
International Journal of Smart Home

Vol.8, No.1 (2014), pp.229-240

http://dx.doi.org/10.14257/ijsh.2014.8.1.24

ISSN: 1975-4094 IJSH

Copyright ⓒ 2014 SERSC

A Study on the Interpretation Optimization to Improve the

Performance of the Stack based Virtual Machine on Smart Platforms

YunSik Son
1
, SeMan Oh

1
, JaeHyun Kim

2
 and YangSun Lee

2
*

1
Dept. of Computer Engineering, Dongguk University

26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Korea
2
Dept. of of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Korea

{sonbug, smoh}@dongguk.edu, statsr@skuniv.ac.kr, *Corresponding Author:

yslee@skuniv.ac.kr

Abstract

The previous development environments for smart phone contents are needed to generate

specific target code depending on target devices or platforms, and each platform has its own

developing language. Therefore, even if the same contents are to be used, it must be

redeveloped depending on the target machine and a compiler for that specific machine is

needed, making the contents development process very inefficient.

The Smart Cross Platform was developed for executing contents written in various

programming languages – C, C++, Java, and Objective-C – on iOS or Android based smart

devices. The contents developed in each programming language are translated into

intermediate language called SIL (Smart Intermediate Language) by the compiler. And, the

translation results - intermediate programs are executed on the SVM (Smart Virtual Machine)

– a core module of the Smart Cross Platform – without device dependency. Intermediate

language based SVM has an advantage of execution on multiple target devices without

considerations about device specific features, but it has also a problem which low

performance by the software-based execution, consequently. Therefore, to improve the

performance of SVM is very important issue.

In this paper, we deal with two kinds of optimization technique to optimize stack based

SVM which can execute on various smart devices. And, to improve performance of the SVM

on execution engine aspect, we apply the one of these optimization techniques. For

verification of this optimization technique, we profile and analyze performance of the

original/optimized SVM. As a result of the experiments, the optimized SVM has 23~27%

reduced execution times than the original SVM.

Keywords: Smart Virtual Machine, Optimization, Smart Platform, Stack Interpretation,

Execution Engine

1. Introduction

The existing developmental environments for producing smart phone contents are tightly

coupled with target platforms and devices. It means that the programming language to

develop the contents is pre-determined and the generated target code by compiler depended

on specific target devices or platforms [1, 2]. Therefore, even if the same contents are to be

used, it must be redeveloped depending on the target machine and a compiler for that specific

machine is needed, making the contents development process very inefficient.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

230 Copyright ⓒ 2014 SERSC

The Smart Cross Platform [3-6] is a virtual machine based solution which aims to solve

such problems. It supports various programming languages – C / C + +, Java, Objective-C.

And the contents developed in each programming language are translated into SIL to

executing on the SVM, device independently. Intermediate language based SVM has an

advantage of execution on multiple target devices without considerations about device

specific features, but it has also a problem which low performance by the software-based

execution, consequently.

In this paper, we deal with 2 kinds of optimization technique to optimize stack based SVM

which can execute on various smart devices. And, to improve performance of the SVM on

execution engine aspect, we apply the one of these optimization techniques. For verification

of this optimization technique, we profile and analyze performance of the original/optimized

SVM.

This paper is organized as follows. In Chapter 2, concept of the Smart Cross Platform,

intermediate language and execution file format used in SVM, execution methods are

examined. In Chapter 3, the optimization techniques to enhance the execution performance

are examined. In Chapter 4, results of the execution engine aspect optimization shown. Lastly

in Chapter 5, the conclusion of the paper and future direction of research are discussed.

2. Related Studies

2.1. Smart Cross Platform

The Smart Cross Platform is a stack based virtual machine solution which is loaded

on smart devices. It is a stack based virtual machine based solution which can

independently download and run application programs. The SVM consists of three main

parts; compiler, assembler and virtual machine. It is designed in a hierarchal structure

to minimize the burden of the retargeting process. Figure 1 shows a system configuration

of the Smart Cross Platform [3-6].

Figure 1. System Configuration of the Smart Cross Platform

It is designed to support procedural programming languages, object-oriented

programming languages and etc. In the Smart Cross Platform, input contents are

translate into SIL codes as intermediate language by compiler collection, and it is an

advantage that the Smart Cross Platform cover the C/C++ and Java, which are the most

widely used languages used by developers. SIL codes, the result of the

compilation/translation process is changed into the running format SEF(SIL Executable

Format) through an assembler. The SVM then runs the program after receiving the SEF.

