
International Journal of Smart Home

Vol. 7, No. 4, July, 2013

391

A Smart Message-scheduling Scheme for Arbitrary Topology
PROFINET IRT Networks Applicable to Shipboard Real-time

Communications

Jinbo Sim1 and Jooyoung Son2*
1Zinnos Inc., 1125-18 Dongsam Dong, Yeongdo Gu, Busan, S. Korea

2Div. of IT Engineering, Korea Maritime University,
Dongsam Dong, Yeongdo Gu, Busan, S. Korea

1jbsim@zinnos.com, 2mmlab@hhu.ac.kr

Abstract
A message scheduling that determines a sending order in real-time networked control

systems should make the cycle time as short as possible. Minimizing the scheduling time
itself in dynamic communication environments is also crucial for improving the
performance of the systems. The proposed smart message-scheduling scheme for real-
time Ethernet PROFINET IRT networks can obtain the optimal cycle time while
substantially reducing the scheduling time when applied to communication networks in
vessels with various messages and update times. Unlike previous techniques, the proposed
scheme has a novel feature that can be applied to networks with arbitrary topology.

Keywords: PROFINET IRT, arbitrary topology, real-time shipboard networks, smart
message scheduling

1. Introduction

Communications among devices in networked control systems typically require low
latency, high update rate, and high throughput. Moreover, data transfer deadline and time
determinism must be satisfied in real-time communications. For a long period of time, the
serial and fieldbus technologies have been meeting the communication needs in industrial
environments. However, due to problems such as slow data rates and interoperability with
conventional data networks, Ethernet-oriented solutions have been sought after. SIO and
CAN based networks adopted in the shipboard communication situation has similar
problems. IEC61162-2 (NMEA0183) is the standard for the former and IEC61162-3
(NMEA2000) is for the latter. IEC61162-450 is also defined as an Ethernet-based
standard for shipboard communications.

Ethernet has begun to be used in industrial fields, but it falls short of satisfying the
requirements of real-time communications. The transmission delay becomes longer and
unpredictable due to collisions that may occur in the IEEE 802.3 CSMA/CD MAC
protocol for Ethernet. To solve this problem, switched Ethernets were adopted to narrow
the collision domain down to a single node connected to each port. However, when
multiple packets go to the same output port in a switch at the same time, the non-
deterministic queue delay (node delay) takes place. The signal collision or switch queue
delay in Ethernet makes real-time communication difficult. Real-time Ethernets (RTEs)
have been developed to overcome the problem [1]. The RTEs are divided into three
protocol classes depending upon the locations where the real-time features are
implemented (Figure 1).

The class 1 RTE uses the original Ethernet hardware and MAC, as well as the Internet
protocol, TCP/IP. The real-time functionalities are implemented at the application layer.

* Corresponding author: Jooyoung Son

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

392

Its advantage is an easy interaction with the Internet, but it has non-deterministic delays
[3]. A typical example is Modbus/IDA derived from the de facto standard of fieldbus,
MODBUS with the Real-Time Publisher Subscriber protocol.

non RT
protocol RT Protocol RT

Protocol
 RT

Protocol TCP/UDP/IP TCP/UDP/IP

Conventional
Ethernet

Ethernet
(class 1)

Ethernet
(class 2)

Modified
Ethernet
(class 3)

Universal Cabling

Figure 1. RTE Implementation Structures

The class 2 RTE is also implemented above the existing Ethernet MAC and TCP/IP
protocol stack. However, real-time traffics skip the TCP/IP and are passed directly to the
application layer. PROFINET RT is an example of this class, which minimizes the queue
delay using IEEE 802.1p priority and which in turn increases the temporal determinism.

