International Journal of Smart Home
Vol.8, No.1 (2014), pp.279-292
http://dx.doi.org/10.14257/ijsh.2014.8.1.29

A Study on the SIL Codes based Java Compiler
for Supporting the Java Contents in the Smart Cross Platform

YunSik Son', SeMan Oh*, JaeHyun Kim? and YangSun Lee®*

Dept. of Computer Engineering, Dongguk University
26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, KOREA
{sonbug, smoh}@dongguk.edu
2Dept. of of Computer Engineering, Seokyeong University
16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA \/‘
statsr@skuniv.ac.kr, *Corresponding Author: yslee@skuniv. ac k

Abstract
The Smart Cross Platform is a virtual machine b %IIO th ports various

programming languages and platforms, and its aims a«e pport p mming languages
like C++, Java and Objective-C and smart pho - torms s Android and iOS.
Various contents that developed by supported language on the oss Platform can be
execute on Android and iOS platforms at no @\llonal ecause it has the platform
independent characteristic by using SIL(S Itermediat nguage) as an intermediate

language.
In this paper, we will introduce a mpll % Smart Cross Platform to support
Java programs into stack based

Java contents. Proposed com |I nslates
intermediate SIL codes to exe%)’ e SVM rt Virtual Machine). Thus, existing JVM'’s
contents can be easily ported an ecut ndroid or iOS with SVM.

Keywords: Smart @thor rtual Machine, Smart Intermediate Language,
SIL Codes based J |Ier St ased SIL Codes

1. Introdu

The previo evelopm nvironments for smart phone contents are needed to generate
specific target code d g on target devices or platforms, and each platform has its own
developing langua erefore, even if the same contents are to be used, it must be
redeveloped dep@ on the target machine and a compiler for that specific machine is
needed, making the’contents development process very inefficient. The Smart Cross Platform
is a virtua&me based solution which aims to resolve such problems, and it uses the SIL
(Smart ediate Language) code which designed by our research team as an input at the
e l@ime[l-q.

%is study, a compiler for use in a program designed in the Java programming
langtfage[5] to be used on the Smart Cross Platform is designed and implemented. In order to
effectively implement the compiler, it was designed to five modules; syntax analysis, class
file loader, symbol information collector, semantic analyzer and code generator.

This paper introduces the Java to SIL compiler in the following order. First, in Section 2,
the Smart Cross Platform, SIL, and SAF are introduced. Following this, the entire
composition of the compiler is introduced and the individual modules are explained in
Section 3. In Section 4, we show the Java to SIL compiler’s implementation and experiments.
Finally, in Section 5, the results of the study and future research directions are discussed.

ISSN: 1975-4094 |JSH
Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

2. Related Studies

2.1. Smart Cross Platform

The Smart Cross Platform developed to support downloading and executing application
programs without platform dependency in the various smart devices. Another purpose of the
Smart Cross Platform is multiple programming languages supporting. It's possible to support
by using the intermediate language named SIL witch designed to cover both procedural
programming languages and object oriented programming languages. Currently, the platform
supports C/C++, Objective-C, and Java which are the most widely used languages used by
developers[1-4].

The Smart Cross Platform consists of three main parts; compiler, assembler ang virtual
machine. It is designed in a hierarchal structure to minimize the burden of the tet ng
process. Figure 1 shows a model of the Smart Cross Platform. ?\

Contents [DDE) Compiler Intermedi’"ﬂ@ssemble

Code
cer || O
Compiler

N SIL
Assemblenj

>\ Virtual
)R ne)
‘\(_SZ,

)

C/C++
program

(*.c/*.cpp)

Objective-C|
program
¢ |

Java ; ID E

program
(*.java)

‘\Q ~ A 7 J
Figur&ystem@i ration of the Smart Cross Platform

The SIL ced a resbgfne compilation process and it is changed into the executing
format SEF (SIL Ex Format) through an assembler. The Smart Virtual Machine
(SVM) then runs t am after receiving the SEF. The SVM is composed by five major
modules - SEF | tack based interpreter, SVM built-in library, native interface, runtime
environments, and\untime environments consist of exception handler, memory management,
and thread ?td.uler. And the SVM is designed to easily add debugging interface, profiling
interface,@ c. The SVM’s system configuration is shown in Figure 2.

mart Intermediate Language)

Compiler

N/

e SIL, the virtual machine code for the SVM, is designed as a standardized virtual ma-
chine code model for ordinary smart phones and embedded systems [6]. The SIL is a stack
based command set which holds independence as a language, hardware and a platform.