The SIL code is a result of the compilation process and it is changed into the executing

format SEF (Smart Executable Format) through an assembler. The SVM then runs the

program after receiving the SEF. The SVM is composed by five major modules - SEF loader,

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 231

stack based interpreter, SVM built-in libraries, native interfaces, runtime environments, and

runtime environments consist of exception handler, memory management, and thread

scheduler. And the SVM is designed to easily add debugging interfaces, profiling interfaces,

and etc.

2.2. SIL & SEF

SIL, the virtual machine code for SVM, is designed as a standardized virtual ma-

chine code model for ordinary smart devices and embedded systems [5, 7]. SIL is a

stack based command set which holds independence as a language, hardware and a plat -

form. In order to accommodate a variety of programming languages, SIL is defined

based on the analysis of existing virtual machine codes such as bytecode [8-10], .NET

IL [11, 12] and etc. In addition, it also has the set of arithmetic operations codes to

cover procedural programming languages and object oriented languages.

SIL is composed of a meta-code which carries out particular jobs such as class creation and

an operation code with responds to actual commands. An operation code has an abstract form

which is not subordinated to specific hardware or source languages. It is defined in mnemonic

to heighten readability and applies a consistent name rule to make debugging in assembly

language levels easier. In addition, it has a short form operation code for optimization. SIL

has 6 groups (except optimization group) of operation codes and Figure 2 shows the category

of SIL operation codes.

Figure 2. Category of SIL Operation Codes

SEF’s structure largely consists of a header section which is in charge of expressing SEF

files’ composition, a program segment section and a debug section expresses debugging

related information. The program segment section can be divided again into three sections

which express codes and data [13]. The following Figure 3 is a simple diagrammed form of

the SEF structure.

Figure 3. Structure of the SEF

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

232 Copyright ⓒ 2014 SERSC

In the header section, the detailed composition of program segments is expressed

while information on programs’ entry points is recorded. In addition, information

related to the SEF file’s header section is exclusively read to predict the entire memory

expected to be used, and it is composed so that easy approaches can be made using

detail sections as entry points.

Program segments are a form which is loaded and run in the SVM’s memory and

consists of pure codes and data. It separates data such as symbol tables and debugging

information which are unimportant when running a SEF’s program segment. This

specific design is aimed towards minimizing the loading speed and memory space

required by the SVM memory.

Program segments can be classified into the RO section, the RW section or the ZI

according to the characteristics of the program components. Each of these areas has the

following definition. First, the RO section stores codes and literal data which have read-

only approach characteristics. Next, the RW section stores all global variable data

which have initialization values on the source codes which have read-write approach

characteristics. Finally, the ZI section refers to the section of global variables which do

not have initialization values on the source codes. The debug section is space for

expressing the debugging information of application programs stored in SEF. It is not

loaded on the SVM’s running memory and is used through IDE (Integrated

Development Environment) or the debugger tool. According to the SVM compiling

options, the debug section on SEF exists selectively and does not influence the running

of the program.

2.3. Comparison of the Virtual Machine (VM) and the Native Execution Method

Aspects of executing contents, there are differences between the VM method and the

Native. Firstly, the VM method cans easily executing the same VM application even if

H/W changed because it has the H/W independence. Also, it has the stability for the

target system when the errors exist in the VM contents and can be easily ported to

various H/W.

On the other hand, the execution performance of the algorithm code is slower than

the native method. In the case of the native method, need the changes of the contents by

the characteristics of hardware platforms and OS, and it can affect the system due to the

errors in the contents. But, the executing performance of the algorithm code is faster

than the VM method [4, 6, 14, 15]. Table 1 shows the difference of the VM and the

native execution method.

Table 1. Comparison of the VM and the Native

 Virtual Machine Native

Execution
Mechanism

Software,

Intermediate Code / Software
Register based

JIT, Hot spot

Hardware,

Machine Code

Hardware
Dependency

Hardware Independent Hardware Dependent

Execution
Performance

Low High

Contents Porting Easy Difficult

Stability on Error High Low

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 233

3. The Optimization Techniques for the SVM

SVM’s detailed module configuration is shown in Figure 4. Largely, it combined 5

components; SEF loader which is load input SEF files on the memory, interpreter for stack

based evaluating instructions in memory, managing module group for runtime environment,

built-in SVM library, and native interface which is used for interaction with native platform.

And, it also designed for the additional components like debugging and profiling interface.

The interpreter is SVM’s core module which is SIL codes execution routine from loaded

SEF file. The interpreter has action procedures that mapped on each SIL code, and it executes

instructions with reference which is stored metadata by loader. On execution, evaluated data

is stored and managed in stack or heap, and if error occurred while executing then the

exception handler catch the occurred error and output the related error message and halt the

VM instance for the given program.

