
International Journal of Smart Home

Vol.7, No.5 (2013), pp.125-134

http://dx.doi.org/10.14257/ijsh.2013.7.5.13

ISSN: 1975-4094 IJSH

Copyright ⓒ 2013 SERSC

Effort Reduction of Unit Testing by Supporting CFG Generation and
its Test Design

Hoijin Yoon

Department of Computer Science and Engineering, Hyupsung University,
Gyeonggi, Korea
hjyoon@uhs.ac.kr

Abstract
The popularity of Agile Development has been increasing over the last several years. Many

Agile techniques include unit testing as a basic activity. Unit testing has two characteristics:
it is performed by programmers, and it is normally based on source code structures. However,
the problem arises that programmers are unlikely to design structure-based tests. Test design
process draws graphs that represent structures; and applies coverage criteria these graphs.
The coverage criteria concept is very important in unit testing. Support tools are required,
especially by programmers performing unit testing. However, the existing tools do not cover
all the steps of the process. This study develops a method that fills the gap between the graph
generation and the test design step. This paper We analyzes the extent to which the method
decreases the effort required for unit testing, and show that the method effectively reduces the
effort. The effort is measured in ManMonths.

Keywords: Unit Testing, Agile Development, Coverage Criteria, Control Flow Graph

1. Introduction

The IT world is changing rapidly, and software should be adapted to match these changes.
Because of this situation, the viewpoint of software development has changed over the last
several years. One of the major movements in software development is the adoption of Agile
Development, even by big enterprises, although originally the Agile approach was adopted
only for the development of small-scale software. However, the requirements of software now
tend to change drastically, and software should be sufficiently agile to meet them [1]. Forrest
Research reported that a quarter of all enterprises have already adopted Agile Development,
and the adoption of enterprise-level Agile Development has accelerated, increasing
approximately two and a half times faster between 2006 and 2007 than between 2005 and
2006 [2]. In Korea, Kyobo Book Store opened its mobile Web system, which was developed
using the Agile Development approach [3].

In 2009, VersionOne conducted a survey on the subject “Which techniques do Agile
developers apply to projects?” The target group of the survey consisted of 2570 developers
working in 88 different countries [4]. Figure 1 is the result of survey. The techniques included
in this survey were those suggested by Scrum and Extreme Programming(XP)[5]. The
programming-related techniques by ranking were (1) unit testing, (2) continuous integration,
(3) automated builds, and (4) test-driven development. According to the results, unit testing is
the technique most frequently used by Agile developers. However, satisfactory unit testing is
not easy to achieve due to the following two difficulties. First, unit testing should be done by
programmers, who are not experts in testing. Second, the tests of unit codes are usually not

International Journal of Smart Home

Vol.7, No.5 (2013)

126 Copyright ⓒ 2013 SERSC

managed and stored as artifacts. In this paper, we propose a tool to help programmers design
unit tests using only source codes.

Figure 1. “Which Techniques do Agile Developers Apply to Projects?” [4]

It is probable that programmers will test a unit based on the source code that they have
written. They can utilize existing tools; however, no single tool that covers the entire unit
testing process exists. Therefore, the programmer needs to combine multiple tools to
complete unit testing. To achieve this, the programmer also needs to understand what kind of
information is required so that the corresponding tools can be combined. To aggravate the
problem, some programmers are required to test codes written by other programmers who are
no longer available, which means that they have no knowledge of the source code, and it is
hard for them to understand the source code structure. Some good tools exist that support
these tasks, but there is a gap between them[6]. In this paper, we describe a method that fills
the gap between two separate tools, covering Control Flow Graph (CFG) generation and test
path selection. Section 2 explains the effort analysis of unit testing conducted based on source
codes. It is mentioned again in Section 4 in the context of the evaluation of the degree to
which the required effort can be reduced by using the method proposed in this paper. Section
3 explains how the proposed method supports the activities of unit testing and describe our
proposed tool in Section 3. The analysis is described in Section 4 and then the conclusions are
mentioned in Section 5.

