
International Journal of Smart Home

Vol. 7, No. 4, July, 2013

273

Design and Implementation of the WIPI-to-Windows Mobile
Automatic Game Content Converter System

YangSun Lee1 and YunSik Son2*
1Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA
2Dept. of Computer Engineering, Dongguk University
26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, KOREA

yslee@skuniv.ac.kr, sonbug@dongguk.edu
*Corresponding Author: sonbug@dongguk.edu

Abstract
Mobile communication companies choose different mobile platforms from each other so

that developers have to create contents for each of the platforms according to their different
characteristics or undergo a converting process to provide the game contents to consumers.
However, existing mobile game contents require large amounts of time and expenses when
converting to be used on different platforms. This is one of the reasons why a variety of
contents are not provided on such platforms.

In this paper, in order to resolve such problems the game contents of the existing mobile
platform, WIPI (Wireless Internet Platform for Interoperability), will be analyzed. Then a
resource converter, a source translator and a platform mapping engine will be implemented
in order to convert the game contents for use on a smart phone platform, Windows Mobile. A
mobile game contents converter system has enabled contents to be transferred into smart
phone platforms within a short time, so that the time and money it takes to launch services for
different mobile communication companies can be reduced. Furthermore, contents developed
for use on feature phones can also be converted and used on smart phone platforms to
increase reusability of contents and also new contents creation processes can heighten
productivity to consequently provide a more diverse range of mobile game contents to users.

Keywords: Mobile Game Contents Converter, Contents Analyzer, Resource Converter,
Source Translator, Platform Mapping Engine, WIPI(Wireless Internet Platform for
Interoperability), Windows Mobile, WIPI-to- Windows Mobile Game Converter

1. Introduction

Due to the use of different mobile platforms for each of the mobile communications
companies, mobile contents developers must repeat development process to create different
versions of games that match the different characteristics of the different smart phone
platforms if they aspire to service their games. This has led to the need for developers to
convert contents that have been already developed for use on smart phone platforms.
However, large amounts of time and costs occur from analyzing one mobile game content’s
sources and resources and then converting (porting and retargeting) it. The time and money
that could be used to create new game contents are being used to service an existing product
on different platforms.

In this paper, to resolve this problem, the WIPI-to-Windows Mobile automatic
mobile game converter system was designed to automatically translate game content
from the WIPI(Wireless Internet Platform for Interoperability) platform for feature phones

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

274

to the Windows Mobile platform for smart phones. The WIPI-to- Windows Mobile
converter consists of a content analyzer, resource converter, source translator, and
platform mapping engine. The content analyzer analyzes the content that is input, and
produces an output in which the resource data and source code stored within the content
are separated. The resource converter is a system which converts the text or binary resource
data from the game to be converted into image, sound and user data so that it can be used on
the target platform’s file system. The platform mapping engine is a system which provides
API functions which allow the previous platform’s execution environment to be recreated
using the target platform’s wrapper functions.

By automatically converting the existing mobile game contents to the smart phone game
contents, the existing game contents can be ported quickly to a different platform and the
human resources, time and expenses used to service the contents to different mobile
communication companies can be saved [1-11].

2. Related Studies

2.1. WIPI

WIPI(Wireless Internet Platform for Interoperability) is legislated by KWISF(Korea
Wireless Internet Standardization Forum) and a standard chosen by KTTA(Korea
Telecommunications Technology Association) as an application program execution
environment for mobile communication platforms. Because mobile communication
companies use different platforms each, contents developing companies feel a great burden
from having to repeat development of contents, users’ rights of using are restricted and cell
phone manufactures feel burdened to develop new phones. Thus a need for standardization
arose and as a result, the Korean standard was set for wireless internet platforms. Figure 1
shows the structure of a WIPI platform.

