decoded command was used as an entry value of
the mapping tabl@ statically calculated results and the mapped result values were earned.
As a result of app the optimized model, the execution time of SVM reduced by 23~37%
compared 6 pplying the optimized model.

el

” is chapter, we used game contents implemented with C++ on a smart cross platform to
convert into SEF files and show results of executing them on implemented iOS SVM. The
games tested were “Gaza Gaza”, “Zoro” and “Aiolos”. First the conversion process for Gaza
content is shown. Table 1 shows part of the source program of “Gaza Gaza” made of C++
language.

imental Results and Analysis

28 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.2 (2014)

Table 1. Source Code Fragment of the “Gaza Gaza”

void GazaPlay::MovelLeft()
class GazaPlay { {
int V_Barl_4[24][10]; if(pm_x>0){
int H_Bar9_12[28][MAX_H]; if(st_V_Bar[pm_y][pm_x] ==0) {
layerS = PS_LEFT;
publlc pm_x-=1;
GazaPlay(intw =0, inth = 0) pm_c = PS_MOVE_FRAME;
: wide(w), high(h) {3 }
void MoveLeft(); else {
void MoveRight(); if(st_V_Bar[pm_y][pm_x-1] ==0) {
void MoveUp(); st_V_Bar[pm_y][pm_x] = 0'
void MoveDown(); st_V_Bar[pm_y][pm_x-1] =
pm_x-=1, V
Y PlayerS = PS_LEFT; v
pm_c = PS_MOVE_FRAME;
} Co

SIL code and reconvert it into SEF using an assembl e 2 shqw nslated results.

Table 5. SIL Code & SEF %fo the ‘%z
%FunctionStart EamnNz7 00 00 DAD‘ 0z 00 A2 00 BA 0O 00 00 43 OO
)

o000
.fUnC name &Gazaplay::MOVeLeﬁ$2 : 09 00 33 00 00 0S8 00 AS 01 00 00 27 00 00 0O
- oClh: B8 EA@ AZ OO0 BXL 0O OO 0O 17 0O 01 00 00 00

Next, Smart cross platform’s C++ to SIL compiler w. ‘\d\o c& contents into
S t

func_type 2 aoh: 0@ 4 19 00 00 3E 0O 03 00 00 00 00 OO0
.param_count 0 < O6elh: X 00 01 00 00 00 OO0 00 OC 00 64 1% 00 00
000006£0h: 00 09 00 17 00 OO0 00 6F OO 93 00 D4 06

.opcode_start \uuoumouh: oo 413 00 09 00 47 00 00 0O 17 OO0 01 OO0 OO0 OO0
proc411 000007 00 00 OC O0 &4 19 OO0 00 3E 00 1F 00 09 00 16 OO
strp10 ooolgy®e®: Yoo 00 47 00 3B OO0 09 00 A7 01 00 OO 27 OO0 0O OO
00QE0 ¢'z4 ED 02z 00 A2 00 BA OO 00 0O 17 00 01 OO0 OO0 OO0

4

IOdp 10 oo : 00 00 OC 00 64 15 00 00 3E OO 1F OO0 03 00 09 00
|de 456 0 0750k: 01 00 00 OO0 3B 00 17 00 O1 00 00 00 OO0 00 0C o0
O0760k: 64 159 00 OO0 3E 00 05 00 34 00 94 00 46 06 00 OO0

add.

a.p - 00000770R: A3 OO0 05 00 35 02 00 00 09 00 A5 01 00 00 27 OO
Idi.i 00000780k: OO OO0 BO 04 03 OO0 A2 00 BL 00 00 OO0 43 00 03 00
Idc.i0 Q 00000790R: S0 02 00 OO0 09 OO0 61 00 00 00 27 OO0 OO0 00 18 &6

