
International Journal of Smart Home

Vol.8, No.1 (2014), pp.279-292

http://dx.doi.org/10.14257/ijsh.2014.8.1.29

ISSN: 1975-4094 IJSH

Copyright ⓒ 2014 SERSC

A Study on the SIL Codes based Java Compiler

for Supporting the Java Contents in the Smart Cross Platform

YunSik Son
1
, SeMan Oh

1
, JaeHyun Kim

2
 and YangSun Lee

2
*

1
Dept. of Computer Engineering, Dongguk University

26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, KOREA

{sonbug, smoh}@dongguk.edu
2
Dept. of of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA

statsr@skuniv.ac.kr, *Corresponding Author: yslee@skuniv.ac.kr

Abstract

The Smart Cross Platform is a virtual machine based solution that supports various

programming languages and platforms, and its aims are to support programming languages

like C++, Java and Objective-C and smart phone platforms such as Android and iOS.

Various contents that developed by supported language on the Smart Cross Platform can be

execute on Android and iOS platforms at no additional cost, because it has the platform

independent characteristic by using SIL(Smart Intermediate Language) as an intermediate

language.

In this paper, we will introduce a Java compiler for the Smart Cross Platform to support

Java contents. Proposed compiler translates given Java programs into stack based

intermediate SIL codes to execute on the SVM(Smart Virtual Machine). Thus, existing JVM’s

contents can be easily ported and executed on the Android or iOS with SVM.

Keywords: Smart Cross Platform, Smart Virtual Machine, Smart Intermediate Language,

SIL Codes based Java Compiler, Stack based SIL Codes

1. Introduction

The previous development environments for smart phone contents are needed to generate

specific target code depending on target devices or platforms, and each platform has its own

developing language. Therefore, even if the same contents are to be used, it must be

redeveloped depending on the target machine and a compiler for that specific machine is

needed, making the contents development process very inefficient. The Smart Cross Platform

is a virtual machine based solution which aims to resolve such problems, and it uses the SIL

(Smart Intermediate Language) code which designed by our research team as an input at the

execution time[1-4].

In this study, a compiler for use in a program designed in the Java programming

language[5] to be used on the Smart Cross Platform is designed and implemented. In order to

effectively implement the compiler, it was designed to five modules; syntax analysis, class

file loader, symbol information collector, semantic analyzer and code generator.

This paper introduces the Java to SIL compiler in the following order. First, in Section 2,

the Smart Cross Platform, SIL, and SAF are introduced. Following this, the entire

composition of the compiler is introduced and the individual modules are explained in

Section 3. In Section 4, we show the Java to SIL compiler’s implementation and experiments.

Finally, in Section 5, the results of the study and future research directions are discussed.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

280 Copyright ⓒ 2014 SERSC

2. Related Studies

2.1. Smart Cross Platform

The Smart Cross Platform developed to support downloading and executing application

programs without platform dependency in the various smart devices. Another purpose of the

Smart Cross Platform is multiple programming languages supporting. It's possible to support

by using the intermediate language named SIL witch designed to cover both procedural

programming languages and object oriented programming languages. Currently, the platform

supports C/C++, Objective-C, and Java which are the most widely used languages used by

developers[1-4].

The Smart Cross Platform consists of three main parts; compiler, assembler and virtual

machine. It is designed in a hierarchal structure to minimize the burden of the retargeting

process. Figure 1 shows a model of the Smart Cross Platform.

Figure 1. System Configuration of the Smart Cross Platform

The SIL code is a result of the compilation process and it is changed into the executing

format SEF (SIL Executable Format) through an assembler. The Smart Virtual Machine

(SVM) then runs the program after receiving the SEF. The SVM is composed by five major

modules - SEF loader, stack based interpreter, SVM built-in library, native interface, runtime

environments, and runtime environments consist of exception handler, memory management,

and thread scheduler. And the SVM is designed to easily add debugging interface, profiling

interface, and etc. The SVM’s system configuration is shown in Figure 2.