Figure 1. System Configuration of the WIPI Platform

WIPI supports the C language and the Java language which were the programming
languages used when developing applications. In the case of Java, bytecode programs are
recompiled using an AOTC (Ahead Of Time Compiler) and then executed in a native way for
each cell phone. The WIPI standards can be largely divided into the HAL (Handset
Adaptation Layer) and the basic API. HAL is a standardized hardware abstraction layer to
increase transferability. Also, since it is hardware-independent, it can be executed with no
connection with the native system. Only using the standardized HAL and API, a WIPI
runtime engine can be implemented and a basic API – for both the C language and the Java
language - can be created over it [12].

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

275

2.2. Windows Mobile

Windows Mobile(brand name changed to Windows Phone) is a mobile operating system
invented by Microsoft Corporation. It is an embedded operating system based on Windows
CE. The Windows Mobile 6 version is a platform for mobile devices which was created using
Windows CE 5.0 as its base. Figure 2 shows the structure of a Windows Mobile System.

Figure 2. System Configuration of the Windows Mobile Platform

Windows Mobile 6.5 version is the result of applying a Windows desktop line to a
windows mobile device. In this version, a considerable number of UIs were changed for use
with a touch screen, the classic pocket PC version supported previously and the resolution
version that was seldom used were deleted, and a reinforced simpler version of internet
explorer mobile 6 (compared to Windows mobile 6.1.4) is built in. Windows mobile is the
basis to Windows embedded CE 5.2 and supports .NET compact framework. The Windows
mobile platform offers higher security and diverse APIS such as Bluetooth and POOM
(Pocket Outlook Object Model). It also includes a wide range of programming models such as
the native code (C/C++), a managed code (C#), mobile web development, multithreading and
other device supports. The development environment is similar to that of Windows, allowing
development time and money to be reduced [13].

2.3. Existing Mobile Game Contents Converter

Until now, despite the invigoration of the mobile market, there has been a lack of research
for mobile contents converters which has led to few examples to refer to. Furthermore,
converters for existing contents generally only allow conversion of contents that have similar
programming language environments or don’t allow automatic conversion at all. The reality
is that programmers have to undergo the converting process by hand.

There has been a study on an existing mobile game contents converter using XML that
attempted to convert Java contents [14-17]. In addition, the functions of the API used in the
source codes to be converted are imitated and redefined using wrapper functions. Therefore
there is no need to convert the source codes while the same functions are used. There was a
study on the mutual conversion of BREW C and WIPI C [18] or converting GVM C into
BREW C [19], however it was flawed because the source codes were not automatically
converted, the users had to intervene and convert it manually.

On the other hand, studies on automatic conversion of mobile game contents using the
compiler writing system [1-11, 20-22] have been attempted. Studies have suggested a method
to increase the reusability of game contents and enhance productivity by converting mobile C
contents of the GVM platform into WIPI C, Java or MIDP Java [1]. Also other studies are

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

276

underway to convert existing mobile game contents for use in the rising smart phone market
for operating systems such as Android and iOS [2-3] such as the WIPI-to-iOS converter, the
WIPI-to-Android converter, the GNEX-to-iOS converter, the GNEX-to-Android converter,
the Android-to-iOS converter, and the iOS-to-Android converter system.

3. The WIPI-to-Windows Mobile Game Converter System

The WIPI-to-Windows Mobile automatic mobile game content converter receives WIPI
game contents in source form, which it converts into the game contents source form that is
run on the Windows Mobile platform. For automatic conversion on the source level, first the
source code must be converted into a source code of the subject platform that executes the
same action. Other resource data such as images, sound and etc. must also be converted into a
form that can be used on the new platform. In addition, the API library must be provided to
maintain equivalent programming and event environments. Figure 3 shows a model of the
WIPI-to-Windows Mobile game contents automatic converter system.

Figure 3. WIPI-to-Windows Mobile Game Content Converter System

The WIPI-to-Windows Mobile converter consists of a contents analyzer which classifies
resources and source codes, a resource converter which converts the WIPI C resource format
into a format that is usable on Windows Mobile, a source translator which translates WIPI C
source codes into Windows Mobile CPP source codes, an environment which enable the
equivalent display and execution of WIPI C contents on the Windows Mobile platform and a
platform mapping engine which provides APIs [1-8].