280 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

SVM
SiL
Code SEF Loader .
o, Runtime
l Environments
Exception
Handler
Memory
Interpreter Management
Thread
Scheduler
—ﬂ—n—g& I— I:> Result
. Debugging Interface
SVM Native Profiling Interface
Library Interface
- '3
|
b4
Native Platform

\/‘
Figure 2. System Configuration of the Smart Virtual Machi E

In order to accommodate a variety of programming Iang&@tﬁe Sl@ined based on
the analysis of existing virtual machine codes such as hﬁg [7- IL [10,11] and
etc. In addition, it also has the set of arithmetic opgt ode NM” object-oriented
languages and successive languages. g\/

The SIL is composed of meta-code (shows class declarati an specific operations) and
arithmetic codes (responds to actual comman@\thmetf s are not subordinate to any

h

specific hardware or source languages a a abstract form. In order to make
debugging of the languages such as th bly J@ simple, they apply a name rule

with consistency and define the lan in mne for higher readability. In addition,

they have short form arithmetic @pérations for ptl zation. The SIL’s arithmetic codes are
classified into seven categori d each m@ its own detailed subcategories. Figure 3

shows categories of the SIL’ Operatlon

Stack op@ration: | Flow control operations |
B RsicWtack opergt — Conditionalbranch |
P oad Constant to stack top 4‘ Unconditional branch |
AN Pusll/L@i(X to stack top | — Swritch |
Pop stack top to XXX | — Invoke method |
Arithmetic s | Object operations |
e — Field |
Compare 4‘ New object |
\ N
- Increase/Decrease Others |
Shift stack top bits | | Twpe conversion operations |
Logical bitz oparations | | Other operations |

?O Figure 3. Category of the SIL Operation Codes
2.3

mart Assembly Format (SAF)

The code created using high level programming language is converted into SVM’s
assembly format, through the code converter. The SAF format consists of pseudo code and
operation code. This is then converted into a Smart Executable Format (SEF) through the
assembler and is run using the SVM regardless of the system’s operating system or structure.
Table 1 shows the descriptions of SAF’s major mnemonics.

Copyright © 2014 SERSC 281

International Journal of Smart Home
Vol.8, No.1 (2014)

The SAF includes a pseudo code which carries out class creation and other specific jobs

and an operation code which responds to

the actual commands run in the virtual machine. The

operation code is a set of stack based commands which is not subordinate to specific

programming languages, therefore

possessing language independence, hardware

independence and platform independence. As a result, an operation code’s mnemonic has an
abstract form as it is not subordinate to any specific hardware or source languages [12-14].

Table 1. Selected Major Mnemonics for the SAF

Mnemonic

Description

%%HeaderSection[Start/End]
%%CodeSection[Start/End]
%%DataSection[Start/End]
%%DebugSection[Start/End]
%DefinedLiteralCount
%IntializedVariableCount
%UninitializedVariableCount
%ExternalVVariableCount
%ExternalFunctionCount
%InitFunctionName

%EntryFunctionName

%SourceFileName
%Function[Start/End]
%L abel

%Line AQ
%LiteralTabIe[Start/E%
%InternalSymbolTabl rt/End]
func_name Q
func_type \\ %
.param_co Q

2.

ditio
% be the
&
\Describe the

Define the range of the header section.
Define the range of the code section.
Define the range of the data section.
Define the range of the debug section.
Number of literals.
Number of initializedgl
Number of uninitialj

2
w%/mabms@c?
bal varjables.
Number of e iables. V
Number of ei@(unctionxy
Name of ion

e initialize fungtio object.
Name.qfthe éntry poli on for program

@ource file name.
p&t e function.

ine the
gram source file name.
Destyi program source file name.

e range of the literal table section.
the range of the internal symbol table section.

in
@;Ebe the function name.

Describe the function types.

Describe the number of parameters for the function.
Define the range of the operation code section.