- 4 000007a0k: 02 OO 09 00 01 OO0 OO0 00 42 00 BE OO OO OO i3 OO
g_t'l 000007k0k: 08 00 4D 02 00 00 08 00 &9 00 OO0 00 27 00 00 00
fip ##9 00000720k: 1C OD 03 00 A2 00 BA 00 00 00 A3 00 09 00 4D 02
lod.p 1 000007d0R: 00 00 09 00 E2 00 00 00 27 00 00 00 28 24 03 00

000007e0h: A2 00 BA 00 00 00 A3 00 09 00 40 02 00 OO0 09 OO
Idc.p 4236 000007£0R: 25 01 00 00 27 00 00 00 14 32 03 00 A2 00 BA OO
add.p 00000200k: OO OO0 A3 00 09 00 40 02 00 00 09 00 44 01 00 00

|0d 1 O 00000S810h: 27 00 00 00 CS 35 03 00 A2 00 EBA OO 0O 0O A3 OO0
p & 00000S820h: 059 00 39 02 00 OO0 09 00 &1 00 OO0 OO 27 00 0D 00

A
Next, Slwolemented was uploaded to SVM and the execution results are shown. The
result scr ows “Gaza Gaza”, “Zoro” and “Ailos” executed and running in the emulator.
The ¢ ion process for each process is the same as the process introduced earlier for

“.

Copyright © 2014 SERSC 29

International Journal of Smart Home
Vol.8, No.2 (2014)

-~

PRRR 5 WA,

Figure 7. Execution @ults of obile Game Contents on the iOS SVM
o\Q (ioswlator Environment)

Moving for aQ\@m exec?@
0

in” the emulator, tests were carried out to check the

implemente rki e hardware. This was carried out on an iPod Touch with iOS
installed. The ement was loaded and the contents were executed. Figure 8 shows
a screen of “Gaza Ga ing on the iPod Touch.

Figure 8. Execution Result of the “Gaza Gaza” Game Content on the iOS SVM
(ported on the iPod Touch)

30 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.2 (2014)

5. Conclusions and Further Researches

A virtual machine has a characteristic of being able to use application programs without
changing it even if the operating system is changed. Especially, it is a core technology which
executes various contents in the latest mobile, embedded and smart systems. In the case of
mobile, embedded and smart systems, for embedded systems, due to diversity and frequent
changes in processors and operating systems, it is suitable to use virtual machines. For
downloadable solutions, virtual machine applications seem to be the valid method.

In the current paper, a virtual machine was designed and implemented on an iOS platform
to download and execute numerous applications loaded on smart devices. As a result, an
environment where various game contents can be executed on smart devices without
restriction of iOS platform and programming language was provided. N

In this research, contents created using C++ was executed on an SVM in i SWhe

able.

results were shown. All languages supported by the smart cross platform are
Therefore, an environment to develop contents easily in iOS without Ianguag@ tion was
provided. .

In future research, development of compiler to further vided by the

irtual machine,
develop security method to minimize bugs and initial period of

content development will be carried out.

Acknowledgements . Q '\%

smart cross platform, optimization of code to enhanff i

This research was supported by Ba ence h Program through the National
Research Foundation of Korea(N |n|stry of Education, Science and
Technology(No. 20110006884) rt b asi C|ence Research Program through the
National Research Foundatlo ea(NR ded by the Ministry of Science, ICT and

future Planning(No. 2013067205)

References .

[1] Apple, iOS Refer, @p rary,l gy Overview, http://developer.apple.com/devcenter/ios.

[2] Goole, Andseid- en Handset ‘ énce Project, http://code.google.com/intl/ko/android/.
[3] Y.S. Son‘ Lee,&D and Implementation of the Virtual Machine for Smart Devices”, Proc. of
the 2011 ference ultimedia Society, Seoul, Korea, (2011).
[4] Y.S. SonandY.S.
International Interdis

Study on the Smart Virtual Machine for Smart Devices”, Information: An
ry Journal, vol. 16, (2013), pp. 1465.
. 7 “A Study on the Smart Virtual Machine for Executing Virtual Machine Codes on
ernational Journal of Smart Home, vol. 6, no. 4, (2012).
[6] Y.S. Son and S. Lee, “An Objective-C Compiler to Generate Platform-Independent Codes in Smart
Device %Dments”, Information: An International Interdisciplinary Journal, vol. 16, (2012), pp. 1457.