3.1. Content Analyzer

A WIPI content analyzer receives WIPI contents’ project files, separates the sources and
resources of the content and creates a list of them. In the separation process of a WIPI content
analyzer, there is the content analysis step which separates resource codes, source codes and
other files, there is the source file categorization step which separates the source files and
creates a list, there is the resource management file check step where the resource managing
files of WIPI are analyzed, there is the image file categorization step where the image files
are classified and listed up and finally there is the sound file categorization step where sound
files are classified and listed up[4-7]. Figure 4 is a diagram of a WIPI content converter
system. Figure 5 shows the results of experimenting with the WIPI content analyzer.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

277

Figure 4. WIPI Content Analyzer System

Figure 5. Result of the WIPI Content Analyzer

3.2. Resource Converter

The WIPI-to-Windows Mobile resource converter is a file converting system that converts
the resource data in text or binary form from the WIPI input contents into forms - image data,
sound data and user data that can be used in the target platform, Windows Mobile. For this to
be executed, the image file forms (VDI, BMP, GIF and etc.), the sound forms (MMF and etc.)
and user data for different platforms must be researched and then converted into forms usable
in the target platform[4-7]. Figure 6 shows a model of the resource converter system.

Figure 6. Model of the Resource Converter System

In WIPI C, all resources are managed using a file with an xrf extension, but since this is a
structure that is only used in WIPI C, in order to be used on different platforms, a resource
management file generator needs to be created so that resource management files can be made
according to the different platforms. A resource management file is created in XML grammar
and the types of resources are classified into ‘Token’, ‘Image’ and ‘Ami’. Here, what is

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

278

needed in the converter is classified into the ‘Image’ category, a list of image files and sound
files. Generation of resource managing files requires writing up lists of the necessary items
stated above separately so that when automatic conversion takes place, the necessary resource
management file can be created.

In this paper, the Windows Mobile resource management file wmr(windows mobile
resource) was regulated and used as the only extension. The resource management file
structure for Windows Mobile consists of the images name, ID and route. To image routes,
“storage cards” are added because when handling images they are loaded additionally from
the memory so additional resource management files are created. Also, after resource
management files are created, they are added to the Windows Mobile project composition just
like image and sound resources. Figure 7 shows the executing result of a WIPI-to-Windows
Mobile resource converter.

Figure 7. Result of a WIPI-to-Windows Mobile Resource Converter

3.3. Source Translator

The source translator receives the WIPI C source codes that are output by the contents
analyzer and translates them into Windows Mobile source codes which are semantically
equivalent and execute the execute the same actions as the WIPI C source codes. Because
WIPI C and Windows Mobile are both C based platforms, the characteristics of the language
are the same. However, there exist some parts which have been differently altered to suit each
of the platform's virtual machines.

Source translators have been created so that they can overcome the differences of the
platforms and automatically translate the game source programs using compiler writing
technology. Compiler technology analyzes programming grammar and syntax and provides a
method for automatic translation into another language [1-6, 8, 20-22]. Figure 8 is a depiction
of the source translator.

Figure 8. The Source Translator System

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

279

Source translators can be largely divided into the source analysis module and source
translation module. The source analysis modules receive WIPI C source code inputs and
carries out lexical and syntax analysis to create an Abstract Syntax Tree (AST). The source
translation module searches the AST and creates Windows Mobile source codes which are
semantically equivalent to the WIPI C source codes.

3.3.1. Source Analysis Module

WIPI The source analysis module is the first component of a source translator. It receives
WIPI C source code inputs, carries out lexical and syntax analysis, outputs sentence structure
as AST and delivers the AST to the source translation module. Figure 9 shows the source
analysis module.

Figure 9. Source Analysis Module

The source analysis module can be largely divided into the lexical analyzer and the syntax
analyzer. The lexical analyzer classifies WIPI C source codes that it receives into tokens, the
smallest unit with grammatical meaning. The lexical analyzer analyzes the source codes and
delivers the results to the syntax analyzer. The token information transferred between the two
analyzers are composed of token numbers and token values. Table 1 shows the output results
of the tokens analyzed by the lexical analyzer.

