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Abstract 
In this paper, for efficient energy consumption through the residential demand response in 

the smart grid, an optimization algorithm, which can provide a schedule plan for the home 
appliance usages, is proposed. In order to minimize the average electricity price based on the 
time-varying electricity price in conjunction with the peak hourly load, which decides the 
capacity of the electric supply facilities, we establish a mixed integer linear programming 
problem considering various energy consumption patterns of home appliances. In addition, a 
photovoltaic system and an energy storage are added to the residential side to achieve further 
efficient schedule plans. By measuring the power consumptions of the home appliances with 
respect to the time, we constructed the power consumption patterns of each appliance and 
numerically analyzed the performance of our algorithm by using a real time-varying 
electricity price and the solar cell power profile obtained through a mathematical model. 
 

Keywords: Mixed binary linear program, schedule plan, smart grid, time-varying 
electricity price, home appliance 
 
1. Introduction 

Because of rapid and continuous increases in the electric power demand, the electricity 
distribution systems are confronted with numerous difficulties in the power grid. Developing 
the smart grid is embedding intelligence into the power grid and provides benefits to the 
customers as well as the electric power providers [1]. The demand response (DR) can make 
an important contribution to enabling the smart grid. DR is changes in electric power usage 
by the customers from their normal consumption patterns in response to changes in the 
electricity price over time, or incentive payments prepared to induce the lower consumption at 
times [2]. 

Under the time-varying electricity price structures, such as the time of use (TOU) pricing, 
the customers in the residential side can reduce their electricity bills by changing the usage 
patterns. In this paper, we focus on the schedule plan of home appliances based on the TOU 
pricing system. In order to reduce the residential electricity bill, several research works have 
been conducted. Kumaraguruparan et al., [3] classified the home appliances depending on the 
power controllability and conducted minimizations of the residential electricity bill by using 
the multiple knapsack method. Chen et al., [4] considered a scheduling problem of delay 
tolerant tasks with the renewable energy to reduce the residential electricity bill. On the other 
hand, Zhu et al., [5] formulated a min-max problem to reduce the peak power demand based 
on the mixed binary linear program (BLP). Note that the mixed BLP can manage further 
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general types of optimization problems especially for the scheduling problem than the case of 
the Knapsack method. Hence, we employ the mixed BLP technique to solve an optimization 
problem of scheduling the home appliances to reduce the residential electricity bill. 

In this paper, for the purpose of minimizing the residential electricity bills under the TOU 
pricing or tariff system, we formulate several optimization problems to obtain good schedule 
plans of the home appliances in the form of the mixed BLP. We first establish a scheduling 
optimization problem to minimize the price, and then incorporate the peak power use into the 
problem considering the electrical facilities. We then expand the optimization problems with 
a photovoltaic system and an energy storage. We measure the power consumption patterns of 
the home appliances and classified them into three classes depending on the control types as 
in [3] and [5].  By using a TOU pricing and simulated locally-generated power from the 
photovoltaic system, the optimizations are performed and the results are compared. 
 
2. Residential Power Management 

In this section, in a similar manner as in [1, 3] and [5], we observe the power consumption 
patterns of widely used home appliances and then classify the types of appliances, which can 
be controlled based on DR to reduce the residential electricity bill. 

Let a set 𝚨  be defined as 𝐀 ≔ {1, … ,𝑁} , of which elements indicate N appliances, 
respectively, and let a vector 𝐱𝑖  , which denotes the schedule plan of the i-th appliance, be 
defined as 

𝐱𝑖 ≔ �𝑥𝑖,1, … , 𝑥𝑖,24� ∈ 𝐑24, for 𝑖 ∈ 𝐀 (1) 

where 𝑥𝑖,𝑗 ≥ 0. Consider a set 𝐇, which implies 24 slots of hours for one day, and define 
the set as  𝐇 ≔ {1, … ,24}.  For a particular time slot 𝑗 in 𝐇, 𝑥𝑖,𝑗 is the scheduling variable, 
which means the power consumption of the i-th appliance in kilowatt-hour (kWh). We now 
classify the types of the power consumption patterns as follows. 
 
