
International Journal of Smart Home

Vol. 7, No. 4, July, 2013

161

Prototyping an Expert System Shell with the Logic-Based Approach

Nittaya Kerdprasop, Kanjana Intharachatorn and Kittisak Kerdprasop

Data Engineering Research Unit, School of Computer Engineering,
Suranaree University of Technology, Thailand

nittaya@sut.ac.th

Abstract
Expert system is a computer program that is different from other conventional computer

programs in that it incorporates specific knowledge, which can be human judgment,
experience, and expertise, in order to provide knowledgeable advice to users. The main
difference is caused from the structure of an expert system that contains the two loosely
coupled parts: knowledge inference engine and knowledge base, instead of one tightly
integrated structure. The loose coupling allows knowledge base contents to be dynamically
added, removed, modified, or even completely changed to another subject area, whereas the
inference engine remains intact and needs no modification. We refer to the knowledge
inference engine as an expert system shell because it can be viewed as an outer layer
program to infer knowledge advice from the inner knowledge base core. The development of
expert system shell can be efficiently achieved through the support of logic-based language
such as Prolog. In this paper, we propose and demonstrate a different scheme of expert
system shell development using a constraint-based paradigm with the ECLiPSe constraint
system. Comparisons of the two paradigms have been done in terms of computational time,
memory usage, and lines of code. The experimental results reveal that the difference in lines
of code of the two paradigms is insignificance, but the constraint-based paradigm uses less
memory during execution and provides more concise form of knowledge representation.

Keywords: Expert system shell, Logic programming, Prolog, ECLiPSe constraint system,
Constraint logic programming

1. Introduction

Expert system can be viewed as an intelligent system that acts as a human expert
giving advice in some specific application domains. The field of expert system has
emerged since the mid-1960s [15] as a successful implementation of artificial
intelligence technology. The later coined term knowledge-based system has a close
meaning to the expert system, but the main emphasis on decision support. The great
success of pioneer medical expert systems such as MYCIN [21] and INTERNIST-1 [17] has
attracted considerable attention from cross-discipline researchers including medical
experts, computer scientists, engineers, decision analysts, and mathematicians to
develop various applications of expert systems [6, 8, 11, 13, 16, 20, 23].

Despite its variety in application domains, most expert systems are composed of two
main separate modules: a knowledge base and an inference engine. The knowledge base
stores expertise in a particular domain. The inference engine deduces advice from the
stored knowledge with reasoning mechanism, and also generates explanation to users
regarding the inferred advice. The separation of knowledge base and inference engine

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

162

allows users connecting a single inference engine to multiple knowledge bases [7, 9,
10].

Building an expert system shell with logic-based language such as Prolog [4] is not a
difficult task because the language system provides knowledge representation
formalism suitable for the rule-based expert system. We are, therefore, interested in
developing the shell with a more advanced scheme of constraint logic programming.
Our main focus is to compare efficiencies of both schemes.

Constraint programming has emerged four decades ago as a programming paradigm
to solve constraint satisfaction and optimization problems [1, 5, 12]. It has been
recently applied to solve biological [2], genomic [18], pattern mining [3], and
algorithmic problems [19, 22, 24].

We present in this paper constraint-based and logic-based methods to implement the
rule-based expert system shell. In Section 2, we briefly discuss background concepts of
constraint logic programming. In Section 3, we explain the details of our
implementation. Section 4 is experimentation and results. We then conclude the paper
in Section 5.

2. Preliminaries on Constraint Programming

Constraint programming is a programming paradigm that is normally applied to solve
combinatorial search problems such as flight scheduling, crew roster assigning, logistic
planning, and many more of this kind. The main steps of constraint programming are:

(1) Users specify a problem by defining the variables together with their associated
domains and constraints on these variables,

(2) The search procedure and constraint solver find solutions, which are values
assigned to the specified variables such that all constraints are satisfied.

It is obvious from the program structure that constraint programming has been
designed to solve constraint satisfaction problems that have been extensively studied in
artificial intelligence. The efficiency of constraint programs is basically due to the
constraint propagator feature in a constraint solver. The function of constraint
propagator is to reduce the domains of variables by inferring from the existing
constraints and then to prevent the search procedure from visiting parts of the search
tree that do not contain any solution.