Table 1. Tokens' Result of the Lexical Analyzer
Source code Token

 void MoveCloud() {
 int i;
 for (i=0; i<MAX_CLOUD; i++) {
 if (gCloudS[i] == FS_ACTIVATE) {

 gCloudY[i] += gCloudY[i];
 if (gCloudY[i] > swHeight+60) {

 gCloudS[i] = FS_GHOST;
 gCloudCount--;

 }
 }
 }
 }

The syntax analyzer uses the token information obtained from the lexical analyzer and the
parsing table created by the Parser Generating System (PGS) to analyze the syntax of the
program. The results of the syntax analyze output error messages about wrong programs, and
for correct syntax, results are created in the form of a syntax tree. This tree is the Abstract

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

280

Syntax Tree (AST) which is used in the source translation module. Depending on the stack's
top and the current input symbol, the syntax analyzer refers to the parsing table and makes a
parsing action.

The four parsing actions of the syntax analyzer include shift, reduce, accept, and error.
Depending on the top of the stack and the currently evaluated symbol, it refers to the parsing
table and makes a decision. Figure 10 shows the process followed by the analyzer. Because
this process is a continuous action of shifting and reducing, as described below, it is called a
'shift-reduce' syntax analyzer.

Figure 10. Shift-Reduce Syntax Analyzer

The shift action signifies the transfer of the currently evaluated symbol to the stack. The
reduce action abbreviates the handle at the top of the stack according to the creation rules. In
addition, the accept action indicates that the given string is grammatically correct, and the
error action shows that a sentence is wrong because it cannot be revealed in its current symbol
state. Table 2 shows the AST information created by the syntax analyzer.

Table 2. Source Code and AST Information

Source code AST

void MoveCloud() {
 int i;
 for (i=0; i<MAX_CLOUD; i++) {
 if (gCloudS[i] == FS_ACTIVATE) {

 gCloudY[i] += gCloudY[i];
 if (gCloudY[i] > swHeight+60) {

 gCloudS[i] = FS_GHOST;
 gCloudCount--;

 }
 }
 }
 }

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

281

3.3.2. Source Translation Module

The source translation module receives the AST as an input from the source analysis
module, searches each of the nodes of the tree and creates source codes that will execute in
the same manner in the target platform, Windows Mobile, as they did in WIPI. Since this
module has been designed to analyze ASTs which are expressed with consistency, it is
possible to match it with all program structures that can be created.

The source translation module which receives AST as an input, begins a successive search
from the tree's root. During the search process, if a significant node appears, the pattern
matching source writer receives the node and translates it into the Windows Mobile source
code. When the entire AST search process is finished, the pattern matching source writer
analyzes the nodes until now and creates each of the translated source codes into one file, this
is the Windows Mobile source code. Figure 11 shows the execution process of the source
translation module.

Figure 11. Source Translation Module

Figure 12 shows the execution result of the source translator. The list on the left is the list
of WIPI C files to be translated and the list on the right is a list of the converted Windows
Mobile files. When the conversion button is pressed, the source translator automatically
converts the sources.

Figure 12. Executing Result of the Source Translator

Figure 13 shows an example of traversing the AST of a WIPI C program created by the
syntax analyzer and converting it into the Windows Mobile program.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

282

AST WIPI Source.

 void MoveCloud() {
 int i;
 for (i=0; i<MAX_CLOUD; i++) {
 if (gCloudS[i] == FS_ACTIVATE) {

 gCloudY[i] += gCloudY[i];
 if (gCloudY[i] > swHeight+60) {

 gCloudS[i] = FS_GHOST;
 gCloudCount--;

 }
 }
 }
 }

Windows Mobile Source.