2.2. SIL (Smart Intermediate Language)

The SIL, the virtual machine code for the SVM, is designed as a standardized virtual ma-

chine code model for ordinary smart phones and embedded systems [6]. The SIL is a stack

based command set which holds independence as a language, hardware and a platform.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 281

Figure 2. System Configuration of the Smart Virtual Machine

In order to accommodate a variety of programming languages, the SIL is defined based on

the analysis of existing virtual machine codes such as bytecode [7-9], .NET IL [10,11] and

etc. In addition, it also has the set of arithmetic operations codes to support object-oriented

languages and successive languages.

The SIL is composed of meta-code (shows class declarations and specific operations) and

arithmetic codes (responds to actual commands). Arithmetic codes are not subordinate to any

specific hardware or source languages and thus have an abstract form. In order to make

debugging of the languages such as the assembly language simple, they apply a name rule

with consistency and define the language in mnemonics, for higher readability. In addition,

they have short form arithmetic operations for optimization. The SIL’s arithmetic codes are

classified into seven categories and each one has its own detailed subcategories. Figure 3

shows categories of the SIL’s operation codes.

Figure 3. Category of the SIL Operation Codes

2.3. Smart Assembly Format (SAF)

The code created using high level programming language is converted into SVM’s

assembly format, through the code converter. The SAF format consists of pseudo code and

operation code. This is then converted into a Smart Executable Format (SEF) through the

assembler and is run using the SVM regardless of the system’s operating system or structure.

Table 1 shows the descriptions of SAF’s major mnemonics.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

282 Copyright ⓒ 2014 SERSC

The SAF includes a pseudo code which carries out class creation and other specific jobs

and an operation code which responds to the actual commands run in the virtual machine. The

operation code is a set of stack based commands which is not subordinate to specific

programming languages, therefore possessing language independence, hardware

independence and platform independence. As a result, an operation code’s mnemonic has an

abstract form as it is not subordinate to any specific hardware or source languages [12-14].

Table 1. Selected Major Mnemonics for the SAF

Mnemonic Description

%%HeaderSection[Start/End] Define the range of the header section.

%%CodeSection[Start/End] Define the range of the code section.

%%DataSection[Start/End] Define the range of the data section.

%%DebugSection[Start/End] Define the range of the debug section.

%DefinedLiteralCount Number of literals.

%IntializedVariableCount Number of initialized global variables.

%UninitializedVariableCount Number of uninitialized global variables.

%ExternalVariableCount Number of external variables.

%ExternalFunctionCount Number of external functions.

%InitFunctionName Name of the initialize function for object.

%EntryFunctionName
Name of the entry point function for program

execution.

%SourceFileName Describe the program source file name.

%Function[Start/End] Define the range of the function.

%Label Describe the program source file name.

%Line Describe the program source file name.

%LiteralTable[Start/End] Define the range of the literal table section.

%InternalSymbolTable[Start/End] Define the range of the internal symbol table section.

.func_name Describe the function name.

.func_type Describe the function types.

.param_count Describe the number of parameters for the function.

.opcode_[start/end] Define the range of the operation code section.

3. Java to SIL Compiler

In this paper, the Java to SIL compiler was designed as can be seen in Figure 4. it has five

parts and 10 detailed modules.

Figure 4. Java to SIL Compiler Model

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 283

The Java to SIL compiler embodies the characteristics of the Java language and therefore

was designed with five different parts; syntax analysis, class file loader, symbol information

collection module, semantic analysis and code generation. The detailed information for each

part is as follows.

The syntax analysis part carries out syntactic analysis regarding the given input program

(*.java) and converts it into an AST(Abstract Syntax Tree) which holds the equivalent

semantics. There are largely three steps in the syntax analysis part; lexical analysis, syntax

analysis and error recovery [15, 16]. A detailed modules relationship is shown in Figure 5.

Figure 5. Syntax Analysis Module Configuration

The Class file loader is the module to extract symbol information needed to syntax analysis,

semantic analysis and code generation from the pre-compiled class files. The Class file loader

extracts class information from the inputted class files (*.class), and stores it in the symbol

table through symbol information collector.

