International Journal of Smart Home
Vol.8, No.1 (2014), pp.229-240
http://dx.doi.org/10.14257/ijsh.2014.8.1.24

A Study on the Interpretation Optimization to Improve the
Performance of the Stack based Virtual Machine on Smart Platforms

YunSik Son', SeMan Oh', JaeHyun Kim? and YangSun Lee®*

Dept. of Computer Engineering, Dongguk University
26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Korea
’Dept. of of Computer Engineering, Seokyeong University
16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Korea
{sonbug, smoh}@dongguk.edu, statsr@skuniv.ac.kr, *Corresponding Autﬁw’

yslee@skuniv.ac.kr

Abstract .
The previous development environments for smart ph ne nt are ed to generate
specific target code depending on target devices or ple i

ea tform has its own
developing language. Therefore, even if the sa @ tents \o e used, it must be
redeveloped depending on the target machine EE ompiler folnthat specific machine is

needed, making the contents development proce y ine @

The Smart Cross Platform was develo r executing™contents written in various
programming languages — C, C++, Jav - bje iv€;C4— on 10S or Android based smart
devices. The contents developed | pro g language are translated into
intermediate language called Sl Interme Language) by the compiler. And, the
translation results - intermedlqke& ms ar cuted on the SVM (Smart Virtual Machine)
— a core module of the Smart ss Pla < without device dependency. Intermediate
language based SVM ha advant f xecution on multiple target devices without
considerations about speC|f ures, but it has also a problem which low
performance by t are-b xecutlon consequently. Therefore, to improve the
performance of S ry |mp t sue.

In this pa eal w tw inds of optimization technique to optimize stack based
SVM which ecute n us smart devices. And, to improve performance of the SVM
on execution engine asp edr, we apply the one of these optimization techniques. For
verification of this |zat|on technique, we profile and analyze performance of the
original/optimize . As a result of the experiments, the optimized SVM has 23~27%
reduced executiorMimes than the original SVM.

Keywo@ mart Virtual Machine, Optimization, Smart Platform, Stack Interpretation,
Execu ine

1. oduction

The existing developmental environments for producing smart phone contents are tightly
coupled with target platforms and devices. It means that the programming language to
develop the contents is pre-determined and the generated target code by compiler depended
on specific target devices or platforms [1, 2]. Therefore, even if the same contents are to be
used, it must be redeveloped depending on the target machine and a compiler for that specific
machine is needed, making the contents development process very inefficient.

ISSN: 1975-4094 |JSH
Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

The Smart Cross Platform [3-6] is a virtual machine based solution which aims to solve
such problems. It supports various programming languages — C / C + +, Java, Objective-C.
And the contents developed in each programming language are translated into SIL to
executing on the SVM, device independently. Intermediate language based SVM has an
advantage of execution on multiple target devices without considerations about device
specific features, but it has also a problem which low performance by the software-based
execution, consequently.

In this paper, we deal with 2 kinds of optimization technique to optimize stack based SVM
which can execute on various smart devices. And, to improve performance of the SVM on
execution engine aspect, we apply the one of these optimization techniques. For verification
of this optimization technique, we profile and analyze performance of the original/optimized

SVM. .

This paper is organized as follows. In Chapter 2, concept of the Smart Cro Mm,
intermediate language and execution file format used in SVM, executiq S are
examined. In Chapter 3, the optimization techniques to enhance the exec t mance
are examined. In Chapter 4, results of the execution engln t eptlm own Lastly
in Chapter 5, the conclusion of the paper and future dlrect earch iScussed.

2. Related Studies O

2.1. Smart Cross Platform

The Smart Cross Platform is a stack b@wrtua |ne solution which is loaded
on smart devices. It is a stack b irt ne based solution which can

independently download and run on pr . The SVM consists of three main
parts; compiler, assembler and I mach e. Itis designed in a hierarchal structure
to minimize the burden of t argetlng s. Figure 1 shows a system configuration

of the Smart Cross PIatformé—G].