A constraint propagator takes as input a domain D from which a variable can be
assigned its value, and a set of constraints C. The output of the propagator is a reduced
domain D′. For instance, given that X, Y, Z are variables, the domains:

D(X) = {a, c, d},
D(Y) = {a, b, c, d},
D(Z) = {c},

and a set of constraints C = { X=Y ∧ Y≠Z }, the output of the constraint propagator
are:

D′(X) = D′(Y) = {a, d}, and
D′(Z) = {c}.

The repeated application of propagator can lead to increasingly stronger (that is,
smaller) domains. The propagator continues until it reaches a fixed point in which the

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

163

domains cannot be further reduced. At this stage, the search procedure (either global or
heuristic-based) can efficiently start assigning possible value to each variable.

A toy example of map coloring [1] in Figure 1 illustrates the constrain-and-search
strategy of constraint logic programming (CLP), as opposed to the generate-and-test of
logic programming (LP) scheme. The problem is given four colors and four regions, the
program has to provide coloring scheme such that two consecutive regions have
different colors.

A constraint logic program is an extension of logic program by including constraints
in the body of the clauses. Common structure of a constraint program is consisted of the
part to define variables and constraints on variables and the part to search for a valid
value on each variable. This is the style of constraint-and-search. The structure of
constraint logic program is as follows:

solve(Variables) :-

 setup_constraints(Variables),

 search(Variables).

%% CLP style: Constrain-and-search

:- lib(fd). % use finite domain library

map_color_CLP([A,B,C,D]) :-

 % firstly declare variables and their domains

 [A,B,C,D] :: [red, green, blue, yellow],
 alldifferent([A,B,C,D]), % constrain variable values

 labeling([A,B,C,D]). % then search

%% LP style: Generate-and-test

color(red).
color(green).
color(blue).
color(yellow).

map_color_LP([A,B,C,D]) :-
 % generate solution

 color(A),
 color(B),
 color(C),
 color(D),
 % then test for constraints
 A \= B,
 A \= C,
 A \= D,
 B \= C,
 B \= D,
 C \= D.

Figure 1. Constraint Logic Programming (top) versus Logic Programming Scheme
(bottom)

At present, there are several constraint systems that provide functions to specify (or
model) the problems and maintain the constraint consistency efficiently. They are
called constraint programming systems if they are based on procedural languages. The
systems are classified as constraint logic programming systems if they are based on

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

164

logic programming languages. The main benefit of constraint logic programming
scheme are two folds:

(1) the declarative style allows users to specify a problem itself, instead of specifying
how to solve the problem, and

(2) a high level of knowledge representation facilitates the inclusion of new
knowledge that is highly dynamic.

Most constraint logic programming systems provide a large set of predefined
constraints (such as ‘alldifferent’) and powerful search commands (such as ‘labeling’) to
solve the combinatorial problems. The predefined constraints and exhaustive depth-first
search procedure aim at solving a general class of constraint satisfaction problems.
These facilities ease the development of knowledge intensive task such as expert system
shell rapid prototyping.

3. The Development of Expert System Shell

3.1. Logic-based Implementation

The design of our rapid development of expert system shell has been graphically
shown in Figure 2. The module to be used by the users is the ‘menuask’ module.
Inference engine performs load and solve actions for loading the knowledge base into
the working memory and solving the questions ask by the users, respectively. The
working storage performs action related to reasoning and giving explanation to the
users.

Figure 2. Structure of the Expert System Shell

The module ‘top_goal’ is the top module of the knowledge base that the inference
engine will use in the process of searching for an appropriate recommendation. The first
step of using the expert shell is to load the knowledge base into working memory. This
is simply done through calling the module ‘load’. The knowledge base file is then
compiled. To start asking question, users have to invoke the system with the ‘solve’
command. Given the knowledge base of contact lens wearing recommendation as shown
in Figure 3, the expert system processes the recommendation steps through a series of
interactive statements as illustrated in Figure 4.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

165

Figure 3. Knowledge Base of Contact Lens Wearing

Figure 4. Expert System Shell Running with SWI-Prolog

Program coding for a logic-based expert system shell implementation is given as
follows:

:-dynamic known/1, answer/2.
expertshell :- greeting, repeat, write('expert-shell> '),
 read(X), do(X),
 (X == quit; X == 99), writeln('>>>>Goodbye, see you later<<<<'), !.
greeting :- write('This is the Easy Expert System shell.'), nl,
 native_help.
do(help) :- native_help, !.
do(load) :- load_kb, !.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