2. Unit Testing Practices

In 2006, a survey on the subject of unit testing practices was conducted in which
personnel from over 50 member companies of the Software Process Improvement
Network (SPIN) [7] were interviewed. The companies ranged from consultancy firms
with one employee to regional branches of multinational companies employing
hundreds of developers. The network represents various application domains with a
focus on embedded systems.

The survey was conducted at two meetings. During the first meeting, a focus group
discussion on the subject of unit testing was held. The participants consisted of 17
representatives from 12 companies, a moderator (a software quality manager), and a

International Journal of Smart Home

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 127

secretary. Eight representatives from seven of these companies participated in the
subsequent survey meeting, together with representatives from seven new companies.
The participating companies represented the following sectors: automation, banking,
case tools, information systems, health care, transportation, and telecommunication.
The primary business of most of the consulting companies was telecommunications.
The participants, who ranged from testers to quality managers, were interested in
testing and software quality issues in general.

They initiated group discussions focused on three themes: [7]

■ What is unit testing?

■ What are the participants’ strengths regarding unit testing?

■ What are the participants’ problems regarding unit testing?

In our previous study, we focused on the first of these themes, “What is unit
testing?” for building a framework for unit testing [8]. We used the following results
obtained for this theme: (1) Unit testing is a task that should be allocated to
programmers; and (2) unit testing shows that a unit meets its specification. Moreover,
we summarized three characteristics, as follows. First, since it is the programmer of a
unit who performs unit testing, it is probable that s/he will design a test case based on
program structures. Second, unit test cases need to be reused repeatedly. Test
automation, which is mentioned in Agile Development, can support this characteristic
of unit testing. Third, test codes, such as JUnit, need to be built to meet the daily build
required by the recent development environments, such as XP. In our previous study [5],
we organized a structure that includes the three characteristics mentioned above. The
structure consists of three activities, as seen in Table 1.

Table 1. Characteristics of Unit Testing Practice [8]
Activity In Unit Test Practices In JTopas Unit Testing

1 Building unit test codes Building JUnit test codes

2
Identifying unit test case based on
Test Criteria Applying CFG-based criteria to JTopas

units Structural Test

3 Unit Test Automation Using JUnit Test Driver
Test execution by shell scripts

Of the activities in Table 1, this paper focuses on Activity 2, which covers the
technique that is most needed, since its purpose is to select the more meaningful test
data; it is this selection that determines the effectiveness of testing, and leads to
effective testing costs. We propose a method to reduce the effort required to accomplish
Activity 2. The other activities are more labor-intensive.

3. Test Path Generation from Source Code

We propose a method for reducing the effort required by Activity 2, described in Table 1.
Activity 2 consists of two separate steps: identifying a CFG from the source code, and
defining the test cases from the CFG. To support these two steps, we combine a tool that
draws the CFG from the source code and a second tool that generates test paths from the
CFG. Figure 2 shows the structure of the method proposed in this paper.

International Journal of Smart Home

Vol.7, No.5 (2013)

128 Copyright ⓒ 2013 SERSC

Control Flow Graph Factory
(in Dr.Garbage)

Graph Coverage
Web Application

Java
Code

Test
Path

GraphXML
(n1,n2)
(n2,n3)

...

Figure 2. Combination of Tools

3.1. Control Flow Graph Generation

The first part of the tool is for generating CFGs from source codes. We utilize Dr. Garbage
[9], which was developed as a plugin in Eclipse. Dr. Garbage comprises three different
functions: Bytecode Visualizer, Sourcecode Visualizer, and Control Flow Graph Factory.
Control Flow Graph Factory takes a Java source code package as input and then draws the
matching CFG as its output. The CFG can be exported in GraphXML or DOT format[10], or
as an image file. It takes a Java package as input and draws a graph of each method in the
package. We use GraphXML as the output exporting file type. Figure 3 shows a sample
method, abs(). In the tool, one graph of each method is drawn. The graph of abs() is shown in
Figure 3.