.opcade Ttaw/end]
\J

3. Javato SIL Co

In this paper, t
parts and 10 deta

\%4

odules.

to SIL compiler was designed as can be seen in Figure 4. it has five

: Parser/ Symbol Table
» = SDT
@o am | Scanner U ﬁ
a) Symbol
Error information Symbol Code
Recovery P - H Information Generator Target
¢ Collector [Code
1 Declaration (SlIL)
Part
Compiled s \AST Semantic Analyzer / ~
Class File | > | ClassFile Loader [= ‘C’/ass Declaration || Statement] Sta;‘::”:m
(*.class) information Part Part Sernartic
iree
Figure 4. Java to SIL Compiler Model
282 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

The Java to SIL compiler embodies the characteristics of the Java language and therefore
was designed with five different parts; syntax analysis, class file loader, symbol information
collection module, semantic analysis and code generation. The detailed information for each
part is as follows.

The syntax analysis part carries out syntactic analysis regarding the given input program
(*.Java) and converts it into an AST(Abstract Syntax Tree) which holds the equivalent
semantics. There are largely three steps in the syntax analysis part; lexical analysis, syntax
analysis and error recovery [15, 16]. A detailed modules relationship is shown in Figure 5.

Token
Source Steam .
Program =

(* java) , 0
x R
Sl et
“‘(" @ alel '
S
Figure 5. Syntax @\ B@tonﬂgura’uon

= = £rior Message

The Class file loader is the mo u xtrac ym I information needed to syntax analysis,
semantic analysis and code g ion from t -compiled class files. The Class file loader
extracts class mformatlon the |np s files (*.class), and stores it in the symbol

job of saving tion into the-symbol table which is obtained by inserting ASTs and
rounding th he rQu
declaratlons a thers
table is used to mana

table through symbol inf n collec
The module for @nfcrma i ollection consists of symbol information collection
routines and a sy E le. F ymbol information collection routine carries out the

consist of the interface, protocol, class member, ordinary
the characteristics of the Java language). Next, the symbol
mbols(names) and information on the symbols within a program.
The semantic a part is composed of the declarations semantic analysis module and
the statements sa%u&c analysis module. The declarations semantic analysis module checks
the process,of colfecting symbol information on the AST level, to verify cases which are
i rect but semantically incorrect. Semantic analysis of the declarations part is
0 parts; semantic error and semantic warning. The statements semantic analysis
mogul es the AST and symbol table to carry out semantic analysis of statements and
c%a semantic tree as a result using the tree transformation model like Figure 6. A
semaftic tree is a data structure which has semantic information added to it from an AST [17-
20]. It is responsible for all that has not been taken care of during the syntax analysis process
and then it is used to generate codes as it has been designed to generate codes easily.

Copyright © 2014 SERSC 283

International Journal of Smart Home
Vol.8, No.1 (2014)

Tree Transformation

Methods A} '
Method for node A ‘/R

Method for node B

Symbol Table

AST — 00* 0
Figure 6. Tree Transfon Moﬁv

The code generation part receives the ser@ tree.a input after all analysis is
m

complete and it generates a SIL code whi emantic gual to the input pro-gram
(*.java). For this, the SIL code is expre symbo it is convenient to generate and
handle them. For type conversion codgr I¥sts) the structure is kept so that the code

i %version code lists are data structures

generation process can take plac tly. Ty
that pre-calculate the process of § ing a sgfantic code into a SIL code when generating
a code. A code generator visits nodes Y& mantic tree to convert them into SIL codes.

4. Implementation xpe Results
To 1mp1ement t o SI r first the language’s grammar was chosen and then
ta as created. The grammar used was based on JDK 6.0

ar parsing table can be seen in Table 2. A Java grammar file

using this a arsmg

and the infor ntheg

segment in Tabl a Parser Generating System (PGS) input format written in
mar file, Java program consist of package, import, and type

LALR(2). As shown i
laration the main feature defined by class and interface declarations.

declarations. Andt@ i i . :
ble 2. Java Grammar, Parsing Table, Tree Information

o

Name Count
O Grammar Rules 380
% Terminal Symbols 105
Nonterminal Symbols 152
Parsing Table Kernels 650
AST Nodes 153
Semantic Tree Nodes 236

284 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

Table 3. Java Grammar File

SYNTAX JavaGrammer
JavaGrammer-> CompilationUnit => PROGRAM,;

CompilationUnit -> PackageDeclaration ImportDeclarationList TypeDeclarations;
-> PackageDeclaration ImportDeclarationList;
-> PackageDeclaration TypeDeclarations;
-> PackageDeclaration;
-> ImportDeclarationList TypeDeclarations;
-> ImportDeclarationList;
-> TypeDeclarations;