2.1. Power-Shiftable Appliances 

For the power-shiftable appliances, such as the water boiler and the plug-in electric vehicle 
(PEV) chargers, the scheduling optimization can arrange flexible power usages in several 
hours while ensuring the total energy supplies. Let 𝐏(⊂ 𝐀) denote the set of indexes of the 
power-shiftable appliances, and for 𝑖 ∈ 𝐏  let positive constants δ𝑖  denote the total daily 
energy requirements for the i-th appliances, respectively. For the power-shiftable appliances 
with a standby power 𝛼𝑖,𝑗(≥ 0)  and a maximum working power 𝛽𝑖,𝑗(≤ 0) , which can 
describe a possibly preferred working period, the consumption constraints, for 𝑖 ∈ 𝐏, can be 
written as 

𝛼𝑖,𝑗  ≤ 𝑥𝑖,𝑗 ≤ 𝛽𝑖,𝑗 ,∀ 𝑗, and 𝟏𝑇𝐱𝑖 =  δ𝑖  (2) 

where 𝟏 ≔ (1, … ,1) ∈ R24. 
 
2.2. Time-Shiftable Appliances 

The time-shiftable appliances, such as the washing machine, dish washer, electric rice 
cooker, and iron, can shift the power consumption time within a preferred working period. 
Let 𝐓(⊂ 𝐀) denote the set of indexes of the time-shiftable appliances, and for 𝑖 ∈ 𝐓 define the 
fundamental power consumption pattern as �ϵ𝑖,1, … , ϵ𝑖,24�, where ϵ𝑖,𝑗  ≥ 0. The i-th time-
shiftable appliance can then have 24 possible patterns, which are obtained by circular shifting 
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the fundamental pattern. In order to select one of them for optimization, Zhu et al. [5] used 
the BLP technique. For the switch control, a binary integer vector 𝐬𝑖  is defined as 𝐬𝑖 ≔
�𝑠𝑖,1, … , 𝑠𝑖,24�  ∈ {0,1}24. In the vector 𝐬𝑖, there is only one non-zero element that is equal to 
one. For 𝑖 ∈ 𝐀, this constraint can be written as 

𝟏𝑇𝐬𝑖 = 1, and s𝑖,𝑗 ∈ {0,1}, for 𝑗 ∈ 𝐇. (3) 

By using 𝐬𝑖, the schedule plan 𝐱𝑖 of the time-shiftable appliances can be written as  

𝐱𝑖 = 𝐸𝑖𝑇𝐬𝑖 , for 𝑖 ∈ 𝐓, (4) 

where the columns of the 24 × 24 matrix 𝐸𝑖 are the circular shifts of the fundamental pattern 
�ϵ𝑖,1, … , ϵ𝑖,24� as 

𝐸𝑖 ≔ �
ϵ𝑖,1 ⋯ ϵ𝑖,24
⋮ ⋱ ⋮

ϵ𝑖,24 ⋯ ϵ𝑖,23
�. 

 
2.3. Non-Shiftable Appliances 

The non-shiftable appliances, which cannot shift their working time to any time slot, have 
fixed power requirement, operation period, and have to ensure continuous supply of power. 
For example, the fridge, TV, and the heater belong to the non-shiftable appliances. Suppose 
that the complement set 𝐀 \ (𝐏 ∪ 𝐓) implies the non-shiftable appliances. For the schedule 
plan 𝐱𝑖 of the non-shiftable appliances, the hourly power requirements are fixed constants 
during their working periods. 
 
3. Scheduling Optimizations 

In this section, for the TOU pricing environment, we suppose that the energy is only 
provided from the grid and then formulate optimization problems to achieve a lower 
electricity bill in the residential side based on the mixed BLP. 
 
3.1. Minimization of the Residential Electricity Bill 

We define the vector 𝐜, which represents the time-varying electric price rate for a day, as 
𝐜 ≔ (𝑐1, … , c24)  ∈  𝐑24. Here, the non-negative constants 𝐜𝑗 , for 𝑗 ∈ 𝐇, are the price rates, 
which are given in dollars per kWh (dollars/kWh). We call the summation  ∑ 𝑥𝑖,𝑗𝑖∈𝐴 , which 
implies the required power of the all appliances for the time slot (𝑗 ∈ 𝐇), the hourly load. 
Then, the cost for the hourly load of load j is c𝑗 ∑ 𝑥𝑖,𝑗𝑖∈𝐴  and the total cost a day is given by 

� c𝑗
𝑗∈𝐇

�𝑥𝑖,𝑗
𝑖∈𝐀

= �𝐜𝑇
𝑖∈𝐀

𝐱𝑖  (5) 

which implies the residential electricity bill per day. We can now formulate the consumption 
scheduling mechanism based on the mixed BLP, which aims to minimize the bill of (5) with 
respect to the schedule plan 𝐱𝑖 in (1), as follows. 

minimize �𝐜𝑇𝐱𝑖
𝑖∈𝐀

 (6) 
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The minimization of (6) is achieved by changing the parameters on the power-shiftable and 
time-shiftable appliances under the constraints of (2), (3) and (4). Hence from the 
optimization of (6), we can obtain an optimal schedule plan of 𝐱𝑖, which yields the minimal 
bill of (5). 
 