In the portability of the contents, the SVM has an advantage, but it has the low

performance due to the S/W interpretation for the instructions. Optimization techniques for

solving these problems can be viewed from two major aspects. Firstly, the optimization of the

instruction codes itself in the contents. The optimized code, because it reduces the cost of the

interpretation of the virtual machine, is a very important issue in the virtual machine

optimization. Next, the optimization of the interpretation method is one of the important

issues.

The VM requires efficient interpretation method because the stack based interpretation

under the general fetch-decode-dispatch method has very poor performance. In this chapter,

we will discuss these issues.

Figure 4. System Configuration of the Smart Virtual Machine

3.1. Code Level Optimization

Diverse optimization techniques have been deployed lately in the compilation process of a

source program for improving the program’s execution speed and reducing the size of the

source code. Optimization techniques in the compiler development stage can be categorized

into target machine-independent intermediate code optimization [16, 17] and target machine-

dependent target code optimization. Furthermore, since recent attention regarding complier

development has been focused on the retargetable optimization compiler that facilitates

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

234 Copyright ⓒ 2014 SERSC

applications in various target machines, there is an increasing need for target machine-

independent intermediate code optimization.

Figure 5. Code Optimization Model for SVM

As shown in Figure 5, if the SIL is optimized by the code optimizer, more efficient code

execution is possible and the executing performance is increased. Also, reduce the contents

size and improve the performance at the same time by the adding optimization specific SIL

code can be abbreviate multiple instructions to smaller command [4, 6, 17].

3.2. System Level Optimization

Differently from the code level optimization perspective, the Virtual Machine (VM)

system optimization may be considered. Especially, there are a variety of methodologies to

improve the performance through the interpretation of a stack-based content, because it has a

big impact on the degradation of the performance of the VM executing. Firstly, JIT, Back-

End, Decompilation and Hotspot Compilation are the native executing method for the

contents to avoid the disadvantages of the VM method. Such ways are the method to convert

to native code and execute rather than directly executing the intermediate code in the VM

[18].

4. Interpretation Optimization & Experimental Results

In this paper, we propose the interpretation routine optimization for the Smart Virtual

Machine (SVM), the proposed technique is system level optimization. Figure 6 shows the

typical VM interpretation model, and SVM has an implemented execution engine based on

this general execution model.

This model executes matched instruction or calls API by lookup routine after load an

instruction from SEF file lookup. In the this model, the lookup routine is hotspot cause it

needed highly operation time. Following Table 1 shows profiling result of the needed time in

the each module to executing game contents on the SVM.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 235

Figure 6. Typical Interpretation Model of SVM

Table 2 shows the top 10 SVM modules that needed highly operation time while executing

the target content, and most time consumed module is the lookup routine which is to find

instructions and APIs. This routine raises the execution time cost extremely, thus the

performance of contents is decreased by frequently searching for to execute the each

instruction in the interpretation routine.

Table 2. Performance Profiling Result for SVM

%

time

cumulative

seconds

self

seconds
function name

93.11 6.76 6.76 Interpret::findFuncIndex

3.44 7.01 0.25 PutPixelSet

0.41 7.15 0.03 PutPixel

0.41 7.18 0.03 GetColor

0.28 7.20 0.02 DrawLineSet

0.28 7.22 0.02 CopyImageSet

0.14 7.23 0.01 SetColor

0.14 7.24 0.01 _op_call

0.14 7.25 0.01 _op_lod_i

0.14 7.26 0.01 Assemble::assembleOpCode

To solve this problem, as shown in Figure 7, the repetitive searching can be removed by

the using of the mapping table for instructions/APIs and executing routines instead of lookup

routine. In addition, by the executing of the mapped routine on the native level, the executing

performance of the VM can be enhanced.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

236 Copyright ⓒ 2014 SERSC

Figure 7. Enhanced Interpretation Routine Model for SVM

Using this proposed model, we had optimized the interpretation routine of the SVM and

profiling the optimized SVM by the game content for Table 2. Following Table 3 shows the

profiling result of the optimized interpretation routine. As the profiling result, dominant

interpretation routine was eliminated in top 10 highly time consumed modules, and load of

the stack based interpretation became lower cause overall modules related content execution

are used.

Next, we show the experimental result that performance variation of before and after

interpretation routine optimization. The test program is shown in Table 4 that selected to

check the performance according to the complexity of algorithms [19], and input parameters

are shown in Table 4. Experimental H/W is Samsung Galaxy Tab 10.1 and the version of the

Android is 4.2.