Figure 3. Sample Method and its Graph in Graph Factory [7]

When a graph has been drawn, its matching GraphXML file is exported to our tool. We
parse the GraphXML file to obtain a list of edges represented in a pair of related nodes. It is
necessary to transform the XML file to a set of pairs of nodes, because Control Flow Graph
Factory produces graphs in the form of an XML file and the Graph Coverage Web
Application takes a graph in the form of edge pairs. Our tool parses the XML file and extracts
a pair of nodes. The Graph Coverage Web Application uses this type of representation as
input data. We save the information of nodes in a DBMS and send it to the next tool, where
test paths are selected from the graphs. In this study, we used Oracle DBMS.

package test;
public class C2 {
 public static float abs(float a) {
float b = 0.0F;
 if(a <= b){
 return (b - a);
 }
 return a;
 }
}

International Journal of Smart Home

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 129

3.2. Test Path Selection from Graph

When a CFG has been generated from the source code, test paths are determined by
coverage criteria. Graph-based coverage criteria include edge coverage, edge-pair coverage,
branch coverage, prime-path coverage, and node coverage [11]. A good tool has been
provided by Jeff Offutt on his Website [12], which selects a set of test paths in terms of the
criterion chosen by the user. The tool uses a CFG as its input data. The graph is represented as
a sequence of edges. Each edge is written in the form “n1 n2,” where the edge connects node1
and node2.

3.3. Example

In this section, we present an example of the proposed method that supports Activity 2 in
Table 1. First, we assume that the method depicted on the left in Figure 4 is the target of
testing. Graph Factory generates its CFG as shown on the right in Figure 4.

Figure 4. Method and its Graph Generated by Graph Factory

Graph Factory produces several files, as well as visualized graph images. The available
files are in XML format as shown in Figure 5. We parse the XML files and save the pairs of
nodes in the Oracle DB for the next step. The file content and its DB table are shown in
Figure 6.

Figure 5. The Files Available from Graph Factory

International Journal of Smart Home

Vol.7, No.5 (2013)

130 Copyright ⓒ 2013 SERSC

Figure 6. Information from XML File to DB table

Next, the graph is saved in the DB as a sequence of pairs of nodes, as shown in Figure 6.
The first step, generating a CFG, is accomplished; the next step is to select test paths by
applying test coverage criteria to the CFG. We utilize the tool by inserting the data saved in
the DB into the input fields of the tool, as shown in Figure 7.

Figure 7. Setting the Graph Information in Coverage Tool

The test paths of the graph are selected by clicking one of the “coverage” buttons
according to the programmer’s chosen test coverage criterion, as shown in Figure 7. The left
button depicts a weaker criterion than the right one according to the subsumption relation of
criteria [13]. For example, Prime-path coverage will select the more complex and stronger set
of test paths.

4. Analysis

We conducted an experiment to measure the amount of effort consumed by unit
testing of an open-source application, JTopas. Obviously, the original programmer of
the application was not available, which set the scenario as one where programmers are
expected to test a unit code written by others. JTopas was provided by the Software-
artifact Infrastructure Repository (SIR) of Nebraska University[14]. JTopas consists of
4 packages that include 10 separate classes and their 158 methods. In the experiment all

International Journal of Smart Home

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 131

the activities were performed, and the effort expended to accomplish each activity was
measured [5].

The ManMonths (mm) in Table 2 was measured based on one person working 8
hours per day and 20 days per month. It should be noted that the testing was conducted
by one female participant, and her participation rate was 40%. It took her approximately
7 months under the condition of working 16 hours a week to finish the activity. Activity
2 took approximately two months under the same condition. Activity 3 took only four
days, as it was simple to build a shell script [8]. The participant was a Computer
Science major and a Certified Software Test Specialist (CSTS) [15]. Although she had
her own testing skills, it took her a long time to finish the unit testing, because JTopas
was not written by her. She spent a considerable amount of time understanding the
behavior of the unit codes, and building a CFG to select test cases. Needless to say, she
used a supporting tool, which selects test paths that consider the CFGs inserted as input
data. However, she still needed to draw a CFG and convert it to the format required by
the tool.