 void MoveCloud() {
 int i;
 for (i=0; i<MAX_CLOUD; i++) {
 if (gCloudS[i] == FS_ACTIVATE) {

 gCloudY[i] += gCloudY[i];
 if (gCloudY[i] > swHeight+60) {

 gCloudS[i] = FS_GHOST;
 gCloudCount--;

 }
 }
 }
 }

AST WIPI Source.

void InitFlight(){
 gFlightS = FS_ACTIVATE;
 gFlightX = gCX;
 gFlightY = swHeight + 40;
 gFlightC = 0;
 gFlightStep = 0;
 gFlightShooting = FALSE;
 if (gStage == 0)
 gFlightMT = 0;
}

Windows Mobile Source.

void InitFlight(){
 gFlightS = FS_ACTIVATE;
 gFlightX = gCX;
 gFlightY = swHeight + 40;
 gFlightC = 0;
 gFlightStep = 0;
 gFlightShooting = FALSE;
 if (gStage == 0)
 gFlightMT = 0;

}

Figure 13. AST and Source Translation

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

283

3.4. Platform Mapping Engine

Platform mapping engines convert APIs such as displays, graphics, sound outputs, system
variables and event handlers used in WIPI contents’ source codes into forms that are usable in
Windows Mobile, the target platform. For this, identical execution environments to WIPI’s
are built and based on these environments, wrapper functions are used to execute WIPI’s
APIs, system variables and etc. in the same form and thus implement WIPI’s APIs as
Windows Mobile’s APIs. By doing so, the translated source codes for Windows Mobile
contents do not need additional adjustments before implementation. Also it enables simplified
understanding and source code modification as identical forms of APIs used in WIPI are used
[1-6]. Figure 14 is a model of a platform mapping engine.

Figure 14. Model of a Platform Mapping Engine

If graphic library functions from WIPI’s API are used to create image data or texts, they
create not an actual LCD frame buffer but a virtual LCD frame buffer. In this case, internal
virtual LCD buffers are put out so that actual LCDs cannot be created. To generate actual
LCDs, a library function MC_grpFlushLcd must be used.

3.3.1. Project File Generation

The project files which make up Windows Mobile, are managed by the “Microsoft Visual
Studio Solution” and actual sources are managed by the “VC++ Project” file. In order to run
actual sources, there is a composition which must be included in the project. This composition
is Windows Mobile’s basic headers, Register Class set-up, Procedure registration and
WINAPI WinMain function. Through the platform map-ping engine, headers for Windows
Mobile and wrapper APIs for WIPI C source are added to the basic headers. RegisterClass’s
registration related contents are needed to differentiate different contents within one Windows
Mobile phone. Also, Procedure is responsible for actions such as draw, event and etc. for
contents and handling them. The WinMain function is responsible for starting the contents so
it takes care all of the actions above in order.

3.3.2. Event Environments

In WIPI C, “handleCletEvent”, an event handler is registered and used. Each event is
defined as a certain type and when an event occurs, it is automatically called. Also in order to
provide additional information about the event to the event handler, two parameter variables
are used. The platform mapping engine converts events that occurred in Windows Mobile into
a WIPI C event form. Then, events are transferred to event handlers, which have been defined

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

284

for specific translated source codes, so that they can be handled. Event handlers have been set
to be called when events for WIPICAPP or WIPICKNL sources – WIPI C’s APIs defined –
occur. In this paper, only the timer event and key input event among WIPI C’s events were
handled and implemented.

3.3.3. Graphics Environments and Image Output

WIPI basically provides graphics environments using a frame buffer. Frame buffers
provide main LCD frame buffers and assistant LCD frame buffers. And Virtual LCD Frame
Buffers are used internally to increase speed of generating outputs and to ensure smooth
output generation. Figure 15 shows the WIPI’s graphic output method.