[71 Y.S. @ Y. S. Lee, “Design and Implementation of an Objective-C Compiler for the Virtual Machine
ons one”, CCIS, vol. 262, no. 52, (2011).

[8 . un, D. G. Nam, S. M. Oh and J. S. Kim, “Virtual Machine Code for Embedded Systems”,

%rnaﬂonal Conference on CIMCA, Osaka, Japan, (2004).

[9] ough, “Compiling for the .NET Common Language Runtime(CLR)”, Prentice-Hall, (2002).

[10] S.Lindin, “Inside Microsoft .NET IL Assembler”, Microsoft Press, (2002).

[11] J. Meyer and T. Downing, “JAVA Virtual Machine”, O'REYLLY, (1997).

[12] J. Engel, “Programming for the Java Virtual Machine”, Addison-Wesley, (1999).

[13] Y. S. Lee, Y. K. Kim and H. J. Kwon, “Design and Implementation of the Decompiler for Virtual Machine
Code of the C++ Compiler in the Ubiquitous Game Platform”, LNCS, vol. 4413, no. 511, (2007).

[14] Y. S. Lee, “The Virtual Machine Technology for Embedded Systems”, Journal of the Korea Multimedia
Society, vol. 6, no. 36, (2002).

[15] Y. S. Son and Y. S. Lee, “A Study on Optimization Techniques for the Smart Virtual Machine Platform”,
LNCS, vol. 7709, no. 167, (2012).

Copyright © 2014 SERSC 31

http://code.google.com/intl/ko/android/

International Journal of Smart Home
Vol.8, No.2 (2014)

Authors

Yunsik Son, he received the B.S. degree from the Dept. of
Computer Science, Dongguk University, Seoul, Korea, in 2004, and
M.S. and Ph.D. degrees from the Dept. of Computer Engineering,
Dongguk University, Seoul, Korea in 2006 and 2009, respectively.
Currently, he is a Researcher of the Dept. of Computer Science and
Engineering, Dongguk University, Seoul, Korea. His research areas
include smart system solutions, secure software, programming
languages, compiler construction, and mobile/embedded systems.

L 4

JaeHyun Kim, he received the B.S. degree from th of
Mathematics, Hanyang University, Seoul, Korea, in 19 and

Ph.D. degrees from Dept. of Statistics, ,Dongguk Y, Seoul
Korea in 1989 and 1996, respectlvel Was a f Dept. of
m

Internet Information 2002-2007. Cu |s r of the Korean
Data & Information Science .- and a sor of Dept. of
Computer Engineering, Seok’ Uni Seoul Korea. His
research areas include mo p ogram ing, cloud system and data
analysis.

YangSun Lees %ecel S degree from the Dept. of
Comput% ong versity, Seoul, Korea, in 1985, and

M.S. an deg om Dept. of Computer Engineering,
Dongguk erS|t , Korea in 1987 and 2003, respectively.
He w Manag e Computer Center, Seokyeong University

fro 6 200 % |rector of Korea Multimedia Society from
O% eral Director of Korea Multimedia Society from
208 2006 ice President of Korea Multimedia Society in
009. e was a Director of Korea Information Processing
Som% 2006-2010 and a President of a Society for the Study
at Korea Information Processing Society from 2006-2010.
e was a Director of Smart Developer Association from 2011-

dge

3. Currently, he is a Professor of Dept. of Computer Engineering,
okyeong University, Seoul, Korea. His research areas include

% smart system solutions, programming languages, and embedded
O systems.

32 Copyright © 2014 SERSC