Z. ?y

ImportDeclarationList -> ImportDeclarations

IMPORT @
ImportDeclarations -> ImportDeclaration;
-> ImportDeclarations ImportDeclar Q\

TypeDeclarations -> TypeDeclaration;
-> TypeDeclarations TypeDecIar‘

PackageDeclaration -> ‘package’ Name ;'

ImportDeclaration -> SingleTypelmportDecl %
-> TypelmportOnDema atlon \

SingleTypelmportDeclaration -> i => SINGLE_IMPORT;
TypelmportOnDemandDeclaration { ort' N => QUALIFIED_IMPORT;

TypeDeclaration -> ClassDec r
-> Interfa |on .
> \

Qabl@lch generated by PGS using the Java grammar file in
‘ le

it par3| code is C source program, and it includes symbol
ist ofé @and side for shift-reduce parsing, and table for parsing action

AGE DCL,;

Table 4 shows a_p
Table 3 as a
information,
information.

@'Table 4. Java Parsing Table Code
int Ieﬁ@

ol[NO_RULES+1] ={
191, 190, 137, 137, 137, 137, 137, 137, 137, 137,
O 176, 177, 177, 245, 245, 209, 175, 175, 224, 246,

@O 164, 219, 219, 133, 134, 187, 115 115 115 206,

206, 206, 223, 218, 218, 136};

int rightLength[NO_RULES+1] ={
2, 1, 3 2, 2 1, 2, 1, 1, 0,
1, 1, 2, 1, 2, 3 1, 1, 3, 5

1, 1, 1, 1, 1, 1, 3, 3, 3, 1,
11 11 ly 31 31 3}1

Copyright © 2014 SERSC 285

International Journal of Smart Home
Vol.8, No.1 (2014)

int parsingTable[NO_STATES][NO_SYMBOLS+1] = {
{/*** state 0 ***/

0o, 00 00 00 00 0,0 O, O, O, O
0, 00 00 00 00 00 0,0 0,0 O O
0, 00 00 00 00 00 0,0 0,0 O 0O
0, 00 00 00 O, O, 30, O, 0, O,
0, 00 00 00 00 00 0,0 0,0 O O
0, 0,0 0, 0, -9, 29 0, 0, 0, O,
0, 00 00 00 3, 2,1 0, 0 0
0, 00 00 00 00 O, O, O, O, 0},
{/*** state 1 ***/
0

SES
oo
oo
g

, 0,0 0 0 0 \/.

Table 5. Example Program(TlcTiﬁjava) %
y
public class TicTacToe extends Component g set

{ ize = dSlze()
L|ne(e, 3*fieldSize,
public TicTacToe() { fieNSize);

this.player =0 .drawk i fieldSize+1,

this.computer = 0; . fieldSize, fieldSize+1);
A
}

} \G_)

public void paint(Graphics

g.setColor(getBackgr : ¢

g.fillRect(0, O, getSize().width,
getSize()@ht)' \

Next, we t proc Qonvemng the source program’s code(written in Java
language) in target he SIL code, using the implemented Java to SIL compiler.
Table 5 has b create@ at the characteristics of the declarations and syntax of the
example program can n using the Java language.

Table 6 shows structures generated from the input program. You can see that the
syntax have bee essed using the AST nodes defined earlier on. Table 7 shows a part of
the SIL cod@h s been generated using a semantic tree.

Table 6. AST for an Example Program Segment
Nonter; : PROGRAM SIMPLE_NAME Terminal: player

Terminal: Component Nonterminal: FIELD_DCL
minal: CLASS_DCL Nonterminal: CLASS_BODY Nonterminal: PRIVATE
terminal: PUBLIC Nonterminal: FIELD_DCL Nonterminal: DCL_SPEC
Terminal: TicTacToe Nonterminal: PRIVATE Nonterminal: INT_TYPE
Nonterminal: EXTENDS Nonterminal: DCL_SPEC Nonterminal: VAR_ITEM
Nonterminal: CLASS_ Nonterminal: INT_TYPE Nonterminal:
INTERFACE_TYPE Nonterminal: VAR_ITEM SIMPLE_VAR
Nonterminal: Nonterminal: Terminal: computer
SIMPLE_VAR