Figure 15. WIPI's Graphic Output Method

Windows Mobile’s graphic functions have been made so that actual LCD buffers are
generated, so when they are used, the outputs appear on the screen right away. For platform
mapping engines support graphic output functions in the same way as WIPIs do, they use
Windows Mobile’s API to generate a virtual LCD buffer. Also graphic functions identical to
WIPI C’s graphic library functions have been designed to create the virtual LCD buffer’s
images, figures and texts. The function MC_grpFlushLcd function has been designed to use
virtual LCD buffer’s information so that deliver it to actual LCD buffers and consequently
generate LCDs in the same way as WIPI C.

WIPI C’s image output process is divided into three steps; image information collection,
image loading and image output. Image information collection is the process of bringing the
resource information of an image from the resource managing file by using a kernel library.
Based on the information collected, the images memory is kept. If the image’s memory has
been kept normally, the image’s data can be automatically loaded by format type using an
image loading function. Then the image is generated only using the image’s ID through a
WIPI image generating function in the desired image output location. In the same method as
this, Windows Mobile’s image handling structure is converted into a mapping engine.

To generate images using Windows Mobile, there is the method of using a graphic context
that uses GDI – a basic API – and the method of using Direct X which uses a graphic
acceleration device. In this paper, Direct X was used as the image generating method because
this method enhances the contents speed after conversion to Windows Mobile form. The

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

285

platform mapping engine was implemented using Direct X, identical to WIPI’s image
generating library function.

3.3.4. Library Functions (APIs)

Windows Mobile’s APIs were used in the implementation process so that they would carry
out the same actions as the WIPI library functions. The WIPI library function is defined
within the WIPICHEADER file, and since each header is inherited through translation of a
translator, the WIPI library function within the source codes translated into the C++ language
can be used in the same form as the original functions, thus requiring no additional
conversion for use in the target platform. Table 3 is a list of the WIPI library functions
supported.

Table 3. WIPI's Library Functions Supported

Category Supported APIs
Kernel(9) MC_knlPrintk, MC_knlGetResourceID, MC_knlCalloc, MC_knlGetResource,

MC_knlDefTimer, MC_knlSetTimer, MC_knlUnsetTimer, MC_knlSprintk,
MC_knlCurrentTime

Graphic(16) MC_grpGetPixelFromRGB, MC_grpGetPixelFromRGB, MC_grpSetContext,
 MC_grpFillRect, MC_grpGetScreenFrameBuffer, MC_grpInitContext,
MC_grpFlushLcd, MC_grpRepaint, MC_grpDestroyImage,
MC_grpDrawImage, MC_grpCreateImage, MC_grpDrawRect,
MC_grpPutPixel, MC_grpCreateOffScreenFrameBuffer,
MC_grpCopyFrameBuffer, MC_grpDrawImageRegion

Media(5) MC_mdaClipCreate, MC_mdaClipPutData, MC_mdaPlay, MC_mdaStop,
MC_mdaSetVolume

Mathermatics(9) MC_mathAbs, MC_mathRand, MC_mathSin100, MC_mathCos100,
MC_mathTan100, MC_mathArcSin100, MC_mathArcCos100,
MC_mathArcTan100, MC_mathSrand

4. Experimental Results and Analysis
The Using the resource converter and platform mapping engine proposed in this paper, a

WIPI-to-Windows Mobile game contents converter was designed. Using this, feature phone
WIPI game contents were converted into smart phone Windows Mobile game contents and
the results were compared, the contents converter’s performance was measured and analyzed.

As can be seen in the screens shown in Figure 16, WIPI contents have been converted
using the WIPI-to-Windows Mobile contents converter and can be run on Windows Mobile
just like it would be run on WIPI. Contents execution speed was measured using FPS (Frame
Per Second) as the measure. The converted Windows Mobile Contents (A) in Figure 17 is
slower if it has more frames than the original WIPI Contents (A) however if they have a
similar number of frames like contents B, there is no difference in execution speed. As you all
know from the experiment above, the reason behind such speed differences seems to occur
from the speed difference of the WIPI API supported by the platform mapping engine and
each individual emulators.

The sizes of contents were compared by comparing the sizes of the emulator execution file.
As is visible in Figure 18, the execution file for Windows Mobile contents is smaller than that
for WIPI contents. However in the case of Windows Mobile, resource data are separately

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

286

included in the memory and if the volume of resource data is included, the size is similar to
that of WIPI contents.

