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Abstract 
A message scheduling that determines a sending order in real-time networked control 

systems should make the cycle time as short as possible. Minimizing the scheduling time 
itself in dynamic communication environments is also crucial for improving the 
performance of the systems. The proposed smart message-scheduling scheme for real-
time Ethernet PROFINET IRT networks can obtain the optimal cycle time while 
substantially reducing the scheduling time when applied to communication networks in 
vessels with various messages and update times. Unlike previous techniques, the proposed 
scheme has a novel feature that can be applied to networks with arbitrary topology. 
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1. Introduction 

Communications among devices in networked control systems typically require low 
latency, high update rate, and high throughput. Moreover, data transfer deadline and time 
determinism must be satisfied in real-time communications. For a long period of time, the 
serial and fieldbus technologies have been meeting the communication needs in industrial 
environments. However, due to problems such as slow data rates and interoperability with 
conventional data networks, Ethernet-oriented solutions have been sought after. SIO and 
CAN based networks adopted in the shipboard communication situation has similar 
problems. IEC61162-2 (NMEA0183) is the standard for the former and IEC61162-3 
(NMEA2000) is for the latter. IEC61162-450 is also defined as an Ethernet-based 
standard for shipboard communications. 

Ethernet has begun to be used in industrial fields, but it falls short of satisfying the 
requirements of real-time communications. The transmission delay becomes longer and 
unpredictable due to collisions that may occur in the IEEE 802.3 CSMA/CD MAC 
protocol for Ethernet. To solve this problem, switched Ethernets were adopted to narrow 
the collision domain down to a single node connected to each port. However, when 
multiple packets go to the same output port in a switch at the same time, the non-
deterministic queue delay (node delay) takes place. The signal collision or switch queue 
delay in Ethernet makes real-time communication difficult. Real-time Ethernets (RTEs) 
have been developed to overcome the problem [1]. The RTEs are divided into three 
protocol classes depending upon the locations where the real-time features are 
implemented (Figure 1). 

The class 1 RTE uses the original Ethernet hardware and MAC, as well as the Internet 
protocol, TCP/IP. The real-time functionalities are implemented at the application layer. 
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Its advantage is an easy interaction with the Internet, but it has non-deterministic delays 
[3]. A typical example is Modbus/IDA derived from the de facto standard of fieldbus, 
MODBUS with the Real-Time Publisher Subscriber protocol. 
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Figure 1. RTE Implementation Structures 

The class 2 RTE is also implemented above the existing Ethernet MAC and TCP/IP 
protocol stack. However, real-time traffics skip the TCP/IP and are passed directly to the 
application layer. PROFINET RT is an example of this class, which minimizes the queue 
delay using IEEE 802.1p priority and which in turn increases the temporal determinism. 

The class 3 RTE, with the most stringent real-time performance, is implemented in the 
MAC. PROFINET IRT (Isochronous Real-time) is an example of this class. Here, time is 
divided into three phases, each of which is assigned to IRT, RT, and non-RT tasks, 
respectively. In the first phase, PROFINET IRT traffics are scheduled. The frames are 
switched not by addresses in headers but by the pre-allocated time slot in each device in 
order to reduce the node delay. In the other two phases, the frames are exchanged in 
accordance with an address of the header information as usual. PROFINET devices are 
synchronized by the IEEE 1588 mechanism. In order to reduce the interference caused by 
the non-RT communication, the higher priority is given to real-time communications. 

The SIO and CAN-based networks in ships are implemented based upon IEC61162 
(NMEA0183) and IEC61162-3 (NMEA2000) standards, respectively. Ethernet-based 
communication standard IEC61162-450 was recently enacted, in which, however, no real-
time communication technology has been specified yet. In the present paper, the 
PROFINET network modified to fit various shipboard communication environments is 
proposed as an alternative. 

The communicating-devices in ships generate a number of messages that would vary in 
terms of length and time depending on situations. The Automatic Identification System 
(AIS) equipment is one of typical examples [2]. AIS broadcasts messages (i.e. identifier 
and position information of a ship) periodically to avoid distress and collision on the sea. 
The periods may dynamically change depending on the speed of ships. Length varies 
depending on the message type (Table 1). A one-to-one communication between ships is 
also available. 