. (Intermediate) Virtual Smart
Contents Compiler Codo (AssembleD Machin) C Davices)

@ B 4

SIL

‘Assembler;
SIL Cod _— Smart
3‘5 Y : 1 Virtual l
ser | Machine,
(*.sef) 3

b < . A

3&% 1. System Configuration of the Smart Cross Platform

Q@jesigned to support procedural programming languages, object-oriented

p ming languages and etc. In the Smart Cross Platform, input contents are
tranSfate into SIL codes as intermediate language by compiler collection, and it is an
advantage that the Smart Cross Platform cover the C/C++ and Java, which are the most
widely wused languages used by developers. SIL codes, the result of the
compilation/translation process is changed into the running format SEF(SIL Executable
Format) through an assembler. The SVM then runs the program after receiving the SEF.

The SIL code is a result of the compilation process and it is changed into the executing
format SEF (Smart Executable Format) through an assembler. The SVM then runs the
program after receiving the SEF. The SVM is composed by five major modules - SEF loader,

230 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

stack based interpreter, SVM built-in libraries, native interfaces, runtime environments, and
runtime environments consist of exception handler, memory management, and thread
scheduler. And the SVM is designed to easily add debugging interfaces, profiling interfaces,
and etc.

2.2.SIL & SEF

SIL, the virtual machine code for SVM, is designed as a standardized virtual ma-
chine code model for ordinary smart devices and embedded systems [5, 7]. SIL is a
stack based command set which holds independence as a language, hardware and a plat-
form. In order to accommodate a variety of programming languages, SIL is defined
based on the analysis of existing virtual machine codes such as bytecode [8-10], .NET
IL [11, 12] and etc. In addition, it also has the set of arithmetic operation (Wfo
cover procedural programming languages and object oriented languages. %\

SIL is composed of a meta-code which carries out particular jobs such as cléss tion and

an operation code with responds to actual commands. An operation code tract form
which is not subordinated to specific hardware or source Iaﬁx s. Itis in mnemonic
to heighten readability and applies a consistent name r ke “debugding in assembly

optimization. SIL

has 6 groups (except optimization group) of operati es and H 2 shows the category

of SIL operation codes. Q N \%

L]
SIL Operation Code

language levels easier. In addition, it has a short f ation Qode

N I J
g
&g}ure 2. ry of SIL Operation Codes
SEF’s strl@ largel ists of a header section which is in charge of expressing SEF
segment section and a debug section expresses debugging

files’ composition, a
related information., T@rogram segment section can be divided again into three sections
which express co data [13]. The following Figure 3 is a simple diagrammed form of

the SEF structl;re.
O Header Section
%O Program Segment
RO Section

RW Section

ZI Section

Debug Section

Figure 3. Structure of the SEF

Copyright © 2014 SERSC 231

International Journal of Smart Home
Vol.8, No.1 (2014)

In the header section, the detailed composition of program segments is expressed
while information on programs’ entry points is recorded. In addition, information
related to the SEF file’s header section is exclusively read to predict the entire memory
expected to be used, and it is composed so that easy approaches can be made using
detail sections as entry points.

Program segments are a form which is loaded and run in the SVM’s memory and
consists of pure codes and data. It separates data such as symbol tables and debugging
information which are unimportant when running a SEF’s program segment. This
specific design is aimed towards minimizing the loading speed and memory space
required by the SVM memory.

Program segments can be classified into the RO section, the RW section or the ZI
according to the characteristics of the program components. Each of these area
following definition. First, the RO section stores codes and literal data which ad-
only approach characteristics. Next, the RW section stores all global ?ﬁ data

which have initialization values on the source codes which have rea pproach
characteristics. Finally, the ZI section refers to the secti globa WhICh do
not have initialization values on the source codes is space for
expressing the debugging information of appllc 0 rams s in SEF. It is not
loaded on the SVM’s running memory an used IDE (Integrated
Development Environment) or the debugger tool: ccordln the SVM compiling

options, the debug section on SEF exists sel ti Iy and @ not influence the running
of the program.

2.3. Comparison of the Virtual Mact@/) as%&atlve Execution Method
iffe

Aspects of executing conten @e are differences between the VM method and the
Native. Firstly, the VM me ans ea5| utlng the same VM application even if
H/W changed because |t s the H/ ndence. Also, it has the stability for the
target system When the S exist e VM contents and can be easily ported to

various H/W.