The class 3 RTE, with the most stringent real-time performance, is implemented in the
MAC. PROFINET IRT (Isochronous Real-time) is an example of this class. Here, time is
divided into three phases, each of which is assigned to IRT, RT, and non-RT tasks,
respectively. In the first phase, PROFINET IRT traffics are scheduled. The frames are
switched not by addresses in headers but by the pre-allocated time slot in each device in
order to reduce the node delay. In the other two phases, the frames are exchanged in
accordance with an address of the header information as usual. PROFINET devices are
synchronized by the IEEE 1588 mechanism. In order to reduce the interference caused by
the non-RT communication, the higher priority is given to real-time communications.

The SIO and CAN-based networks in ships are implemented based upon IEC61162
(NMEA0183) and IEC61162-3 (NMEA2000) standards, respectively. Ethernet-based
communication standard IEC61162-450 was recently enacted, in which, however, no real-
time communication technology has been specified yet. In the present paper, the
PROFINET network modified to fit various shipboard communication environments is
proposed as an alternative.

The communicating-devices in ships generate a number of messages that would vary in
terms of length and time depending on situations. The Automatic Identification System
(AIS) equipment is one of typical examples [2]. AIS broadcasts messages (i.e. identifier
and position information of a ship) periodically to avoid distress and collision on the sea.
The periods may dynamically change depending on the speed of ships. Length varies
depending on the message type (Table 1). A one-to-one communication between ships is
also available.

Table 1. Some AIS Message Types and their Lengths
Type # Type title Length (in bits)
01 Position Report Class A 168
05 Static and Voyage Related Data 424
06 Binary Addressed Message Variable <= 1008
15 Interrogation Variable 88-160
21 Aid-to-Navigation Report Variable 272-360
26 Multiple Slot Binary Message Variable 60-1064
27 Position Report for Long-Range Application 95

Inside shipboard networks in constantly changing environments with various data sizes

and data update times, message scheduling tasks are more frequently carried out. In such

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

393

cases, scheduling results should be optimal and also the scheduling computation time
itself should be minimized. The smart message scheduling scheme is proposed in this
paper as a way to satisfy the above conditions.

2. Previous Works

PROFINET IRT networks divide the transmission time into three phases. One of the
phases is used only to send isochronous real-time data frames. Controllers in the networks
should reduce the cycle time of IRT to a minimum so that more time allowed for real-time
and non real-time communications during the other phases. A cycle time is defined as the
time spent on one-time data exchange between controller and all connected equipment. In
PROFINET IRT networks, messages should be transmitted in the order that the cycle time
is to be minimized [3]. The message scheduling problem in obtaining the minimum cycle
time for arbitrary topology networks is known as an NP hard problem.

PROFINET IRT equipment from Siemens is believed to use Lauther algorithm which
produces schedules close to the optimal results through finding the shortest path in the
network graph [3]. The conflict problem in the upstream communication can be tackled
by adapting the algorithm for the graph coloring technique [4]. The scheduling problem is
mapped to a Job Shop Problem (JSP) [5] and solved by separating the problem into
routing and scheduling. The optimal solution can be obtained by formalizing the problem
as Resource Constraint Project Scheduling with Temporal Constraints (RCPS/TC)
problem [6]. However, RCPS/TC problem does not take into account the fact that no
precedence relation exists among messages, so its solution becomes unnecessarily
complex. To make matters worse, it takes excessive computation time as RCPS/TC
problem only has time-consuming heuristic algorithms, and this is not suitable for
dynamic network environments. The dynamic frame packing (DFP) method is proposed
in [7], which can be applied to the tree topology and the upstream communication. There
is, however, no solution provided for the situations such as when the total size of
messages to be packed is larger than the maximum frame size and when the update times
are variable. Here, no algorithm for the downstream communication is proposed either.

3. Smart Message Scheduling

The smart message scheduling scheme is proposed in the present research to minimize
the cycle time and its computation time for arbitrary topology PROFINET IRT networks.
The scheme works in the following two phases.