286 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

Table 7. Generated SIL Code for Example Program

add.p Idc.i 1 lod.i 1 12
%%HeaderSectionStart Idc.i 0 stri 18 stri 1 12
sti.i %Label ##3 add.p
%%HeaderSectionEnd lodp 1 0 lodi 1 8 Idi.p
%%CodeSectionStart ldc.p 4 lodi 1 4
%FunctionStart add.p Idc.i 2 .opcode_end
func_name Idc.i O div.i %FunctionEnd
&TicTacToe:: TicTacToe$0 sti.i le.i
func_type 2 %Label ##0 fip ##4
.param_count 0 lodi 1 4 lodi 1 4 %%CodeSectionEnd
.opcode_start lodi 1 0 lodi 1 8 %%DataSectionStart
proc 16 1 1 le.i mod.i
lodp 1 0 fip ##l Idc.i 0 %%DataSectionEnd
ldc.p Idc.i 0 eq.i lod.i 1 8 *
stri 112 fip ##6 add.i

Next Table 8 shows the experimental result of implemented compiler® lect the
example files to test main features of the Java programm g,langu e class, sub
class, method overloading, and interface/abstract class

Table 8. AST for an Examplw KV
(a) Class Exal

Source code { Coder/ Mtlon Result

class Fraction { %%Hg onStart procva4ll
int numerator, denominator; str.p10
Fraction(int num, int denom) { |IeNa @ractlon java ldp
numerator = num; eaderSectio Idp
denominator = denom; } 090 odeSectlonSta Idp
public void printFraction() { omltted lod.i10
System.out.println(numerator %Funcm% 1da0@0
+"[" + denominator); } action.printFraction calls8

lod.il4

} <
public class SubPartOfFractj N calls8
public static void ingf] args) { . | ... omitted ...
Fraction f = nevclk' 1,2);
1

f.printFraction wrtOf Fraction

}
(b) Sub Class Example
Sour SIL Code / Execution Result
cllass Sutp))erICIass a 1 m: b=1;} oir %’:Ciggié't'an :g:ll%@loo
WA
¢ aI?]st iu_ ¢ aszsble :Szugerc ass { .func_name&SubClass.output calls8
void 0%-(7 - func_type2 da0@4
tprintin("Base class: a = .pararg_cotur;tto calls8
er.a+ ", Extended class: a =" + a); -opcode_stal Idfld.i18
@tem out printin(*Base class: b = " procvad1l calls8
+ super.b +", Extended class: b =" +b); } Is(tjl;).plo calls217
... omitted ...
ublic class NameConflict { ldp
public static void main(String[] args) { ldp

SubClass obj = new SubClass();
obj.output();
} a Eh.tEI'IIﬂ.EIﬂ.

}

(c) Method Overloading Example
Source code SIL Code / Execution Result

Copyright © 2014 SERSC 287

International Journal of Smart Home
Vol.8, No.1 (2014)

public class MethodOverloading {

void someThing() {

System.out.printin("someThing() is called.");

void someThing(int i) {

System.out.printin(

"someThing(int) is called.");

void someThing(int i, int j) {

System.out.printin(

"someThing(int,int) is called.");

... omitted ...
%FunctionStart
.func_name&Method
Overloading.
someThing$1
func_type2
.param_countl
.opcode_start
procva4ll

calls217

... omitted ...

ret

.opcode_end

%FunctionStart

.func_name&Method
Overloading.
someThing$2

func_type2

.param_count2

.opcode_start

... Omitted ...

}
public static void main(String[] args) {
MethodOverloading m
= new MethodOverloading();
m.someThing();
m.someThing(526);
m.someThing(54, 526);

tttest>sum MethodOverloading
omeThing{)> is
omeThing{int> i

omeThing{int,.int) i:

}
}
V
(d) Interface, Abstract Class ple
Source code de'/ E utlo esult
interface BaseColors { omitte
int RED =1, GREEN = 2, BLUE = 4; % ohStart y
void setColor(int color); fun e&lmplem nterface.main
int getColor(); nc type2
} %am couﬂ
abstract class SetColor implements BaseColors { . “opcode_ start
protected int color; procva
public void setColor(int color) { A@
this.color = color; % lor$0
System.out.printIn("in the setColor m
dp

} A
} al0
class Color extends SetColor { dc12
public int getColor() { Q add.p
System.out. prlntln(in the @Ior method \ calli

return color; str.il4

}
}
public class ImIe nterface {

... omitted ...
tttest>svm ImplementingInter
lin the setColor method ...

public sta ot hain(St”ng lin the getColor method ...
Color ¢ /\Color(); in the main method ...
c.setColord);
inti=c. getCoIor()

System.out.printn(main method ...");
N~ N

3

288 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

Table 9. Execution Result of the Sample Game Content on the Smart Cross
Platform(Android Ver.)