3.2. Residential Electricity Bill Considering the Peak Hourly Load 

Since the scheduling optimization of (6) minimizes the residential electricity bill, the 
power-shiftable and time-shiftable appliances converge on low cost time slots. This 
convergence yields increased energy consumption at a particular time slot, and demands 
further extension of the electrical facilities. Such an extension also increases the basic charge 
for the usage of the electric power. Hence, in optimizing the appliance schedule plan, we may 
consider the peak hourly load [5], which is the maximal hourly load among the hourly loads. 
Let a constant 𝐿 denote the peak hourly load. The constraint regarding the peak hourly load is 
then given ∑ 𝑥𝑖,𝑗 ≤ 𝐿𝑖∈𝐀 , for 𝑗 ∈ 𝐇 . We now modify the optimization problem in (6) by 
adding the constraint on the peak hourly load 𝐿 as 

minimize �𝐜𝑇𝐱𝑖
𝑗∈𝐇

+  λ𝐿                     (7) 

subject to �𝐜𝑇𝑥𝑖,𝑗  ≤ 𝐿, for 𝑗 ∈ 𝐇
𝑖∈𝐀

  

In (7), a positive constant λ implies a contribution portion of the peak hourly load to the 
total cost and the value λ𝐿 is concerned with the basic electricity price. 
 
4. Scheduling Optimizations with a Photovoltaic System and an Energy 
Storage 

By using the locally-generated power system and the energy storage battery, the customer 
can harvest and store the electric energy, and more efficiently optimize the schedule plan to 
minimize the residential electricity bill. In this section, we formulate the scheduling 
optimization problems by incorporating a photovoltaic system and an energy storage. 
 
4.1. Residential Electricity Bill with a Photovoltaic System 

We consider a photovoltaic system as a locally-generated power. Depending on weather 
conditions, the photovoltaic system can produce electricity for particular time slots. Letting 
the vector 𝐠 imply the hourly energy generation, 𝐠 is defined as 𝐠 ≔ (𝑔1, … ,𝑔24)  ∈  𝐑24 , 
where 𝑔𝑗 ≥ 0. The generated energy 𝑔𝑗 for a given time slot 𝑗(∈ 𝐇) can reduce the energy, 
which is required from the grid for the time slot. If the locally-generated power is greater than 
the power for appliances in the specific time slot, then the total hourly load can be negative. 
The negative hourly load implies that the locally-generated power is surplus, and it can be 
sold or thrown away. Depending on how to manage the surplus energy, we can formulate two 
types of optimization problems.  

If we have no energy storage such as a battery to save the surplus energy or cannot sell it to 
the grid due to the systematic problem from the metering system or grid operation policies, 
then we cannot utilize the surplus energy and inevitably throw it away. The scheduling 
optimization for reducing the residential electricity bill is then written as follows 
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minimize �𝑐𝑗
𝑗∈𝐇

𝑎1,𝑗                                                                    (8) 

 subject to 𝑎1,𝑗 −  𝑎2,𝑗 = ��𝑥𝑖,𝑗 −  𝑔𝑗
𝑖∈𝐀

� , for  𝑗 ∈ 𝐇,  

𝑎1,𝑗 ,𝑎2,𝑗 ≥ 0, for 𝑗 ∈ 𝐇.  

In (8), the positive variables 𝑎1,𝑗 and 𝑎2,𝑗 imply the hourly load and the surplus energy, 
respectively, for the j-th time slot. 

On the other hand, we can sell the surplus energy to the grid in general. We suppose that 
the selling price of the surplus energy is equal to the time-varying electricity price at the 
corresponding time slot. Then, the money, which is obtained by selling the energy, is given 
by 𝑐𝑗𝑎2,𝑗 in (8), and the optimization problem of (8) can be simplified as follows. 

minimize �𝐜𝑇𝐱𝑖
𝑖∈𝐀

−  𝐜𝑇𝐠, (9) 

where  ∑ 𝐜𝑇𝐱𝑖𝑖∈𝐀 − 𝐜𝑇𝐠  is the total cost in the residential side. 
 