Table 2. Effort Evaluation

Our previous analysis reported in [8] showed that Activity 2 took the second-longest
time of all the activities. However, it is the only part of the unit testing process that can
take advantage of tools. Since Activity 2 has been studied for a long time, and therefore
various theoretical approaches have been proposed, there are many tools that support it,
of which Dr. Garbage and Graph Coverage Web Application are examples. In the first
experiment [8], we used these tools to save data and transform data types so that they
were compatible. The third column in Table 2 shows the effort measured in the first
experiment when separate tools were used: 0.8 mm. However, in the second experiment
in which the method proposed in this paper was applied to the same JTopas unit testing
environment, the effort expended on Activity 2 was 0.6 mm. The combination of the
tools shown in Table 2 provided a method for saving the data of the CFGs and
transforming them to the form required by the next tool, Graph Coverage Web
Application.

5. Conclusions

We proposed a method for generating test paths directly from source code. The
method fills the gap between the already existing tools, allowing programmers who use
it to avoid passing information manually. The contributions of this paper are defined
according to the following two viewpoints.

Activity Unit testing Tools Using
separate tools

Using a
combination of

tools
1 Building JUnit test codes JUnit 2.8 mm 2.8 mm

2 Applying CFG-based
criteria to JTopas units

Graph Factory
0.8 mm 0.6 mm Graph Coverage

3
Using JUnit Test Driver

JUnit 0.2 mm 0.2 mm
Test Execution by shell
scripts

International Journal of Smart Home

Vol.7, No.5 (2013)

132 Copyright ⓒ 2013 SERSC

First, Activity 2 in Table 1 is the core action that determines testing quality. High-
quality test cases are necessary to guarantee a certain level of testing, and these are
selected according to the coverage criteria. Good test cases lead to high-level testing
effectiveness. Our method supports programmers performing this important task. It is
especially helpful given that programmers, who are not familiar with coverage criteria,
usually perform the unit testing. Finally, the effort required to accomplish this
important process is reduced, as shown in Table 2.

Second, the method can also be usefully applied in Agile Development. The Agile
process expects that test codes will be attached to all program units since in practice it
prefers test automation and daily build. However, programmers are not willing to store
unit test cases with their source codes. Furthermore, sometimes the original
programmers of a source code have left a company without leaving documentation of
the method design or program specification. The situation where a programmer has to
define new test cases only from source code occurs when the programmer starts to use
Agile Development to deal with an already existing system, especially when performing
maintenance tasks. In this case, this paper contributes a tool that reduces the amount of
effort that a programmer has to expend on selecting test cases from source code.

There is a threat to the validity of our experimental evaluation: the measured values
will differ according to the participant or the target application. If the participant is not
qualified as a CSTS or if the target is not well-modularized, the effort measured will be
greater. To eliminate this threat, an experiment using diverse participants and
applications is required. However, we expect that under any conditions the effort
measurement pattern that shows that our method reduces the required effort will be
maintained, because our method supports programmers, thus facilitating their
performance of unit testing tasks.

Acknowledgments

This research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2011-0009916).

References
[1] S. M. Ghosh, H. R. Sharma and V. Mohabay, “A Study of Software Change Management Problem”,

International Journal of Database Theory and Application, http://www.sersc.org/journals/IJDTA/
vol4_no3/4.pdf, vol. 4, no. 3, (2011).

[2] Forrest Research. Enterprise Agile Adoption in 2007, http://www.forrester.com/Enterprise
+Agile+Adoption+In+2007/fulltext/-/E-RES45015, (2008).

[3] EtNews. Mobile Kyobo Book Project (2012) http://www.etnews.com/news/computing/ informatization
/2553967_1475.html.