On the other ha erformance of the algorithm code is slower than
the native me OQ; he case e ative method, need the changes of the contents by
the characte f ha platforms and OS, and it can affect the system due to the
errors in the“ee#tents. e executing performance of the algorithm code is faster
than the VM metho
native execution

, 14, 15]. Table 1 shows the difference of the VM and the

Table 1. Comparison of the VM and the Native

Virtual Machine Native
6 Software, Hardware,
%cution Intermediate Code / Software Machine Code
echanism Register based
JIT, Hot spot
Hardware Hardware Independent Hardware Dependent
Dependency
Execution Low High
Performance
Contents Porting Easy Difficult
Stability on Error High Low

232 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

3. The Optimization Techniques for the SVM

SVM’s detailed module configuration is shown in Figure 4. Largely, it combined 5
components; SEF loader which is load input SEF files on the memory, interpreter for stack
based evaluating instructions in memory, managing module group for runtime environment,
built-in SVM library, and native interface which is used for interaction with native platform.
And, it also designed for the additional components like debugging and profiling interface.

The interpreter is SVM’s core module which is SIL codes execution routine from loaded
SEF file. The interpreter has action procedures that mapped on each SIL code, and it executes
instructions with reference which is stored metadata by loader. On execution, evaluated data
is stored and managed in stack or heap, and if error occurred while executing then the
exception handler catch the occurred error and output the related error message an@he
VM instance for the given program.

In the portability of the contents, the SVM has an advantage, but i low
performance due to the S/W interpretation for the instructions. Optimizatiof t iques for
solving these problems can be viewed from two major aspects. firstly, th ization of the
instruction codes itself in the contents. The optlmlzed code %se itre he cost of the
interpretation of the virtual machine, is a very |s ue M, th V|rtual machine
optimization. Next, the optimization of the mterp met e of the important
issues. \

e

The VM requires efficient interpretation m becays stack based interpretation
under the general fetch-decode-dispatch me S very erformance In this chapter,
we will discuss these issues.

N A

SVM

SIL 3 ,
Code F Loader \. -
(*.sef) Runtime

Environments

Exception
oy Handler

@ter = Memory

Q\ Management
Thread
| Scheduler
E> Result
. Debugging Interface
@ SVM Native Profiling Interface
Library Interface
- 1k
% Native Platform

Figure 4. System Configuration of the Smart Virtual Machine
3 1¢

ode Level Optimization

Diverse optimization technigues have been deployed lately in the compilation process of a
source program for improving the program’s execution speed and reducing the size of the
source code. Optimization techniques in the compiler development stage can be categorized
into target machine-independent intermediate code optimization [16, 17] and target machine-
dependent target code optimization. Furthermore, since recent attention regarding complier
development has been focused on the retargetable optimization compiler that facilitates

Copyright © 2014 SERSC 233

International Journal of Smart Home
Vol.8, No.1 (2014)

applications in various target machines, there is an increasing need for target machine-
independent intermediate code optimization.

SVM

Sl
Code |) Interpretation
[+ sef)

Code
Optimizer Result
M SVM for the Optimization Code

with

3
i
1
Optimized . the Extended SIL } V
SIL Code Interpretatlon Code Set 1
o) 0
'

for Optimization

Figure 5. Code Optimization MO%’SVM@
As shown in Figure 5, if the SIL is optimized b e opti |ze ore efficient code
execution is possible and the executing performanc crease\ , reduce the contents

size and improve the performance at the same time by the a ptlmlzatlon specific SIL
code can be abbreviate multiple instructions t Iler com 4,6, 17].