4.2. Residential Electricity Bill with a Photovoltaic System and an Energy Storage 

In order to efficiently utilize the time-varying electric price rates and the energy from the 
locally-generated power, we may consider to add an energy storage. The battery can store the 
electric energy from the grid when the price is low, and discharge the energy when the price 
is high. 

We formulate a simple battery model for charging and discharging in conjunction with the 
levelized cost of storage use. Let the vector 𝐛, which represents the battery charge pattern, be 
defined as 𝐛 ≔ (𝑏1, … , 𝑏24)  ∈  𝐑24 , where 𝑏𝑗  are non-negative constants and denote the 
stored energy level of the battery at the 24 time slots, respectively. Let a positive constant 𝛾 
denote the maximal capacity of the battery in kWh. In other words, in each time slot, the 
minimal and maximal power capacities are zero and 𝛾, respectively, hence a constraint on the 
maximal battery capacity is given by 

0 ≤  𝑏𝑗 ≤  𝛾, for 𝑗 ∈ 𝐇.   (10) 

The battery can store energy from the grid and can provide the energy to the home 
appliances. However, the charging or the discharging speed is restricted to ensure the battery 
life. In order to describe such a restriction, we consider the charge or discharge amount for a 
time slot as follows. In the j-th time slot, let the constants 𝑏1,𝑗 and 𝑏2,𝑗 imply the charge and 
discharge amounts, respectively, and define the vectors 𝐛1  and 𝐛2 in 𝐑24 , as 𝐛1 ≔
�𝑏1,1, … , 𝑏24�and 𝐛2 ≔ �𝑏2,1, … , 𝑏2,24� . Here, the battery charge pattern 𝐛  should satisfy 
bj = ∑ (b1,k −  b2,k)𝑗

𝑘=1 , for 𝑗 ∈ 𝐇. Let a positive constant 𝜇 denotes the C-rate and thus 𝜇𝛾 
implies the maximally charge/discharge energy capacity for a time slot. Hence, we can have a 
constraint on the charging and discharging speed as 

0 ≤  𝑏1,𝑗 ,𝑏2,𝑗 ≤  𝜇𝛾, for 𝑗 ∈ 𝐇 (11) 

Here, the C-rate is typically given by 𝜇 = 0.2. 
If the energy storage is employed, then the total cost should include the utilization cost of 

the battery. In this section, we add a notion of the levelized cost on the battery usage. Let a 
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positive constant 𝛿 denote the levelized cost in dollars per kWh per cycle (dollars/kWh/cycle). 
The cost, which is produced only by the battery charging and discharging, can then be 
expressed as (𝛿/2)𝟏𝑇(𝐛1 +  𝐛2). Hence, the total price is given by 

�𝐜𝑇𝐱i
𝑖∈𝐀

+ 𝐜𝑇(𝐛1 − 𝐛2 − 𝐠) +
δ
2
𝟏T(𝐛1 +  𝐛2). (12) 

Considering the energy storage battery, the minimization of (12) under the constraints of 
(10) and (11) can be solved by the following optimization problem: 

minimize �𝐜𝑇𝐱i
𝑖∈𝐀

+ 𝐜𝑇(𝐛1 − 𝐛2 − 𝐠) +
δ
2
𝟏T(b1 + b2)     (13) 

subject to 0 ≤  𝑏𝑗 =  �(𝑏1,𝑗 −  𝑏2,𝑗

𝑗

𝑘=1

) ≤  𝛾, for  𝑗 ∈ 𝐇,  
 

    0 ≤  𝑏1,𝑗 ,𝑏2,𝑗 ≤  𝜇𝛾, for 𝑗 ∈ 𝐇.  