3.1. Reconfiguration of Topology to MST

The first step reconfigures the network topology into a minimum spanning tree (MST)
in order to eliminate the needs of routing. As a matter of course, the controller in the
network becomes the root node in the reconfigured tree. The other devices are converted
to intermediate nodes or leaf nodes like the example in Figure 2. Compared to the existing
MST algorithms, a simpler algorithm can be applied as the root node election process can
be omitted. Lastly, the MST information is passed to each node.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

394

Figure 2. An Example of a Network reconfigured to a MST (CO denotes a controller

operating as the root node of the MST)

3.2. Smart Frame Packing

The message transfer unit in PROFINET IRT networks is called a datagram. Each
datagram is transmitted in a separate Ethernet frame. Two different schemes for packing
multiple datagrams into a frame are proposed in [7] and [8]. The packing schemes can
reduce the overhead of the frame header (14 bytes) and trailer (4 bytes) because the size
of a datagram is usually smaller than the minimum frame payload size (46bytes). The
number of frames to send can also be significantly reduced as a result. The schemes are
called frame packing. Figure 3 shows a packed frame structure [8]. However, [7] is
limited to the upstream communication, and [8] is only for the line topology. In this paper,
Smart Frame Packing algorithm (SFP) is proposed as the second step in the smart
message scheduling scheme, which has no restrictions on the topology and the direction
of communication.

Figure 3. An Example of a Packed Frame Structure Containing Datagram h for

Device h, … , and Datagram a for Device a in the Payload Field of the Frame

3.2.1. Downstream Communication

The SFP determines the packing order of datagrams in frames by considering node
distances and datagram sizes simultaneously. The node distance is the depth of a device in
the reconfigured MST network. The main principle to determine the order is the Farthest
Node First method [8]. As a tie-breaker for datagrams of the nodes of the same distance,
the Largest Datagram First (LDF) method is developed using the fact that the problem can
be directly mapped to a bin packing problem. The LDF method is implemented by
adapting a bin packing problem solver, the Non-increasing First Fit (NIFF) algorithm,
which is proved as one of best approximation algorithms [9]. This algorithm is much
easier and faster than RCPS/TC approach [6] and [7].

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

395

Figure 4. Pseudocode of the SFP for the Downstream Communication Performed by
the Controller

Figure 4 shows the procedure in the smart message scheduling performed at the
controller for the downstream communication. The dgram denotes a data structure
consisting of a datagram size (datagram_size) and the index of destination device for the
datagram (datagram_index). The frame contains datagrams packed in a frame, the size of
space filled by datagrams, and the number of datagrams. After conversion to a MST
topology, devices are sorted in the order of non-increasing depth in the MST. The devices
with the same depth are bound into a group. The datagrams in each group are also sorted
in the order of non-increasing size. NIFFforSFP() is executed to obtain packed frames for
each group. Finally, the packed frames are flooded to devices.

When a packed frame arrives at a device, it is decomposed and the datagram for the
device is extracted from it. If at least one of the remaining datagrams in the frame is for
one of children of the device in MST, the re-packed frame with the remaining datagrams
is flooded to the children. Otherwise, the device discards the re-packed frame.

Figure 5. These Space-time Diagrams show an Instance of the Downstream

Communication of the Network in Figure 2

Figure 5 shows traffic flow diagrams of the downstream communication for the
network in Figure 2. Each diagram depicts the traffic flow happening in each of the
branches of the reconfigured MST network in Figure 2. As a result of procedure
SFPforDownstream_by_Controller(), the datagrams for devices h, g, i, d, and f are packed
into the first frame, and the others are packed into the next frame. As shown in Figure 2,
the devices g, h, and i belong to group A, which has the longest distance (3) from the
controller (CO). Therefore, the datagrams g, h, and i should go out in the first order. The
devices d, e, and f are in group B with the depth of two, and the devices a, b, and c belong

proc SFPforDownstream_by_Controller(PROFINET)
 if topology of PROFINET is changed then do

run MST algorithm for the topology of input PROFINET;
sort the devices in order of nonincreasing depth of devices;
make the set of devices with the same depth be a group;
set n_groups as the number of groups;