0

3.2. System Level Optimization @

Differently from the code lev mlzatlon \pectlve the Virtual Machine (VM)
system optimization may be %ﬁ‘ Espe , there are a variety of methodologies to
improve the performance throu e |nt of a stack-based content, because it has a
big impact on the degrada of the nce of the VM executing. Firstly, JIT, Back-
End, Decompilation a pot Com ion are the native executing method for the

q%m VM method. Such ways are the method to convert
directly executing the intermediate code in the VM

contents to avoid the' ntages
to native code an te ratm@a
[18]. Q

4. Interpreta;lon ization & Experimental Results

In this paper, ose the interpretation routine optimization for the Smart Virtual
Machine (SVM) proposed technique is system level optimization. Figure 6 shows the
erprétation model, and SVM has an implemented execution engine based on

This,q I executes matched instruction or calls APl by lookup routine after load an
i n from SEF file lookup. In the this model, the lookup routine is hotspot cause it
need hlghly operation time. Following Table 1 shows profiling result of the needed time in
the each module to executing game contents on the SVM.

234 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

SEF Image Interpretation Routine Execution

Matched

H— Instruction Code
“\-_‘% p the
|~ | instructions &

|

Matched API

H‘*“--akfﬂs /

’_,-/

Y‘i

L 4
Figure 6. Typical Interpretation Model of SVM ?y

Table 2 shows the top 10 SVM modules that needed highly aperation ti executlng
the target content, and most time consumed module is th T%up rou ich is to find

instructions and APIs. This routine raises the execu (V mely, thus the
performance of contents is decreased by freque chln for execute the each
instruction in the interpretation routine. 9\/

Table 2. Performanceé ng Reg@or SVM
% cumulative ®wct|0n name
time seconds s&\
93.11 6.76 pret -findFunclndex
3.44 OA 0. 25‘ \gutPlerSet

0.41 Q PutPixel

041, & GetColor

0. 7.20 O 02 DrawLineSet
0.02 CopylmageSet

0.01 SetColor
0.14 0.01 _op_call

@ 7.25 0.01 _op_lod_i
0. 7.26 0.01 Assemble::assembleOpCode

N

é@e this problem, as shown in Figure 7, the repetitive searching can be removed by
0

t g of the mapping table for instructions/APIs and executing routines instead of lookup
routie. In addition, by the executing of the mapped routine on the native level, the executing
performance of the VM can be enhanced.

Copyright © 2014 SERSC 235

International Journal of Smart Home
Vol.8, No.1 (2014)

SEF Image Interpretation Routine Execution
Maped |
~) Instruction Code 'x«l_--.,f‘ |

H\\ Mapping Table /
N e

\

|

(. $
Figure 7. Enhanced Interpretatiothine MWor SVM

>

Using this proposed model, we had opti the interm§t on routine of the SVM and
profiling the optimized SVM by the gam nt for 'm? . Following Table 3 shows the
profiling result of the optimized inte tion %‘ s the profiling result, dominant

interpretation routine was eliminat op 10 hi me consumed modules, and load of

the stack based interpretation be wer, c%o erall modules related content execution

are used. \
Next, we show the experimental reg@a performance variation of before and after
interpretation routine opti ion. The program is shown in Table 4 that selected to
check the performagnte, ‘according t complexity of algorithms [19], and input parameters
are shown in Tables4. perimﬁ@—(is Samsung Galaxy Tab 10.1 and the version of the
Android is 4.@ @
Table 3: erforméﬁ Comparison of the SVM and the Optimized SVM

% %Iative self .
. function name
ti seconds seconds

36 0.13 0.13 PutPixelSet
%.11 0.25 0.14 DrawLineSet
O 5.56 0.31 0.02 Assemble::assembleOpCode
@ 2.78 0.32 001 PutPixel
2.78 0.33 0.01 GetColor
2.78 0.34 0.01 CopylmageSet
2.78 0.35 0.01 loadTextureFromPNG
2.78 0.36 0.01 png_read_filter_row
0.00 0.36 0.00 DrawLine
0.00 0.36 0.00 SetlmageAlpha

236 Copyright © 2014 SERSC

International Journal of Smart Home
Vol.8, No.1 (2014)

Table 4. Performance Comparison of the SVM and the Optimized SVM

Performance(millisecond)

Test Programs SVM
SVM (using optimized
interpretation routine)

PerfectNumber.sef
(parameter: 2000) 3256 2519
PrimeNumber.sef
(parameter: 1000) 1780 1130
MagicNumber.sef 28 18

(parameter: 49)