Table 1.  Some AIS Message Types and their Lengths 
Type # Type title Length (in bits) 
01 Position Report Class A 168 
05 Static and Voyage Related Data 424 
06 Binary Addressed Message Variable <= 1008 
15 Interrogation Variable 88-160 
21 Aid-to-Navigation Report Variable 272-360 
26 Multiple Slot Binary Message Variable 60-1064 
27 Position Report for Long-Range Application 95 

 
Inside shipboard networks in constantly changing environments with various data sizes 

and data update times, message scheduling tasks are more frequently carried out. In such 
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cases, scheduling results should be optimal and also the scheduling computation time 
itself should be minimized. The smart message scheduling scheme is proposed in this 
paper as a way to satisfy the above conditions. 

 
2. Previous Works 

PROFINET IRT networks divide the transmission time into three phases. One of the 
phases is used only to send isochronous real-time data frames. Controllers in the networks 
should reduce the cycle time of IRT to a minimum so that more time allowed for real-time 
and non real-time communications during the other phases. A cycle time is defined as the 
time spent on one-time data exchange between controller and all connected equipment. In 
PROFINET IRT networks, messages should be transmitted in the order that the cycle time 
is to be minimized [3]. The message scheduling problem in obtaining the minimum cycle 
time for arbitrary topology networks is known as an NP hard problem. 

PROFINET IRT equipment from Siemens is believed to use Lauther algorithm which 
produces schedules close to the optimal results through finding the shortest path in the 
network graph [3]. The conflict problem in the upstream communication can be tackled 
by adapting the algorithm for the graph coloring technique [4]. The scheduling problem is 
mapped to a Job Shop Problem (JSP) [5] and solved by separating the problem into 
routing and scheduling. The optimal solution can be obtained by formalizing the problem 
as Resource Constraint Project Scheduling with Temporal Constraints (RCPS/TC) 
problem [6]. However, RCPS/TC problem does not take into account the fact that no 
precedence relation exists among messages, so its solution becomes unnecessarily 
complex. To make matters worse, it takes excessive computation time as RCPS/TC 
problem only has time-consuming heuristic algorithms, and this is not suitable for 
dynamic network environments. The dynamic frame packing (DFP) method is proposed 
in [7], which can be applied to the tree topology and the upstream communication. There 
is, however, no solution provided for the situations such as when the total size of 
messages to be packed is larger than the maximum frame size and when the update times 
are variable. Here, no algorithm for the downstream communication is proposed either. 

 
3. Smart Message Scheduling 

The smart message scheduling scheme is proposed in the present research to minimize 
the cycle time and its computation time for arbitrary topology PROFINET IRT networks. 
The scheme works in the following two phases. 
 
3.1. Reconfiguration of Topology to MST 

The first step reconfigures the network topology into a minimum spanning tree (MST) 
in order to eliminate the needs of routing. As a matter of course, the controller in the 
network becomes the root node in the reconfigured tree. The other devices are converted 
to intermediate nodes or leaf nodes like the example in Figure 2. Compared to the existing 
MST algorithms, a simpler algorithm can be applied as the root node election process can 
be omitted. Lastly, the MST information is passed to each node. 
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Figure 2. An Example of a Network reconfigured to a MST (CO denotes a controller 

operating as the root node of the MST) 

3.2. Smart Frame Packing 

The message transfer unit in PROFINET IRT networks is called a datagram. Each 
datagram is transmitted in a separate Ethernet frame. Two different schemes for packing 
multiple datagrams into a frame are proposed in [7] and [8]. The packing schemes can 
reduce the overhead of the frame header (14 bytes) and trailer (4 bytes) because the size 
of a datagram is usually smaller than the minimum frame payload size (46bytes). The 
number of frames to send can also be significantly reduced as a result. The schemes are 
called frame packing. Figure 3 shows a packed frame structure [8]. However, [7] is 
limited to the upstream communication, and [8] is only for the line topology. In this paper, 
Smart Frame Packing algorithm (SFP) is proposed as the second step in the smart 
message scheduling scheme, which has no restrictions on the topology and the direction 
of communication. 
 