The module for symbol information collection consists of symbol information collection

routines and a symbol table. First, the symbol information collection routine carries out the

job of saving information into the symbol table which is obtained by inserting ASTs and

rounding the tree. The routines consist of the interface, protocol, class member, ordinary

declarations and others (given the characteristics of the Java language). Next, the symbol

table is used to manage the symbols(names) and information on the symbols within a program.

The semantic analysis part is composed of the declarations semantic analysis module and

the statements semantic analysis module. The declarations semantic analysis module checks

the process of collecting symbol information on the AST level, to verify cases which are

grammatically correct but semantically incorrect. Semantic analysis of the declarations part is

handled by two parts; semantic error and semantic warning. The statements semantic analysis

module uses the AST and symbol table to carry out semantic analysis of statements and

creates a semantic tree as a result using the tree transformation model like Figure 6. A

semantic tree is a data structure which has semantic information added to it from an AST [17-

20]. It is responsible for all that has not been taken care of during the syntax analysis process

and then it is used to generate codes as it has been designed to generate codes easily.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

284 Copyright ⓒ 2014 SERSC

Figure 6. Tree Transformation Model

The code generation part receives the semantic tree as an input after all analysis is

complete and it generates a SIL code which is semantically equal to the input pro-gram

(*.java). For this, the SIL code is expressed as symbols so it is convenient to generate and

handle them. For type conversion code lists, the same data structure is kept so that the code

generation process can take place efficiently. Type conversion code lists are data structures

that pre-calculate the process of converting a semantic code into a SIL code when generating

a code. A code generator visits each nodes of the semantic tree to convert them into SIL codes.

4. Implementation and Experimental Results

To implement the Java to SIL compiler, first the language’s grammar was chosen and then

using this a LALR(1) parsing table was created. The grammar used was based on JDK 6.0

and the information on the grammar parsing table can be seen in Table 2. A Java grammar file

segment in follow Table 3 is a Parser Generating System (PGS) input format written in

LALR(1). As shown in grammar file, Java program consist of package, import, and type

declarations. And type declaration the main feature defined by class and interface declarations.

Table 2. Java Grammar, Parsing Table, Tree Information

Name Count

Grammar Rules 380

Terminal Symbols 105

Nonterminal Symbols 152

Parsing Table Kernels 650

AST Nodes 153

Semantic Tree Nodes 236

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 285

Table 3. Java Grammar File

SYNTAX JavaGrammer

JavaGrammer-> CompilationUnit => PROGRAM;

CompilationUnit -> PackageDeclaration ImportDeclarationList TypeDeclarations;

 -> PackageDeclaration ImportDeclarationList;

 -> PackageDeclaration TypeDeclarations;

 -> PackageDeclaration;

 -> ImportDeclarationList TypeDeclarations;

 -> ImportDeclarationList;

 -> TypeDeclarations;

 -> ;

 ImportDeclarationList -> ImportDeclarations

 => IMPORT_DCL_LIST;

 ImportDeclarations -> ImportDeclaration;

 -> ImportDeclarations ImportDeclaration;

 TypeDeclarations -> TypeDeclaration;

 -> TypeDeclarations TypeDeclaration;

 PackageDeclaration -> 'package' Name ';' => PACKAGE_DCL;

 ImportDeclaration -> SingleTypeImportDeclaration;

 -> TypeImportOnDemandDeclaration;

 SingleTypeImportDeclaration -> 'import' Name ';' => SINGLE_IMPORT;

 TypeImportOnDemandDeclaration -> 'import' Name '.' '*' ';' => QUALIFIED_IMPORT;

 TypeDeclaration -> ClassDeclaration;

 -> InterfaceDeclaration;

 -> ';';

…

Table 4 shows a parsing table code which generated by PGS using the Java grammar file in

Table 3 as a input. The parsing table code is C source program, and it includes symbol

information, length list of right hand side for shift-reduce parsing, and table for parsing action

information.