Figure 16. Execution Results of Game Contents A and B

Figure 17. Results of Game Contents Execution Speed

Figure 18. Size Comparison of Game Contents

5. Conclusions
A Recently, the appearance of smart phones caused the mobile contents market to

experience high annual growth rates and the killer contents of the mobile market have
become smart phone contents. However, the mobile platforms are different according to
the mobile communications company or cell phone manufacturer they are associated

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

287

with. So to service one mobile game contents, the contents have to be duplicated or
converted which consumes additional time and expenses.

The mobile contents converter developed in this paper using a resource converter and
a platform mapping engine is one way to solve the converting problems of a mobile
game content. Through a converter such as this, the job of converting contents can be
carried out automatically within a short period of time. This will shorten the time
invested in converting WIPI game contents for feature phones into Windows Mobile
game contents for smart phones along with reducing expenses and enhancing
productivity.

For future enhancement of mobile game contents converter, a source code translation
and APIs provision would become possible for the specific platform and device used.
Also, the study will be extended to create contents game converters for the rapidly
growing smart phone platforms such as Android, iOS(iPhone), Windows Phone 7, bada
and etc. by supplementing the converters’ systems and functions.

Acknowledgements

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology(No. 201000236 44).

References
[1] Y. S. Lee, “Design and Implementation of the GNEX C-to-WIPI Java Converter for Automatic Mobile

Contents Translation”, Journal of Korea Multimedia Society, vol. 13, no. 4, (2010), pp. 609-617.
[2] Y. S. Son, S. M. Oh and Y. S. Lee, “Design and Implementation of the GNEX C-to-Android Java Converter

using a Source-Level Contents Translator”, Journal of Korea Multimedia Society, vol. 13, no. 7, (2010), pp.
1051-1061.

[3] Y. S. Lee, H. J. Choi and J. S. Kim, “Design and Implementation of the GNEX-to-iPhone Converter for
Smart Phone Game Contents”, Journal of Korea Multimedia Society, vol. 14, no. 4, (2011), pp. 577-584.

[4] Y. S. Lee and Y. S. Son, “A Platform Mapping Engine for the WIPI-to-Windows Mobile Contents
Converter”, Multimedia, Computer Graphics and Broadcasting, Springer, CCIS, vol. 262, (2011), pp. 69-78.

[5] Y. S. Lee, “Automatic Mobile Contents Converter for Smart Phone Platforms”, Korea Multimedia Society,
vol. 15, no. 1, (2011), pp. 54-73.

[6] Y. S. Lee and Y. S. Son, “A Study on the Source Translator of the WIPI-to-Android Mobile Game
Converter”, Information-an International Interdisciplinary Journal, International Information Institute, vol. 16,
no. 1, (2013), pp. 739-746.

[7] Y. S. Lee, J. S. Kim and M. J. Kim, “Development of the Contents Analyzer and the Resource Converter for
Automatic Mobile Contents Converter”, Journal of Korea Multimedia Society, vol. 14, no. 5, (2011), pp.
681-690.

[8] Y. S. Lee and Y. S. Son, “A Study on the Source Translator for Generating the Android Game Source from
the WIPI Game Source”, International Journal of Multimedia and Ubiquitous Engineering, SERSC, vol. 7,
no. 4, (2012), pp. 95-106.

[9] Y. S. Son and Y. S. Lee, “Automatic UI Generation Technique for Mobile Applications on Touch-Screen
based Smart Phones”, International Journal of Smart Home, SERSC, vol. 6, no. 4, (2012), pp. 67-80.

[10] Y. S. Son, Y. S. Lee and S. M. Oh, “Design and Implementation of the Compiler with Secure Coding Rules
for Developing Secure Mobile Applications in Memory Usages”, International Journal of Smart Home,
SERSC, vol. 6, no. 4, (2012), pp. 153-168.