L 4

Figure 8 shows the performance comparison SVM and SVM with optimized=intéfpretation
routine. Optimized SVM shows 23~37% reduced execution time than o '@VM. This
means that the optimization on interpretation routine aﬁect%@fmanc f ignificantly.
The performance of the SVM applied enhanced interpietation (rout are shown in
experiments. The test suit was selected as the progre ith"hig coMtional complexity
algorithm to verify the performance of the interpre @ routin lected test programs
in Table 4 is suitable the experiment because wg.need to measure“the interpretation time of
the VM's arithmetic codes to examine the per @nce of*thesifterpretation routine. Results
of the experiments was confirmed, an a r 32% imprevement in performance when
applied to the optimized interpretation Ic i =

HSVM

Optimized SVM

T

ectNumber.sef PrimeNumber.sef MagicNumber.sef

&Jre 8. Execution Time Rate of SVM and Optimized SVM

5 sions and Further Researches

irtual machine has the characteristic of enabling application programs to be used
without alteration even if processors or operating systems are changed. It is a core technology
for executing a variety of contents in the recent mobile, embedded and smart systems. The
virtual machine solution has the advantage on the portability, but it has the low performance
due to the S/W interpretation for the instructions.
In this paper, we examined 2 kinds of optimization technique in order to increase the
performance of the SVM. Using these optimization techniques, enables the execution of
complex and various contents because cover the disadvantage - lower performance - of the

Copyright © 2014 SERSC 237

International Journal of Smart Home
Vol.8, No.1 (2014)

VM. And, to improve performance of the SVM and verify proposed optimization technique
on execution engine aspect, we applied system level optimization based on SVM profiling
results. The optimized SVM has 23~27% reduced execution time than the original SVM.

In the future, we will adapt the code level optimization on the optimized SVM, and verify
the validity of the optimization techniques have considered in this paper by the performance
evaluation.

Acknowledgements

This paper was extended from the previous research paper "A Study on Optimization
Techniques for the Smart Virtual Machine Platform" in MulGraB 2012.

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education, 'e\lN I,and
Technology(N0.20110006884), and in part by Basic Science Research Progr %ﬁg the
National Research Foundation of Korea(NRF) funded by the Ministry of S@, ICT and

future Planning(No0.2013R1A2A2A01067205) * . @

References

[1] Apple, iOS Reference Library, iOS Technology Overviewevelome/deveenter/ i0s.

[2] Goole, Android-An Open Handset Alliance Project, http://cod€.google.com/i o/android/.

[3] Y.S. Lee, “The Virtual Machine Technology for Ew@d Systems’@rnal of Korea Multimedia Society,
Korea Multimedia Society, vol. 6, no. 36, (2002).

[4] Y. S.Son and Y. S. Lee, “A Study on the” irtual hine” for Smart Devices”, Information-an
International Interdisciplinary Journal, Inter InformatiogAngtitute, vol. 6, no. 1465, (2013).

[5] Y.S.LeeandY.S. Son, “A Study on t Virtu e for Executing Virtual Machine Codes on
Smart Platforms”, International Journ art Home, , vol. 6, no. 93, (2012).

[6] S.M.Han, Y.S.SonandY.S. Leg, ign and lementation of the Smart Virtual Machine for Smart
Cross Platforms”, Journal of Ki ultimedia %(orea Multimedia Society, vol. 16, no. 190, (2013).

Conference on CIMCA, vo
[8] J. Meyer and T. Downi
[9] T.Lindholm and R Y
[10] J. Engel, “Progra

[71 S.L.Yun,D.GNam,S.M.OhandJ.S Kinv I Machine Code for Embedded Systems”, International

“The Java'® Wirtual Machine Specification”, 2nd ed., Addison Wesley, (1999).
or the J irtual Machine”, Addison-Wesley, (1999).

, (2004). \m
Virtl@ac ine, OREYLLY, (1997).

[11] Microsoft, ction Set Sp ation, Microsoft Corporation, (2000).

[12] S. Lindin, icrosoft . L Assembler, Microsoft Press, (2002).

[13] H. S. Cho Y. S. Lge elopment of an Assembler for Generating the Executable File of the
Ubiquitous Virtual Mach Proc. of the 2007 Spring Conference, Korea Multimedia Society, vol. 10, no.