Table 4. Java Parsing Table Code

 int leftSymbol[NO_RULES+1] = {

 191, 190, 137, 137, 137, 137, 137, 137, 137, 137,

 176, 177, 177, 245, 245, 209, 175, 175, 224, 246,

 ...

 164, 219, 219, 133, 134, 187, 115, 115, 115, 206,

 206, 206, 223, 218, 218, 136};

 int rightLength[NO_RULES+1] = {

 2, 1, 3, 2, 2, 1, 2, 1, 1, 0,

 1, 1, 2, 1, 2, 3, 1, 1, 3, 5,

 ...

 1, 1, 1, 1, 1, 1, 3, 3, 3, 1,

 1, 1, 1, 3, 3, 3};

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

286 Copyright ⓒ 2014 SERSC

 int parsingTable[NO_STATES][NO_SYMBOLS+1] = {

 {/*** state 0 ***/

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 30, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, -9, 29, 0, 0, 0, 0,

 ...

 0, 0, 0, 0, 3, 2, 1, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {/*** state 1 ***/

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0,

 ...

Table 5. Example Program(TicTacToe.java)

public class TicTacToe extends Component

{

...

 public TicTacToe() {

this.player = 0;

this.computer = 0;

...

 }

 public void paint(Graphics g) {

g.setColor(getBackground());

g.fillRect(0, 0, getSize().width,

 getSize().height);

g.setColor(gridColor);

int fieldSize = this.getFieldSize();

g.drawLine(0, fieldSize, 3*fieldSize,

 fieldSize);

g.drawLine(0, fieldSize+1,

3*fieldSize, fieldSize+1);

...

}

 ...

}

…

Next, we show the process of converting the source program’s code(written in Java

language) into the target code, the SIL code, using the implemented Java to SIL compiler.

Table 5 has been created so that the characteristics of the declarations and syntax of the

example program can be seen using the Java language.

Table 6 shows the AST structures generated from the input program. You can see that the

syntax have been expressed using the AST nodes defined earlier on. Table 7 shows a part of

the SIL code that has been generated using a semantic tree.

Table 6. AST for an Example Program Segment
Nonterminal: PROGRAM

…
 Nonterminal: CLASS_DCL

 Nonterminal: PUBLIC
 Terminal: TicTacToe

 Nonterminal: EXTENDS

 Nonterminal: CLASS_
INTERFACE_TYPE

 Nonterminal:

SIMPLE_NAME

 Terminal: Component
 Nonterminal: CLASS_BODY

 Nonterminal: FIELD_DCL
 Nonterminal: PRIVATE

Nonterminal: DCL_SPEC

 Nonterminal: INT_TYPE
 Nonterminal: VAR_ITEM

Nonterminal:
 SIMPLE_VAR

 Terminal: player

 Nonterminal: FIELD_DCL
 Nonterminal: PRIVATE

 Nonterminal: DCL_SPEC
 Nonterminal: INT_TYPE

 Nonterminal: VAR_ITEM

 Nonterminal:
 SIMPLE_VAR

 Terminal: computer
…

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 287

Table 7. Generated SIL Code for Example Program

%%HeaderSectionStart

…

%%HeaderSectionEnd

%%CodeSectionStart

 %FunctionStart
 .func_name

&TicTacToe::TicTacToe$0
 .func_type 2

 .param_count 0

 .opcode_start
 proc 16 1 1

 lod.p 1 0
 ldc.p

add.p
ldc.i 0

 sti.i
 lod.p 1 0

 ldc.p 4

 add.p
 ldc.i 0

 sti.i
%Label ##0

lod.i 1 4

lod.i 1 0
le.i

fjp ##1
ldc.i 0

str.i 1 12

ldc.i 1
str.i 1 8

%Label ##3
lod.i 1 8

lod.i 1 4

ldc.i 2
div.i

le.i
fjp ##4

lod.i 1 4

lod.i 1 8
mod.i

ldc.i 0
eq.i

fjp ##6

lod.i 1 12
str.i 1 12

add.p
 ldi.p

 …

 .opcode_end
 %FunctionEnd

 …

%%CodeSectionEnd

%%DataSectionStart
…

%%DataSectionEnd
lod.i 1 8

add.i

Next Table 8 shows the experimental result of implemented compiler. We select the

example files to test main features of the Java programming language like class, sub

class, method overloading, and interface/abstract class.