[11] H. M. Jang and S. P. Hong, “A Study on the OSMU (One-Source Multi-Use) Management for Smart
Devices”, International Journal of Smart Home, SERSC, vol. 7, no. 1, (2013), pp. 1-8.

[12] WIPI (Wireless Internet Platform for Interoperability), KWISF (Korea Wireless Internet Standardization
Forum), (2004).

[13] Microsoft, Windows Mobile MSDN,
http://msdn.microsoft.com/en-us/library/bb158486%28v=MSDN.10%29.aspx, (2010).

[14] S. H. Kim, “Design and Implementation of a Mobile Contents Conversion System based on XML using
J2ME MIDP”, Master's Thesis, Hannam University, (2003).

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

288

[15] Y. S. Kim and D. C. Jang, “A Design for Mobile Contents Converting Using XML Parser Extraction”,
Journal of Korea Multimedia Society, vol. 6, (2003), pp. 267-276.

[16] S. I. Yun, “Integrated Conversion System for Wired and Wireless Platform based on Mobile Environment”,
Ph.D Thesis, Hannam University, (2003).

[17] Y. S. Kim and S. Y. Oh, “A Study on Mobile Contents Converting Design of Web Engineering”, Journal of
Korea Information Processing Society, vol. 12-D, no. 1, (2005), pp. 129-134.

[18] Y. J. Lee, “A Method of C Language based Solution Transformation between WIPI and BREW Platform”,
Master's Thesis, Chungnam National University, (2007).

[19] C. U. Hong, J. H. Jo, H. H. Jo, D. G. Hong and Y. S. Lee, “GVM-to-BREW Translator System for
Automatic Translation of Mobile Game Contents”, Game Journal of Korea Information Processing Society,
vol. 2, no. 1, (2005), pp. 49-64.

[20] Y. S. Lee, “Design and Implementation of the MSIL-to-Bytecode Translator to Execute .NET Programs in
JVM platform”, Journal of Korea Multimedia Society, vol. 7, no. 7, (2004), pp. 976-984.

[21] Y. S. Lee and S. W. Na, “Java Bytecode-to-.NET MSIL Translator for Construction of Platform Independent
Information Systems”, Knowledge-Based Intelligent Information & Engineering Systems, LNAI 3215,
Springer, vol. 3, (2004), pp. 726-732.

[22] D. Galles, “Modern Compiler Design”, Addison-Wesley, (2007).

Authors

YangSun Lee received the B.S. degree from the Dept. of Computer Science, Dongguk
University, Seoul, Korea, in 1985, and M.S. and Ph.D. degrees from Dept. of Computer
Engineering, Dongguk University, Seoul, Korea in 1987 and 2003, respectively. He was a
Manager of the Computer Center, Seokyeong University from 1996-2000, a Director of
Korea Multimedia Society from 2004, a General Director of Korea Multimedia Society from
2005-2006 and a Vice President of Korea Multimedia Society in 2009. Also, he was a
Director of Korea Information Processing Society from 2006, and a President of a Society for
the Study of Game at Korea Information Processing Society from 2006. And, he was a
Director of Smart Developer Association from 2011-2012. Currently, he is a Professor of
Dept. of Computer Engineering, Seokyeong University, Seoul, Korea. His research areas
include smart cross platforms, automatic mobile content converter system, programming
languages, compiler construction, and mobile/embedded systems.

Yunsik Son received the B.S. degree from the Dept. of Computer Science, Dongguk
University, Seoul, Korea, in 2004, and M.S. and Ph.D. degrees from the Dept. of
Computer Engineering, Dongguk University, Seoul, Korea in 2006 and 2009,
respectively. Currently, he is a Researcher of the Dept. of Computer Science and
Engineering, Dongguk University, Seoul, Korea. His research areas include smart
system solutions, secure software, HCI, programming languages, compiler construction,
and mobile/embedded systems.

	Design and Implementation of the WIPI-to-Windows Mobile Automatic Game Content Converter System
	Abstract
	Acknowledgements