 
Figure 3. An Example of a Packed Frame Structure Containing Datagram h for 

Device h, … , and Datagram a for Device a in the Payload Field of the Frame 

3.2.1. Downstream Communication 

The SFP determines the packing order of datagrams in frames by considering node 
distances and datagram sizes simultaneously. The node distance is the depth of a device in 
the reconfigured MST network. The main principle to determine the order is the Farthest 
Node First method [8]. As a tie-breaker for datagrams of the nodes of the same distance, 
the Largest Datagram First (LDF) method is developed using the fact that the problem can 
be directly mapped to a bin packing problem. The LDF method is implemented by 
adapting a bin packing problem solver, the Non-increasing First Fit (NIFF) algorithm, 
which is proved as one of best approximation algorithms [9]. This algorithm is much 
easier and faster than RCPS/TC approach [6] and [7]. 
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Figure 4. Pseudocode of the SFP for the Downstream Communication Performed by 
the Controller 

Figure 4 shows the procedure in the smart message scheduling performed at the 
controller for the downstream communication. The dgram denotes a data structure 
consisting of a datagram size (datagram_size) and the index of destination device for the 
datagram (datagram_index). The frame contains datagrams packed in a frame, the size of 
space filled by datagrams, and the number of datagrams. After conversion to a MST 
topology, devices are sorted in the order of non-increasing depth in the MST. The devices 
with the same depth are bound into a group. The datagrams in each group are also sorted 
in the order of non-increasing size. NIFFforSFP() is executed to obtain packed frames for 
each group. Finally, the packed frames are flooded to devices. 

When a packed frame arrives at a device, it is decomposed and the datagram for the 
device is extracted from it. If at least one of the remaining datagrams in the frame is for 
one of children of the device in MST, the re-packed frame with the remaining datagrams 
is flooded to the children. Otherwise, the device discards the re-packed frame. 
 

 
Figure 5. These Space-time Diagrams show an Instance of the Downstream 

Communication of the Network in Figure 2 

Figure 5 shows traffic flow diagrams of the downstream communication for the 
network in Figure 2. Each diagram depicts the traffic flow happening in each of the 
branches of the reconfigured MST network in Figure 2. As a result of procedure 
SFPforDownstream_by_Controller(), the datagrams for devices h, g, i, d, and f are packed 
into the first frame, and the others are packed into the next frame. As shown in Figure 2, 
the devices g, h, and i belong to group A, which has the longest distance (3) from the 
controller (CO). Therefore, the datagrams g, h, and i should go out in the first order. The 
devices d, e, and f are in group B with the depth of two, and the devices a, b, and c belong 

proc SFPforDownstream_by_Controller(PROFINET) 
  if topology of PROFINET is changed then do 

run MST algorithm for the topology of input PROFINET; 
sort the devices in order of nonincreasing depth of devices; 
make the set of devices with the same depth be a group; 
set n_groups as the number of groups; 

end 
make frame frames[]; // sequence of frames to send 
n_frames = 0; // # of frames containing datagrams to send 
for g = 0 to n_groups - 1 do 

gather datagrams to send to devices in group g; 
set n_dgrams as # of datagrams for devices in group g; 
make dgram dgrams[n_dgrams] for datagrams in group g; 
sort dgrams in order of nonincreasing datagram_size; 
NIFFforSFP(dgrams, n_dgrams, frames, &n_frames); 

end 
for f = 0 to n_frames - 1 do 

flood frames[f]; 
end 

end proc 
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to group C with the depth of one. The controller CO should send the datagrams in the 
order of A, B, and then C. 

The datagrams in each group are sorted in the order of non-increasing size. The sorted 
order in group A is the datagrams g, h, and i. For group B, the order is the datagrams d, f, 
and e. For group C, the order is the datagrams b, c, and a. NIFFforSFP() is assumed to 
derive two frames containing datagrams. In the first frame, the datagrams in group A are 
packed first, and then the first two of the datagrams in group B are inserted. At this time, 
it is assumed that the frame 1 cannot accommodate any more datagrams. Then, the 
remaining datagram e that belongs to group B is packed into the second frame. The 
datagrams b, c, and a in group C are sequentially packed into frame 2. 

The box (1) in Figure 5 explains the following situation: The device a receives the 
frame 2 which was broadcasted by the controller. The frame 2 has the datagram a, and 
thus it is extracted from the frame. No datagram for the child d of the device a exists in 
the remaining datagrams in the frame 2, so the frame 2 is discarded. The box (2) in Figure 
5 describes traffic flows occurring in another branch of the MST. The device b extracts 
the datagram b from the frame 2, and the remaining datagrams are continuously 
broadcasted to the children (device e and f). After the device e, one of the children of the 
device b, receives the frame 2, the datagram e is removed from the frame 2. The device e 
checks whether or not there exist datagrams for the child g in the remaining datagrams in 
the frame 2. As no datagram exists, the frame 2 is discarded. 