Source code Execution Result

class FingerRunner {
class ContentsThread extends Thread {
void EVENT_START ()
{
ContentsGlobalVar.f_cx pEEp X
= GnexGlobalVar.swWidth >> 1; —- =
ContentsGlobalVar.f_cy

|
= GnexGlobalVar.swHeight >> 1; MG RULe!

if (GnexGlobalVar.swHeight > 800)
ContentsGlobalVar.PosTop / 1 /
= ContentsGlobalVar.f_cy - 400; St a rt

else
ContentsGlobalVar.PosTop = 0;
ReadRom(); Mc_i_s,
ContentsGlobalVar.f_state
= ContentsGlobalVar.FR_LOGO;
InitLogo();
InitTouchArea();
GnexApi.SetTimer(2, 1);
GnexApi.SetTimer1(500, 0);

-Le "«v

Table 9 shows the execution res me content. The experimental
SVM is ported on the Android pI and th& nt is executed on the SVM in the
Android.

5. Conclusions

Virtual machines,r @he tec sq%!of using the same application program even if
the process or ope system,i nged. It is the core technique that can be loaded
onto recently b g smart necessary as an independent download solution
software tec

In this st he Jam IL compiler was designed and implemented to run the
target contents that inally created for another platform to enable its use on the
Smart Cross Platf this paper, we defined five modules to create a compiler and
generate a SIL r use on the SVM which is independent of platforms. As a result,
programs devyel for use as Java contents could be run on the SVM using the
compiler *bped throughout the study and therefore expenses required when
producing sdch contents can be minimized.
ure, there is need for research on an Android Java to SIL compiler so that
contents can be run by the Smart Cross Platform. Further research on
optigaizers and assemblers for SIL code programs are also needed so that SIL codes that
have been generated can execute effectively on the SVM.

Acknowledgements

This paper was extended from the previous research paper “Design and Implementation of
the Java Compiler for the Smart Virtual Machine Platform” in MulGraB 2012.

Copyright © 2014 SERSC 289

International Journal of Smart Home
Vol.8, No.1 (2014)

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and
Technology(No. 20110006884), and in part by Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and
future Planning(No. 2013R1A2A2A01067205).

References

[1] Y. S. Son and Y. S. Lee, “A Study on the Smart Virtual Machine for Smart Devices”, Information-an
International Interdisciplinary Journal, International Information Institute, vol. 16, no. 1465, (2013).

[2] S. M. Han, Y.S. Sonand Y. S. Lee, “Design and Implementation of the Smart Virtual Machine for Smart
Cross Platforms™, Journal of Korea Multimedia Society, Korea Multimedia Society, vol. 16, no. 190, (2013).

[3] Y.S.LeeandY.S. Son, “A Study on the Smart Virtual Machine for Executing Virtual Maching Codes gn
Smart Platforms”, International Journal of Smart Home, SERSC, vol. 6, no. 93, (2012). »

[4] Y.S. Lee, “The Virtual Machine Technology for Embedded Systems™, Journal of Korea Multi ciety,
Korea Multimedia Society, vol. 6, no. 36, (2002).

[5] The Java Language & Virtual Machine Specificalions, Oracle,
http://docs.oracle.com/javase/specs/index.html. .

[6] S.L.Yun,D.GNam,S. M. Oh and J. S Kim, “Virtual Machine C& mbedde stgins”, International

Conference on CIMCA, vol. 206, (2004). V

[7] J. Meyer and T. Downing, “JAVA Virtual Machine”, O'RE¥ 997).

[8] T.Lindholmand F. Yellin, “The Java™ Virtual Machine @ ation” Vddison Wesley, (1999).
[9] J. Engel, “Programming for the Java Virtual Machine”, AddiSen-Wesley, (1 .

[10] S. Lindin, “Inside Microsoft .NET IL Assembler”, M{Crosgft Press, (

[11] Microsoft, MSIL Instruction Set Specification M@: Corporati 0).