Table 3. Performance Comparison of the SVM and the Optimized SVM

%

time

cumulative

seconds

self

seconds
function name

36.11 0.13 0.13 PutPixelSet

11.11 0.25 0.14 DrawLineSet

5.56 0.31 0.02 Assemble::assembleOpCode

2.78 0.32 0.01 PutPixel

2.78 0.33 0.01 GetColor

2.78 0.34 0.01 CopyImageSet

2.78 0.35 0.01 loadTextureFromPNG

2.78 0.36 0.01 png_read_filter_row

0.00 0.36 0.00 DrawLine

0.00 0.36 0.00 SetImageAlpha

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 237

Table 4. Performance Comparison of the SVM and the Optimized SVM

Test Programs

Performance(millisecond)

SVM

SVM

(using optimized

interpretation routine)

PerfectNumber.sef

(parameter: 2000)
3256 2519

PrimeNumber.sef

(parameter: 1000)
1780 1130

MagicNumber.sef

(parameter: 49)
28 18

Figure 8 shows the performance comparison SVM and SVM with optimized interpretation

routine. Optimized SVM shows 23~37% reduced execution time than original SVM. This

means that the optimization on interpretation routine affects performance of VM significantly.

The performance of the SVM applied enhanced interpretation routine are shown in

experiments. The test suit was selected as the program with high computational complexity

algorithm to verify the performance of the interpretation routine. The selected test programs

in Table 4 is suitable the experiment because we need to measure the interpretation time of

the VM's arithmetic codes to examine the performance of the interpretation routine. Results

of the experiments was confirmed, an average of 32% improvement in performance when

applied to the optimized interpretation routine.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PerfectNumber.sef PrimeNumber.sef MagicNumber.sef

SVM

Optimized SVM

Figure 8. Execution Time Rate of SVM and Optimized SVM

5. Conclusions and Further Researches

A virtual machine has the characteristic of enabling application programs to be used

without alteration even if processors or operating systems are changed. It is a core technology

for executing a variety of contents in the recent mobile, embedded and smart systems. The

virtual machine solution has the advantage on the portability, but it has the low performance

due to the S/W interpretation for the instructions.

In this paper, we examined 2 kinds of optimization technique in order to increase the

performance of the SVM. Using these optimization techniques, enables the execution of

complex and various contents because cover the disadvantage - lower performance - of the

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

238 Copyright ⓒ 2014 SERSC

VM. And, to improve performance of the SVM and verify proposed optimization technique

on execution engine aspect, we applied system level optimization based on SVM profiling

results. The optimized SVM has 23~27% reduced execution time than the original SVM.

In the future, we will adapt the code level optimization on the optimized SVM, and verify

the validity of the optimization techniques have considered in this paper by the performance

evaluation.

Acknowledgements

This paper was extended from the previous research paper "A Study on Optimization

Techniques for the Smart Virtual Machine Platform" in MulGraB 2012.

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and

Technology(No.20110006884), and in part by Basic Science Research Program through the

National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and

future Planning(No.2013R1A2A2A01067205)

References

[1] Apple, iOS Reference Library, iOS Technology Overview, http://developer.apple.com/devcenter/ ios.

[2] Goole, Android-An Open Handset Alliance Project, http://code.google.com/intl/ko/android/.

[3] Y. S. Lee, “The Virtual Machine Technology for Embedded Systems”, Journal of Korea Multimedia Society,

Korea Multimedia Society, vol. 6, no. 36, (2002).

[4] Y. S. Son and Y. S. Lee, “A Study on the Smart Virtual Machine for Smart Devices”, Information-an

International Interdisciplinary Journal, International Information Institute, vol. 6, no. 1465, (2013).

[5] Y. S. Lee and Y. S. Son, “A Study on the Smart Virtual Machine for Executing Virtual Machine Codes on

Smart Platforms”, International Journal of Smart Home, SERSC, vol. 6, no. 93, (2012).

[6] S. M. Han, Y. S. Son and Y. S. Lee, “Design and Implementation of the Smart Virtual Machine for Smart

Cross Platforms”, Journal of Korea Multimedia Society, Korea Multimedia Society, vol. 16, no. 190, (2013).

[7] S. L. Yun, D. G Nam, S. M. Oh and J. S Kim, “Virtual Machine Code for Embedded Systems”, International

Conference on CIMCA, vol. 206, (2004).

[8] J. Meyer and T. Downing, JAVA Virtual Machine, O'REYLLY, (1997).

[9] T. Lindholm and F. Yellin, “The JavaTM Virtual Machine Specification”, 2nd ed., Addison Wesley, (1999).