The third diagram in Figure 5 shows the phenomenon in which the frame 2 is sent from 
the device b to the device f even though no datagram exists for the children (device f, h, 
and i). As mentioned above, frames are broadcasted by nodes including the controller and 
devices. That makes it possible for nodes to forward frames in a simple manner, and thus 
node delays can be significantly reduced. Moreover, the broadcasting does not negatively 
affect the cycle time of the system. 

The cycle time of this system is set to the time t at which the transmission of the 
datagrams (e, c, and a) from the controller CO to the devices (e and f) has just finished. 

 
3.2.2. Adapted NIFF Algorithm for SFP 

The procedure NIFFforSFP() in Figure 6 is the adapted NIFF algorithm for the SFP. 
Each datagram is placed into the first frame that fits it. As datagrams are sorted in the 
order of non-increasing size, they can be optimally packed in frames. That means that the 
number of frames to send to devices can be minimized, and so can the cycle times for the 
system [9]. Much less computation time is needed to get the optimal cycle times as well. 
 

proc NIFFforSFP(dgram *dgrams, int n_dgrams, 
frame *frames, int *n_frames) 

for d = 0 to n_dgrams - 1 do // d is index of dgrams[] 
f = 0; 
while (frames[f].filled_space + dgrams[d].datagram_size) 

> MAXFRAME do //look for a frame to fit a datagram 
f++;// frames[f] is insufficient and try the next frame 

end 
frames[f].datagrams[frames[f].n_datagrams++] =  

dgrams[d].datagram_index; 
frames[f].filled_space += dgrams[d].datagram_size; 
if *n_frames < f+1 then do 

*n_frames = f+1; // update the # of filled frames 
end 

end 
end proc 

Figure 6. Pseudocode of the Adapted NIFF Algorithm for the Smart Frame Packing 
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3.2.3. Upstream Communication 

The solution [7] for the conflicts that may occur at branch nodes with two or more 
children does not consider the case that the total size of conflicted datagrams is larger than 
the maximum frame size. It does not reorder the conflicted datagrams by their size when 
they are put into a frame. As a result, the number of packed frames may not be optimal. 

The SFP for the upstream communication in Figure 7 solves this problem using 
NIFFforSFP() as in the downstream communication. In this case, however, the objects to 
be scheduled are conflicted datagrams in branch devices. Their destination is the same 
(the controller), which means that the datagrams belong to one and the same group. Hence, 
NIFFforSFP() is executed only one time in this SFP. As the conflicted datagrams are 
sorted by size and put into frames in that order, the number of frames to send to the 
controller can be optimized, and so can the cycle times as well. 
 

proc SFPforUpstream_by_Devices(PROFINET) 
gather datagrams from conflicted frames; 
set n_dgrams as # of datagrams gathered; 
make dgram dgrams[n_dgrams] for all datagrams; 
sort dgrams[] in order of nonincreasing datagram_size; 
make frame frames[]; // sequence of frames to send 
n_frames = 0; // # of frames containing datagrams to send 
NIFFforSFP(g_dgrams, n_dgrams, frames, &n_frames); 
for f = 0 to n_frames - 1 do 

send frames[f] to controller; 
end 

end proc 

Figure 7. Pseudocode of the SFP for the Upstream Communication Executed by 
Branch Devices 

4. Conclusions 
In the present research, we have proposed an RTE PROFINET IRT protocol adapted 

for shipboard real-time networks. The smart frame packing (SFP) scheme takes account 
of arbitrary topology network environments, messages of variable sizes, and various 
update times. The adapted NIFF algorithm of the bin packing problem proposed herein 
can be applied in both directions of communications. The NIFF algorithm is very simple 
and its efficiency has been proven [9]. Thus, the number of frames that are transmitted 
can be minimized, and consequently, near-optimal cycle times can be derived in much 
shorter computation time.  

When considering future shipboard equipment of high-speed, real-time, and large 
capacity, shipboard data networks are expected to be replaced by real-time Ethernets. 
Researches on improving the performance of the PROFINET IRT protocols will continue 
to cope with these environmental changes. 
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