[12] A. V. Aho, M. S. Lam, R. Sethi and J. D. Uﬁ ompilerswPrinciples, Techniques, & Tools. Addison-
Wesley”, (2007). é . @

[13] D. Grune, H. E. Bal, C. J. H. Jacobs and ngend \
(2000).

[14] S. M. Oh, “Introduction to Compil ’@edition,

[15] I. S. Kim and K. M. Choe, epair witf
Programming Languages and Systems, AC

ern Compiler Design”, John Wiley & Sons,

ik Publishing, Seoul, Republic of Korea, (2006).
tion in LR-Based Parsing”, ACM Transactions on
no. 451, (2001).

ctical LR Error Recovery”, Proceedings of the SIGPLAN

[16] S. L. Graham, C. B. Hale W. N. Joya¢*
Symposium on Compil uction, ACM,%el. 13, no. 168, (1979).
[17] J. M. Barth, “A Practi ntérproced ata Flow Analysis Algorithm”, Communications of the ACM, 21,

ACM, 724, (1978 \$
[18] Y. S. Son, “2-Lexel €ode Generati ng Semantic Tree”, Master Thesis, Dongguk University, (2006).
[19] Y. S. So NS, Lee, © bjective-C Compiler to Generate Platform-Independent Codes in Smart
ents”, | on: An International Interdisciplinary Journal, International Information
Institute, vol. 16, no. 145 12).
[20] Y. S. Son and Y. W “A Study on the Java Compiler for the Smart Virtual Machine Platform”,
u

Communicatio@ ter and Information Science (CCIS), Springer, vol. 353, no. 135, (2012).
Authors

N

on, he received the B.S. degree from the Dept. of Computer Science,
niversity, Seoul, Korea, in 2004, and M.S. and Ph.D. degrees from the Dept.
puter Engineering, Dongguk University, Seoul, Korea in 2006 and 2009,
respectively. Currently, he is a Researcher of the Dept. of Computer Science and
Engineering, Dongguk University, Seoul, Korea. His research areas include smart
system solutions, secure software, programming languages, compiler construction, and
mobile/embedded systems.

290 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

SeMan Oh, he received the B.S. degree from the Seoul National University, Seoul, Korea,
in 1977, and M.S. and Ph.D. degrees from the Dept. of Computer Science, Korea Advanced
Institute of Science and Technology, Seoul, Korea in 1979 and 1985, respectively. He was a
Dean of the Dept. of Computer Science and Engineering, Graduate School, Dongguk
University from 1993-1999, a Director of SIGPL in Korea Institute of Information Scientists
and Engineers from 2001-2003, a Director of SIGGAME in Korea Information Processing
Society from 2004-2005. Currently, he is a Professor of the Dept. of Computer Science and
Engineering, Dongguk University, Seoul, Korea. His research areas include smart system
solutions, programming languages, and embedded systems.

JaeHyun Kim, he received the B.S. degree from the Dept. of Mathematics, anyang

University, Seoul, Korea, in 1986, and M.S. and Ph.D. degrees from Dept Ics,
Dongguk University, Seoul, Korea in 1989 and 1996, respectively. He Wa rman of
Dept. of Internet Information 2002-2007. Currently, he is a member of the Data &
Information Science Society and a Professor of Dept. of ter En Seokyeong

ud system and

University, Seoul, Korea. His research areas include mo% ooral

data analysis. O

YangSun Lee, he received the B.S. om the t of Computer Science,
Dongguk University, Seoul, Korea, in].9@ M.S. a .D. degrees from Dept. of
Computer Engineering, Dongguk ty, Korea in 1987 and 2003,
respectively. He was a Manager of er, Seokyeong University from
1996-2000, a Director of Itlmedla iety from 2004-2014, a General
Director of Korea Multimedﬁ y fro 05-2006 and a Vice President of Korea
Multimedia Society in 2009 W, rector of Korea Information Processing
Society from 2006-2013 a Presi Qa Society for the Study of Game at Korea
Information Processm ety frgm 6-2010. And, he was a Director of Smart
Developer Associ fiarNfrom 205&014 Currently, he is a Professor of Dept. of
Computer Engineering,’ Seoky U |verS|ty, Seoul, Korea. His research areas include
smart syste

Copyright © 2014 SERSC 291

Internat ional Journal | of Smart Home
Vol.8, No.1 (2014)

292 Copyright © 2014 SERSC