73, (2007).
[14] J. E. Smith and R./Nai irtual Machines”, Morgan Kaufmann, (2005).
[15] P. G. Vijayraja&\ysis of Performance in the Virtual Machines Environment”, International Journal of
Software Engine8ging and Its Applications, vol. 32, no. 53, (2011).
[16] Y. S. S@%.Y. S. Lee, “A Study on Optimization Techniques for the Smart Virtual Machine Platform”,
Lectur, in Computer Science(LNCS), Springer, vol. 7709, no. 167, (2012).
[17] Y. and Y. S. Lee, “An Objective-C Compiler to Generate Platform-Independent Codes in Smart
Environments”, Information-an International Interdisciplinary Journal, International Information
te, vol. 16, no. 1457, (2013).
[1 S. Lee, Y. K. Kim and H. J. Kwon, “Design and Implementation of the Decompiler for Virtual Machine
ode of the C++ Compiler in the Ubiquitous Game Platform”, Lecture Notes in Computer Science(LNCS),
Springer, vol. 4413, no. 1, (2007), pp. 511.
[19] H. K. Kim and R. Y. Lee, “Quality Validation for Mobile Embedded Software”, International Journal of
Advanced Science and Technology, vol. 1, no. 43, (2008).

238 Copyright © 2014 SERSC

http://code.google.com/intl/ko/android/

International Journal of Smart Home
Vol.8, No.1 (2014)

Authors

Yunsik Son, he received the B.S. degree from the Dept. of Computer Science,
Dongguk University, Seoul, Korea, in 2004, and M.S. and Ph.D. degrees from the Dept.
of Computer Engineering, Dongguk University, Seoul, Korea in 2006 and 2009,
respectively. Currently, he is a Researcher of the Dept. of Computer Science and
Engineering, Dongguk University, Seoul, Korea. His research areas include smart
system solutions, secure software, programming languages, compiler construction, and
mobile/embedded systems.

Seman Oh, he received the B.S. degree from the Seoul National University, Seoul, Korea,
in 1977, and M.S. and Ph.D. degrees from the Dept. of Computer Science, Kore
Institute of Science and Technology, Seoul, Korea in 1979 and 1985, respec@ e was a

Dean of the Dept. of Computer Science and Engineering,, Graduate ongguk
University from 1993-1999, a Director of SIGPL in Korea%te of I@ on Scientists
and Engineers from 2001-2003, a Director of SIGGAM reaqnfo ion Processing
Society from 2004-2005. Currently, he is a Profess e ep of puter Science and
Engineering, Dongguk University, Seoul, Korea.)@search clude smart system
solutions, programming languages, and embedd ms

ee fg Dept of Mathematics, Hanyang
.S. a D). degrees from Dept. of Statistics,
89 and 1996, respectively. He was a chairman of

Dongguk University, Seoul, Ko
Dept. of Internet Information.%)&- 7. Gurently, he is a member of the Korean Data &
Information Science Society and ‘& Prof C‘%{ ept. of Computer Engineering, Seokyeong
University, Seoul, Korea. esearch %clude mobile programming, cloud system and

data analysis. \\Q %

YangSun recel the B.S. degree from the Dept. of Computer Science,
Dongguk U |ty, Se orea in 1985, and M.S. and Ph.D. degrees from Dept. of
Computer Engmeer@ﬂ ongguk University, Seoul, Korea in 1987 and 2003,

JaeHyun Kim, he received the B.
University, Seoul, Korea, in 1986,

respectively. He anager of the Computer Center, Seokyeong University from
1996-2000, a @ur of Korea Multimedia Society from 2004-2014, a General
Director of Korea,Multimedia Society from 2005-2006 and a Vice President of Korea
Multimedi?%dety in 2009. Also, he was a Director of Korea Information Processing
Society 006-2013 and a President of a Society for the Study of Game at Korea

r Processing Society from 2006-2010. And, he was a Director of Smart

smart system solutions, programming languages, and embedded systems.

Copyright © 2014 SERSC 239

Internat ional Journal | of Smart Home
Vol.8, No.1 (2014)

240 Copyright © 2014 SERSC