end
make frame frames[]; // sequence of frames to send
n_frames = 0; // # of frames containing datagrams to send
for g = 0 to n_groups - 1 do

gather datagrams to send to devices in group g;
set n_dgrams as # of datagrams for devices in group g;
make dgram dgrams[n_dgrams] for datagrams in group g;
sort dgrams in order of nonincreasing datagram_size;
NIFFforSFP(dgrams, n_dgrams, frames, &n_frames);

end
for f = 0 to n_frames - 1 do

flood frames[f];
end

end proc

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

396

to group C with the depth of one. The controller CO should send the datagrams in the
order of A, B, and then C.

The datagrams in each group are sorted in the order of non-increasing size. The sorted
order in group A is the datagrams g, h, and i. For group B, the order is the datagrams d, f,
and e. For group C, the order is the datagrams b, c, and a. NIFFforSFP() is assumed to
derive two frames containing datagrams. In the first frame, the datagrams in group A are
packed first, and then the first two of the datagrams in group B are inserted. At this time,
it is assumed that the frame 1 cannot accommodate any more datagrams. Then, the
remaining datagram e that belongs to group B is packed into the second frame. The
datagrams b, c, and a in group C are sequentially packed into frame 2.

The box (1) in Figure 5 explains the following situation: The device a receives the
frame 2 which was broadcasted by the controller. The frame 2 has the datagram a, and
thus it is extracted from the frame. No datagram for the child d of the device a exists in
the remaining datagrams in the frame 2, so the frame 2 is discarded. The box (2) in Figure
5 describes traffic flows occurring in another branch of the MST. The device b extracts
the datagram b from the frame 2, and the remaining datagrams are continuously
broadcasted to the children (device e and f). After the device e, one of the children of the
device b, receives the frame 2, the datagram e is removed from the frame 2. The device e
checks whether or not there exist datagrams for the child g in the remaining datagrams in
the frame 2. As no datagram exists, the frame 2 is discarded.

The third diagram in Figure 5 shows the phenomenon in which the frame 2 is sent from
the device b to the device f even though no datagram exists for the children (device f, h,
and i). As mentioned above, frames are broadcasted by nodes including the controller and
devices. That makes it possible for nodes to forward frames in a simple manner, and thus
node delays can be significantly reduced. Moreover, the broadcasting does not negatively
affect the cycle time of the system.

The cycle time of this system is set to the time t at which the transmission of the
datagrams (e, c, and a) from the controller CO to the devices (e and f) has just finished.

3.2.2. Adapted NIFF Algorithm for SFP

The procedure NIFFforSFP() in Figure 6 is the adapted NIFF algorithm for the SFP.
Each datagram is placed into the first frame that fits it. As datagrams are sorted in the
order of non-increasing size, they can be optimally packed in frames. That means that the
number of frames to send to devices can be minimized, and so can the cycle times for the
system [9]. Much less computation time is needed to get the optimal cycle times as well.

proc NIFFforSFP(dgram *dgrams, int n_dgrams,
frame *frames, int *n_frames)

for d = 0 to n_dgrams - 1 do // d is index of dgrams[]
f = 0;
while (frames[f].filled_space + dgrams[d].datagram_size)

> MAXFRAME do //look for a frame to fit a datagram
f++;// frames[f] is insufficient and try the next frame

end
frames[f].datagrams[frames[f].n_datagrams++] =

dgrams[d].datagram_index;
frames[f].filled_space += dgrams[d].datagram_size;
if *n_frames < f+1 then do

*n_frames = f+1; // update the # of filled frames
end

end
end proc

Figure 6. Pseudocode of the Adapted NIFF Algorithm for the Smart Frame Packing

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

397

3.2.3. Upstream Communication

The solution [7] for the conflicts that may occur at branch nodes with two or more
children does not consider the case that the total size of conflicted datagrams is larger than
the maximum frame size. It does not reorder the conflicted datagrams by their size when
they are put into a frame. As a result, the number of packed frames may not be optimal.