Table 8. AST for an Example Program Segment

(a) Class Example

Source code SIL Code / Execution Result

class Fraction {
int numerator, denominator;
Fraction(int num, int denom) {

numerator = num;
denominator = denom; }

public void printFraction() {
System.out.println(numerator

 + "/" + denominator); }
}
public class SubPartOfFraction {

public static void main(String[] args) {
Fraction f = new Fraction(1, 2);
f.printFraction(); }

}

%%HeaderSectionStart
... omitted ...

%SourceFileNameSubPartOfFraction.java
%%HeaderSectionEnd
%%CodeSectionStart
... omitted ...

%FunctionStart
.func_name&Fraction.printFraction
.func_type2
.param_count0
.opcode_start

procva411
str.p10
ldp
ldp
ldp
lod.i10
lda0@0
calls8
lod.i14
calls8

... omitted ...

 (b) Sub Class Example

Source code SIL Code / Execution Result

class SuperClass { int a = 1; int b = 1; }
class SubClass extends SuperClass {

int a = 2; double b = 2.0;

void output() {
System.out.println("Base class: a = "

 + super.a + ", Extended class: a = " + a);

System.out.println("Base class: b = "

 + super.b +", Extended class: b = " + b); }
}
public class NameConflict {

public static void main(String[] args) {
SubClass obj = new SubClass();
obj.output();

}
}

... omitted ...
%FunctionStart
.func_name&SubClass.output
.func_type2
.param_count0
.opcode_start
procva411
str.p10
ldp
ldp
ldp
ldp

lda0@0
ldfld.i10
calls8
lda0@4
calls8
ldfld.i18
calls8
calls217

... omitted ...

(c) Method Overloading Example

Source code SIL Code / Execution Result

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

288 Copyright ⓒ 2014 SERSC

public class MethodOverloading {
void someThing() {

System.out.println("someThing() is called.");
}
void someThing(int i) {

System.out.println(

"someThing(int) is called.");
}
void someThing(int i, int j) {

System.out.println(

"someThing(int,int) is called.");
}
public static void main(String[] args) {

MethodOverloading m
 = new MethodOverloading();

m.someThing();
m.someThing(526);
m.someThing(54, 526);

}
}

... omitted ...
%FunctionStart
.func_name&Method

Overloading.
someThing$1

.func_type2

.param_count1

.opcode_start
procva411
str.p10
ldp
lda0@1

calls217
... omitted ...

ret
.opcode_end
%FunctionStart
.func_name&Method

Overloading.
someThing$2

.func_type2

.param_count2

.opcode_start
... omitted ...

(d) Interface, Abstract Class Example

Source code SIL Code / Execution Result
interface BaseColors {

int RED = 1, GREEN = 2, BLUE = 4;
void setColor(int color);
int getColor();

}
abstract class SetColor implements BaseColors {

protected int color;
public void setColor(int color) {

this.color = color;
 System.out.println("in the setColor method ...");

}
}
class Color extends SetColor {

public int getColor() {
System.out.println("in the getColor method ...");
return color;

}
}
public class ImplementingInterface {

public static void main(String[] args) {
Color c = new Color();
c.setColor(10);
int i = c.getColor();
System.out.println("in the main method ...");

}
}

... omitted ...
%FunctionStart
.func_name&ImplementingInterface.main
.func_type2
.param_count1
.opcode_start
procva414
str.p10
callColor.Color$0
sta10
ldp
lda10
ldc12
add.p
calli
str.i14

... omitted ...

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 289

Table 9. Execution Result of the Sample Game Content on the Smart Cross
Platform(Android Ver.)