[4] VersionOne, 3rd Annual Survey: State of Agile Development Survey, http://pm.versionone.com
/whitepaper_AgileSurvey2008.html, (2009).

[5] K. Nageswara Rao, G. Kavita Naidu and P. Chakka, “A Study of the Agile Software Development Methods”,
Applicability and Implications in Industry, International Journal of Software Engineering and Its
Applications”, http://www.sersc.org/journals/IJSEIA/ vol5_no2_2011/4.pdf, vol. 5, no. 2, (2011).

[6] K. Zuhairi Zamli, N. Ashidi Mat Isa, M. Fadel Jamil Klaib and S. Norbaya Azizan, “A Tool for Automated
Test Data Generation and Execution Based on Combinatorial Approach”, International Journal of Software
Engineering and Its Applications, http://www.sersc.org/journals/IJSEIA/vol1_no1_2007/IJSEIA-2007-01-
01-02.pdf, vol. 1, no. 1, (2007).

[7] P. Runeson, “A Survey of Unit Testing Practices”, IEEE Software, DOI: 10.1109/MS.2006.91, vol. 23, no. 4,
(2006), pp. 22-29.

[8] H. Yoon, “Effort Analysis of Unit testing conducted by Non-Developer of Source Code”, Korea Society of
IT Service Journal, DOI: 10.9716/KITS.2012.11.4.251, vol. 11, no. 4, (2012).

http://www.sersc.org/journals/IJSEIA/vol5_no2_2011/4.pdf

International Journal of Smart Home

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 133

[9] Dr. Garbage, “Control Flow Graph Factory”, http://www.drgarbage.com/control-flow-graph-factory.html,
(2008).

[10] S. Shahriar and J. Liu, “Updating in XML Using Semantic Constraints”, International Journal of Database
Theory and Application, http://www.sersc.org/journals/ IJDTA/vol4_no2/1.pdf, vol. 4, no. 2, (2011) June.

[11] P. Ammann and J. Offutt, “Introduction to Software Testing”, Cambridge Univ. Press. UK, DOI:
10.1017/CBO9780511809163, (2008).

[12] J. Offutt, “Graph Coverage Web Application”, http://cs.gmu.edu:8080/offutt/coverage/ GraphCoverage,
(2010).

[13] S. Rapps and E. J. Weyuker, “Selecting Software Test Data Using Data Flow Information”, IEEE
Transactions on Software Engineering, DOI: 10.1109/TSE.1985.232226, (1985) April.

[14] M. B. Dwyer, S. Elbaum, J. Hatcliff, G. Rothermel, H. Do and A. Kinneer, “Software-artifact Infrastructure
Repository”, http://sir.unl.edu/, (2008).

[15] TTA. Certified Software Test Specialist. http://www.tta.or.kr/steps/itEduQnaGuide.jsp.

Author

Hoijin Yoon received the B.S. and M.S. degrees in Computer
Science and Engineering from Ewha Womans University in 1993 and
1998, respectively. She also received her Ph.D in 2004 from the same
university, Ewha. Her dissertation was on the subject of software
component testing. After graduation, she worked at Georgia Institute of
Technology as a visiting scholar and then at Ewha Womans University as
a full-time lecturer. She has been teaching at Hyupsung University since
2007. She is interested in software testing, service oriented architecture,
and testing in Agile Development.

http://www.drgarbage.com/control-flow-graph-factory.html
http://www.sersc.org/journals/%20IJDTA/vol4_no2/1.pdf
http://dx.doi.org/10.1017%2FCBO9780511809163
http://cs.gmu.edu:8080/offutt/coverage/
http://dx.doi.org/10.1109/TSE.1985.232226
http://www.tta.or.kr/steps/itEduQnaGuide.jsp

International Journal of Smart Home

Vol.7, No.5 (2013)

134 Copyright ⓒ 2013 SERSC

	Effort Reduction of Unit Testing by Supporting CFG Generation and its Test Design
	Abstract
	Acknowledgments
	References