If we consider the peak hourly load in minimizing the total cost of (12), we should know 
the hourly load on the grid side. Charging the battery increases the hourly load. Discharging 
the battery however decreases the hourly load. Furthermore, the solar energy can also 
decrease hourly load. Therefore, the constraint regarding the hourly load can be rewritten as 

minimize �𝐜𝑇𝐱i
𝑖∈𝐀

+ 𝐜𝑇(𝐛1 − 𝐛2 − 𝐠) +
δ
2
𝟏T(b1 + b2)     (14) 

With the constraint of (14), the overall scheduling optimization problem in conjunction 
with the peak hourly load is summarized as follows. 

minimize �𝐜𝑇𝐱i
𝑖∈𝐀

+ 𝐜𝑇(𝐛1 − 𝐛2 − 𝐠) + λ𝐿 +
δ
2
𝟏T(𝐛1 + 𝐛2)    (15) 

subject to�𝑥𝑖,𝑗 + 𝑏1,𝑗
𝑖∈𝐀

− 𝑏2,𝑗 − 𝑔𝑗 ≤  𝐿, for  𝑗 ∈ 𝐇,                       

   0 ≤  𝑏𝑗 =  ��𝑏1,𝑗 − 𝑏2,𝑗�
𝑗

𝑘=1

≤  𝛾, for 𝑗 ∈ 𝐇, 
 

0 ≤  𝑏1,𝑗 ,𝑏2,𝑗 ≤  𝜇𝛾, for 𝑗 ∈ 𝐇.                                    
 
5. Experimental Results 

In this section, we numerically simulate the scheduling optimizations and compare their 
results. We first measure the power consumptions of the home appliances every second, and 
then construct the power patterns with respect to the time slot. Figure 1 illustrates an example 
of the power consumption curve of the washing machine and a refined power pattern, which 
is designated as `work'. The power pattern implies the energy curve with respect to the time 
slot for the washing machine. In the simulation, we use five appliances (𝑁 = 5), the fridge, 
heater 1, heater 2, washing machine, and iron and summarize their power pattern in Table 1. 
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Figure 1. Example of the Power Consumption Curve (`active power') of the Washing 

Machine and a refined Power Pattern (`work’) with Respect to the Time Slot 

Table 1. Appliances and Power Consumption Patterns 
Appliances Type Power consumption patterns 

1.Fridge Non-shiftable Operating 24hrs 
1-2am: 120Wh, 3am-22pm: 80Wh, 23-24pm: 120Wh 

2. Heater 1 Power-
shiftable 

Preferred hour: 8am – 21pm 
Daily requirement: 1kWh 

3. Heater 2 Power-
shiftable 

Preferred hour: 1am – 7pm, 22-24pm 
Daily requirement: 270Wh 

4. Washing 
machine 

Time-
shiftable 

Operating 2hrs, once per day 
First hour: 85Wh, second hour: 45Wh 

5. Iron Time-
shiftable 

Operating 2hrs, once per day 
85Wh for the first hour 

 
In order to conduct the scheduling optimization based on the time-varying price system, a 

TOU pricing, which is designed based on the price pattern of Korea Electric Power 
Corporation (KEPCO), is used for 𝐜 as 

𝐜 = { 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,0.05, 0.05, 0.09, 0.13, 0.13, 0.09, 

                            0.09, 0.09, 0.09, 0.09, 0.13, 0.13, 0.13, 0.09, 0.09, 0.13, 0.05, 0.05 },    

of which elements are given in dollars. Regarding the solar energy, the hourly energy 
generation  𝐠 is obtained from a simulated solar panel with 400Wp, and is given by 

𝐠 = { 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,13.0, 54.8,10,223,289,321, 

                            309,257,178,90.3,28.5,0.64, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00},    

of which elements are given in Wh. Here, we can see that the energy is generated from 5 am 
through 7 pm. 
5.1. Scheduling Optimization Results 
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The minimized residential electricity bill from the optimization of (6) is given by 0.287 
dollar. An optimal schedule plan is shown in Figure 2(a). We can observe the peak hourly 
load  

 
(a)                                                          (b)     

Figure 2. Optimized Schedule Plan obtain by the Problems of (6) and (7). (a) Residential 
Electricity Bill is Minimized in (6). The Total Bill is 0.287 Dollar and the Peak Hourly 

Load is 0.255kWh. (b) Peak Hourly Load is considered in (7), where 𝛌 = 𝟏.𝟎. The Total 
Bill is 0.295 Dollar and the Peak Hourly Load is decreased to 0.165kWh 

 
Figure 3. Curves of the Total Bills and the Peak Hourly Loads for the Different values of 