The SFP for the upstream communication in Figure 7 solves this problem using
NIFFforSFP() as in the downstream communication. In this case, however, the objects to
be scheduled are conflicted datagrams in branch devices. Their destination is the same
(the controller), which means that the datagrams belong to one and the same group. Hence,
NIFFforSFP() is executed only one time in this SFP. As the conflicted datagrams are
sorted by size and put into frames in that order, the number of frames to send to the
controller can be optimized, and so can the cycle times as well.

proc SFPforUpstream_by_Devices(PROFINET)
gather datagrams from conflicted frames;
set n_dgrams as # of datagrams gathered;
make dgram dgrams[n_dgrams] for all datagrams;
sort dgrams[] in order of nonincreasing datagram_size;
make frame frames[]; // sequence of frames to send
n_frames = 0; // # of frames containing datagrams to send
NIFFforSFP(g_dgrams, n_dgrams, frames, &n_frames);
for f = 0 to n_frames - 1 do

send frames[f] to controller;
end

end proc

Figure 7. Pseudocode of the SFP for the Upstream Communication Executed by
Branch Devices

4. Conclusions
In the present research, we have proposed an RTE PROFINET IRT protocol adapted

for shipboard real-time networks. The smart frame packing (SFP) scheme takes account
of arbitrary topology network environments, messages of variable sizes, and various
update times. The adapted NIFF algorithm of the bin packing problem proposed herein
can be applied in both directions of communications. The NIFF algorithm is very simple
and its efficiency has been proven [9]. Thus, the number of frames that are transmitted
can be minimized, and consequently, near-optimal cycle times can be derived in much
shorter computation time.

When considering future shipboard equipment of high-speed, real-time, and large
capacity, shipboard data networks are expected to be replaced by real-time Ethernets.
Researches on improving the performance of the PROFINET IRT protocols will continue
to cope with these environmental changes.

References
[1] M. Felser, “Real-Time Ethernet – Industrial Prospective”, Proceedings of the IEEE, IEEE

Press, New York, vol. 93, no. 6, (2005), pp. 1118-1129.
[2] E. S. Raymond, “AIVDM/AIVDO Protocol Decoding”, http://home.shafe.com/docs/AIVDM.

Html, (2009).
[3] J. Jasperneite, M. Schumacher and K. Weber, “Limits of Increasing the Performance of

Industrial Ethernet Protocols”, IEEE Conference on Emerging Technologies and Factory
Automation, IEEE Press, Greece, (2007), pp. 17-24.

[4] F. Dopatka and R. Wismuller, “A Top-down Approach for Real-time Industrial Ethernet
Networks using edge-colouring of conflict-multigraphs”, International Symposium on Power
Electronics, Electrical Drives, Automation and Motion, IEEE Press, Taormina, (2006), pp.
883-890.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

398

[5] O. Graeser and O. Niggemann, “Planning of Time Triggered Communication Schedules”,
Software-intensive Distributed Real-time System, Springer, Boppard, (2009), pp. 21-30.

[6] Z. Hanzalek, P. Burget and P. Sucha, “Profinet IO IRT Message Scheduling With Temporal
Constraits”, IEEE Transactions on Industrial Informatics, IEEE Press, New York, vol. 6, no. 3,
(2010), pp. 369-380.

[7] L. Wisniewski, M. Schumacher and J. Jasperneite, “Fast and Simple Scheduling Algorithm
for PROFINET IRT Networks”, 9th IEEE International Workshop on Factory Communication
Systems, IEEE Press, Lempo, (2012), pp. 141-144.

[8] M. Schumacher, J. Jasperneite and K. Weber, “A New Approach for Increasing the
Performance of the Industrial Ethernet System PROFINET”, 7th IEEE International
Workshop on Factory Communication Systems, IEEE Press, Dresden, (2008), pp. 159-167.

[9] S. Baase, “Computer Algorithms”, Addison-Wesley, Philippines, (1978).