[10] J. Engel, “Programming for the Java Virtual Machine”, Addison-Wesley, (1999).

[11] Microsoft, MSIL Instruction Set Specification, Microsoft Corporation, (2000).

[12] S. Lindin, Inside Microsoft .NET IL Assembler, Microsoft Press, (2002).

[13] H. S. Choi and Y. S. Lee, “Development of an Assembler for Generating the Executable File of the

Ubiquitous Virtual Machine”, Proc. of the 2007 Spring Conference, Korea Multimedia Society, vol. 10, no.

73, (2007).

[14] J. E. Smith and R. Nair, “Virtual Machines”, Morgan Kaufmann, (2005).

[15] P. G. Vijayrajan, “Analysis of Performance in the Virtual Machines Environment”, International Journal of

Software Engineering and Its Applications, vol. 32, no. 53, (2011).

[16] Y. S. Son and Y. S. Lee, “A Study on Optimization Techniques for the Smart Virtual Machine Platform”,

Lecture Notes in Computer Science(LNCS), Springer, vol. 7709, no. 167, (2012).

[17] Y. S. Son and Y. S. Lee, “An Objective-C Compiler to Generate Platform-Independent Codes in Smart

Device Environments”, Information-an International Interdisciplinary Journal, International Information

Institute, vol. 16, no. 1457, (2013).

[18] Y. S. Lee, Y. K. Kim and H. J. Kwon, “Design and Implementation of the Decompiler for Virtual Machine

Code of the C++ Compiler in the Ubiquitous Game Platform”, Lecture Notes in Computer Science(LNCS),

Springer, vol. 4413, no. 1, (2007), pp. 511.

[19] H. K. Kim and R. Y. Lee, “Quality Validation for Mobile Embedded Software”, International Journal of

Advanced Science and Technology, vol. 1, no. 43, (2008).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

http://code.google.com/intl/ko/android/

International Journal of Smart Home

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 239

Authors

Yunsik Son, he received the B.S. degree from the Dept. of Computer Science,

Dongguk University, Seoul, Korea, in 2004, and M.S. and Ph.D. degrees from the Dept.

of Computer Engineering, Dongguk University, Seoul, Korea in 2006 and 2009,

respectively. Currently, he is a Researcher of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas include smart

system solutions, secure software, programming languages, compiler construction, and

mobile/embedded systems.

Seman Oh, he received the B.S. degree from the Seoul National University, Seoul, Korea,

in 1977, and M.S. and Ph.D. degrees from the Dept. of Computer Science, Korea Advanced

Institute of Science and Technology, Seoul, Korea in 1979 and 1985, respectively. He was a

Dean of the Dept. of Computer Science and Engineering, Graduate School, Dongguk

University from 1993-1999, a Director of SIGPL in Korea Institute of Information Scientists

and Engineers from 2001-2003, a Director of SIGGAME in Korea Information Processing

Society from 2004-2005. Currently, he is a Professor of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas include smart system

solutions, programming languages, and embedded systems.

JaeHyun Kim, he received the B.S. degree from the Dept. of Mathematics, Hanyang

University, Seoul, Korea, in 1986, and M.S. and Ph.D. degrees from Dept. of Statistics,

Dongguk University, Seoul, Korea in 1989 and 1996, respectively. He was a chairman of

Dept. of Internet Information 2002-2007. Currently, he is a member of the Korean Data &

Information Science Society and a Professor of Dept. of Computer Engineering, Seokyeong

University, Seoul, Korea. His research areas include mobile programming, cloud system and

data analysis.

YangSun Lee, he received the B.S. degree from the Dept. of Computer Science,

Dongguk University, Seoul, Korea, in 1985, and M.S. and Ph.D. degrees from Dept. of

Computer Engineering, Dongguk University, Seoul, Korea in 1987 and 2003,

respectively. He was a Manager of the Computer Center, Seokyeong University from

1996-2000, a Director of Korea Multimedia Society from 2004-2014, a General

Director of Korea Multimedia Society from 2005-2006 and a Vice President of Korea

Multimedia Society in 2009. Also, he was a Director of Korea Information Processing

Society from 2006-2013 and a President of a Society for the Study of Game at Korea

Information Processing Society from 2006-2010. And, he was a Director of Smart

Developer Association from 2011-2014. Currently, he is a Professor of Dept. of

Computer Engineering, Seokyeong University, Seoul, Korea. His research areas include

smart system solutions, programming languages, and embedded systems.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Smart Home

Vol.8, No.1 (2014)

240 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