𝛌 in the Optimization of (7) in Conjunction with the Peak Hourly Load 

0.255kWh at the time slot 𝑗 = 24 in Figure 2(a). A worst bill, which is a maximized bill 
under the same constraints of the (6) case, is 0.326 dollar, the optimized bill is reduced from 
the worst case by 12.0%. We then simulate the optimization of (7) considering the peak 
hourly load when λ = 1.0, and depict the scheduling result in Figure 2(b). The optimized 
peak hourly load is 0.165kWh and the total bill, which is defined as (5), is 0.295 dollar. We 
can notice that the peak hourly load is significantly reduced by 35.3% even though the total 
bill is slightly increased by 2.79%. Compared to the Figure 2(a) case, considering the peak 
hourly load can efficiently distribute the electric power usages to the time slots as shown in 
the hourly load curve of Figure 2(b). Figure 3 depicts the curves of the total bills and the peak 
hourly loads for different values of λ. We can notice that as λ increases the peak hourly load 
quickly decreases whereas the total bill slightly increases. Hence, even for λ = 0.1, we can 
obtain a quite low peak hourly load compared to the conventional case of (6). 
5.2. Scheduling Optimization Results with a Photovoltaic System and an Energy Storage 
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In this section, we simulate the optimization problems with a photovoltaic system and an 
energy storage. We first compare the optimizations of (8) and (9), in which only the solar 
energy is incorporated. If we are prohibited from providing the surplus energy to the grid as 
in (8), then the total bill is 0.143 dollar and the peak hourly load is 0.180kWh. However, if we 
can sell the surplus energy, then the total bill is obviously reduced to 0.0969 dollar even 
though the peak hourly load increases to 0.265kWh. Note that this increment in the peak  

 
(a)                                                           (b) 

Figure 4. Comparison of the Hourly Loads and the Battery Charge Pattern for the 
Different Levelized Costs in the Optimization of (13). (a) 𝜹 = 𝟎.𝟐 dollar/kWh/cycle. The 

Total Bill is 0.0969 Dollar and the Peak Hourly Load is 0.265kWh. (b) 𝜹 = 𝟎.𝟎𝟑 
dollar/kWh/cycle. The Total Bill is 0.0705 Dollar and the Peak Hourly Load is 

0.325kWh 

 
Figure 5. Comparison of the Total Bills and the Peak Hourly Loads for the Different 
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hourly load can be possible since the optimization problems in (8) and (9) do not consider the 
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different values of the levelized cost 𝛿. As shown in the optimized schedule plan for 𝛿 = 0.2 
dollar/kWh/cycle of Figure 4(a) the battery is not used at all since the levelized cost is too 
expensive to be used. Hence, the optimization problem of (13) is equivalent to that of (9). 
However, if the levelized cost is reduced to 𝛿 = 0.03 dollar/kWh/cycle, then the battery is 
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used for scheduling the appliances and six charge and discharge cycles are observed in Figure 
4(b). Such usage of battery reduces the total bill to 0.0705 dollar, which is corresponding to 
27.2% saving in the residential electricity bill. We finally conduct the proposed optimization 
in (15) in conjunction with the peak hourly load. In Fig. 5, the curves obtained from the 
optimizations of (13) and (15) are compared for different levelized costs 𝛿  at λ = 0.1 . 
Similarly to the case of (7), considering the peak hourly load even for a small λ, we can 
significantly reduce the peak hourly load by slightly increasing the total bill. For example of 
λ = 0.1  in Figure 5, the peak hourly load decreases from 0.325kWh of Figure 4(b) to 
0.188kWh, which is corresponding to a 42.2% reduction. However, the total bill is not 
changed from 0.0705 dollar. We can observe that by using the battery we can reduce the total 
bill efficiently suppressing the peak hourly load. 
 
6. Conclusion 

In this paper, in order to minimize the electricity bill in the residential side for the time-
varying electricity price, optimization problems, which can provide schedule plans for the 
home appliance usages, are formulated and numerically simulated. Through a simulation, an 
optimization under the TOU pricing environment can reduce the residential electricity bill by 
12.0% from a worst case. By considering the peak hourly load, we can decrease the peak 
hourly load by 35.3% when λ = 1.0 whereas the total bill is slightly increased. In addition, 
locally-generated power system and energy storage are added to the residential side to 
achieve further efficient schedule plans in reducing the residential electricity bill. By using 
the battery, we can find that the advantage from using an energy storage is quite dependent on 
the levelized cost. When λ = 0.1 and the levelized cost is 𝛿 = 0.03 dollar/kWh/cycle, the 
peak hourly load is reduced by 42.2% for a fixed total bill. 
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