Source code Execution Result

class FingerRunner {

class ContentsThread extends Thread {

void EVENT_START ()
{

ContentsGlobalVar.f_cx
 = GnexGlobalVar.swWidth >> 1;

ContentsGlobalVar.f_cy

 = GnexGlobalVar.swHeight >> 1;
if (GnexGlobalVar.swHeight > 800)

ContentsGlobalVar.PosTop
 = ContentsGlobalVar.f_cy - 400;

else

ContentsGlobalVar.PosTop = 0;

ReadRom();

ContentsGlobalVar.f_state
 = ContentsGlobalVar.FR_LOGO;

InitLogo();

InitTouchArea();
GnexApi.SetTimer(2, 1);

GnexApi.SetTimer1(500, 0);
}

…

Table 9 shows the execution result for the Java game content. The experimental

SVM is ported on the Android platform, and the content is executed on the SVM in the

Android.

5. Conclusions

Virtual machines refer to the technique of using the same application program even if

the process or operating system is changed. It is the core technique that can be loaded

onto recently booming smart phones, necessary as an independent download solution

software technique.

In this study, the Java to SIL compiler was designed and implemented to run the

target contents that was originally created for another platform to enable its use on the

Smart Cross Platform. In this paper, we defined five modules to create a compiler and

generate a SIL code for use on the SVM which is independent of platforms. As a result,

programs developed for use as Java contents could be run on the SVM using the

compiler developed throughout the study and therefore expenses required when

producing such contents can be minimized.

In the future, there is need for research on an Android Java to SIL compiler so that

Android contents can be run by the Smart Cross Platform. Further research on

optimizers and assemblers for SIL code programs are also needed so that SIL codes that

have been generated can execute effectively on the SVM.

Acknowledgements

This paper was extended from the previous research paper “Design and Implementation of

the Java Compiler for the Smart Virtual Machine Platform” in MulGraB 2012.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

290 Copyright ⓒ 2014 SERSC

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and

Technology(No. 20110006884), and in part by Basic Science Research Program through the

National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and

future Planning(No. 2013R1A2A2A01067205).

References

[1] Y. S. Son and Y. S. Lee, “A Study on the Smart Virtual Machine for Smart Devices”, Information-an

International Interdisciplinary Journal, International Information Institute, vol. 16, no. 1465, (2013).

[2] S. M. Han, Y. S. Son and Y. S. Lee, “Design and Implementation of the Smart Virtual Machine for Smart

Cross Platforms”, Journal of Korea Multimedia Society, Korea Multimedia Society, vol. 16, no. 190, (2013).

[3] Y. S. Lee and Y. S. Son, “A Study on the Smart Virtual Machine for Executing Virtual Machine Codes on

Smart Platforms”, International Journal of Smart Home, SERSC, vol. 6, no. 93, (2012).

[4] Y. S. Lee, “The Virtual Machine Technology for Embedded Systems”, Journal of Korea Multimedia Society,

Korea Multimedia Society, vol. 6, no. 36, (2002).

[5] The Java Language & Virtual Machine Specifications, Oracle,

http://docs.oracle.com/javase/specs/index.html.

[6] S. L. Yun, D. G Nam, S. M. Oh and J. S Kim, “Virtual Machine Code for Embedded Systems”, International

Conference on CIMCA, vol. 206, (2004).

[7] J. Meyer and T. Downing, “JAVA Virtual Machine”, O'REYLLY, (1997).

[8] T. Lindholm and F. Yellin, “The JavaTM Virtual Machine Specification”, 2nd ed., Addison Wesley, (1999).

[9] J. Engel, “Programming for the Java Virtual Machine”, Addison-Wesley, (1999).

[10] S. Lindin, “Inside Microsoft .NET IL Assembler”, Microsoft Press, (2002).

[11] Microsoft, MSIL Instruction Set Specification, Microsoft Corporation, (2000).

[12] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, “Compilers: Principles, Techniques, & Tools. Addison-

Wesley”, (2007).

[13] D. Grune, H. E. Bal, C. J. H. Jacobs and K. G. Langendoen, “Modern Compiler Design”, John Wiley & Sons,

(2000).

[14] S. M. Oh, “Introduction to Compilers”, 3rd edition, Jungik Publishing, Seoul, Republic of Korea, (2006).

[15] I. S. Kim and K. M. Choe, “Error Repair with Validation in LR-Based Parsing”, ACM Transactions on

Programming Languages and Systems, ACM, vol. 23, no. 451, (2001).

[16] S. L. Graham, C. B. Haley and W. N. Joy, “Practical LR Error Recovery”, Proceedings of the SIGPLAN

Symposium on Compiler Construction, ACM, vol. 13, no. 168, (1979).

[17] J. M. Barth, “A Practical Interprocedural Data Flow Analysis Algorithm”, Communications of the ACM, 21,

ACM, 724, (1978).

[18] Y. S. Son, “2-Level Code Generation using Semantic Tree”, Master Thesis, Dongguk University, (2006).

[19] Y. S. Son and Y. S. Lee, “An Objective-C Compiler to Generate Platform-Independent Codes in Smart

Device Environments”, Information: An International Interdisciplinary Journal, International Information

Institute, vol. 16, no. 1459, (2012).

[20] Y. S. Son and Y. S. Lee, “A Study on the Java Compiler for the Smart Virtual Machine Platform”,

Communications in Computer and Information Science (CCIS), Springer, vol. 353, no. 135, (2012).

Authors

YunSik Son, he received the B.S. degree from the Dept. of Computer Science,

Dongguk University, Seoul, Korea, in 2004, and M.S. and Ph.D. degrees from the Dept.

of Computer Engineering, Dongguk University, Seoul, Korea in 2006 and 2009,

respectively. Currently, he is a Researcher of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas include smart

system solutions, secure software, programming languages, compiler construction, and

mobile/embedded systems.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 291

SeMan Oh, he received the B.S. degree from the Seoul National University, Seoul, Korea,

in 1977, and M.S. and Ph.D. degrees from the Dept. of Computer Science, Korea Advanced

Institute of Science and Technology, Seoul, Korea in 1979 and 1985, respectively. He was a

Dean of the Dept. of Computer Science and Engineering, Graduate School, Dongguk

University from 1993-1999, a Director of SIGPL in Korea Institute of Information Scientists

and Engineers from 2001-2003, a Director of SIGGAME in Korea Information Processing

Society from 2004-2005. Currently, he is a Professor of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas include smart system

solutions, programming languages, and embedded systems.

JaeHyun Kim, he received the B.S. degree from the Dept. of Mathematics, Hanyang

University, Seoul, Korea, in 1986, and M.S. and Ph.D. degrees from Dept. of Statistics,

Dongguk University, Seoul, Korea in 1989 and 1996, respectively. He was a chairman of

Dept. of Internet Information 2002-2007. Currently, he is a member of the Korean Data &

Information Science Society and a Professor of Dept. of Computer Engineering, Seokyeong

University, Seoul, Korea. His research areas include mobile programming, cloud system and

data analysis.

YangSun Lee, he received the B.S. degree from the Dept. of Computer Science,

Dongguk University, Seoul, Korea, in 1985, and M.S. and Ph.D. degrees from Dept. of

Computer Engineering, Dongguk University, Seoul, Korea in 1987 and 2003,

respectively. He was a Manager of the Computer Center, Seokyeong University from

1996-2000, a Director of Korea Multimedia Society from 2004-2014, a General

Director of Korea Multimedia Society from 2005-2006 and a Vice President of Korea

Multimedia Society in 2009. Also, he was a Director of Korea Information Processing

Society from 2006-2013 and a President of a Society for the Study of Game at Korea

Information Processing Society from 2006-2010. And, he was a Director of Smart

Developer Association from 2011-2014. Currently, he is a Professor of Dept. of

Computer Engineering, Seokyeong University, Seoul, Korea. His research areas include

smart system solutions, programming languages, and embedded systems. Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

292 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