166

do(solve) :- solve, !.
do(why) :-why, !.
do(quit). do(99).
do(X) :- write(X), write(' is not a legal command.'), nl, fail.
native_help :- write('Type help. load. solve. why. quit. or 99.'),nl,
 write('at the prompt.'), nl.
load_kb :- write('Enter file name in single quotes (ex. ''1.knb''.): '),
 read(F),
 reconsult(F).
solve :- retractall(known(_)), retractall(answer(_,_)),
 top_goal(X,V),
 format('The answer is __~w__ with probability ~w',[X,V]),
 assert(answer(X,V)), nl.
solve :- write('No answer found.'), nl.
menuask(Pred,Value,Menu) :- menuask(Pred,Menu),

 atomic_list_concat([Pred,'(',Value,')'],X),
 term_to_atom(T,X),known(T),!.
menuask(Pred,_) :- atomic_list_concat([Pred,'(','_',')'],X),

 term_to_atom(T,X),known(T),!. % not ask again
menuask(Attribute,Menu) :- nl, write('What is the value for '), write(Attribute),write('?'), nl,
 addchoice(Menu,MenuRes), writeln(MenuRes),
 write('Enter the choice> '), read(C),

 member(C-V,MenuRes),
 (C=99 -> abort ; true),
 atomic_list_concat([Attribute,'(',V,')'],X),

 term_to_atom(T,X),
 asserta(known(T)).

why :- answer(A,V),
 format('~nThe answer is ...~w... with probability = ~w.~n',[A,V]),
 findall(X , known(X),Result),
 writeln('The known storage are'),
 writeln(Result).
addchoice(X,Res) :- length(X,Len),

 numlist(1,Len,NumL),
 map(NumL,X,Res).

map([],[],[99-exitShell]).
map([H|T],[X|TT],[H-X|T1]) :- map(T,TT,T1).

% ====== End of Expert System Shell Program =========

3.2. Constraint-based Implementation

The design of constraint-based expert system shell (as shown in Figure 5) is slightly
different from the logic-based method. Constraint features have been added in the user
interface, inference engine, and knowledge base parts. The flowcharts of ‘solve’ and
‘why’, which are modules to solve the user’s query and then explain recommendation,
respectively, are given in Figure 6.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

167

Figure 5. Structure of the Constraint-based Expert System Shell

Figure 6. The ‘solve’ (left) and ‘why’ (right) Flowcharts

The knowledge base content in our constraint-based implementation has been
changed from the rule-based format ‘IF-THEN’ to the constraint clauses, as shown in
Figure 7. This simple knowledge base contains preferences of tourists. The ‘menuask’

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

168

module is also modified to include domain constraint. A comparative implementation of
this module is demonstrated in Figure 8. Example of program running using the tourist
attraction site knowledge base can be illustrated in Figure 9.

Figure 7. Knowledge base of the Constraint Expert System Shell

Figure 8. The ‘menuask’ Module in CLP (left) and LP (right)

Figure 9. Running Result of Constraint Expert System Shell

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

169

4. Experimentation and Results

4.1. Experimental Setting

On comparing performances of logic-based and constraint-based expert system shell
implementation, both schemes are coded and executed in the same environment using
ECLiPSe constraint system (www.eclipseclp.org). We then test the programs with the
knowledge base obtained from the nursery data of the UCI repository (http://archive.
ics.uci.edu/ml/ datasets/Nursery). The nursery database contains ranking information
(not recommmend, recommend, very recommend, priority, spec_prior) from the
applications applied to nursery school. The ranking outcomes are considered from
several attributes: occupation of parents, child’s nursery, family structure, financial
standings, social and health conditions of the family. Expert systems in LP (using
Prolog) and CLP (using ECLiPSe) schemes of this specific domain can be shown (some
part) in Figures 10 and 11, respectively.

Figure 10. Logic-based Expert System
for Nursery Problem

Figure 11. Constraint-based Expert
System for Nursery Problem

4.2. Results

To test computational time of the expert system shell on the nursery knowledge base,
we apply the time function from the utility library of ECLiPSe system by including a
directive command “:- lib(util)” as a first line of both the logic-based and constraint-
based programs. Timing function can then be performed through the built-in time
predicate, “time(top_goal(X))”.

Program performances of logic-based and constraint-based implementation are
compared in terms of computational time (or percentage CPU usage observable from

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

170

the resource monitoring system software) to deduce solution from the knowledge base
(Figure 12), running time that starts from accepting user’s query until showing
recommendation (Figure 13), file sizes of the knowledge base and the expert system
shell (Figure 14), and lines of code of the knowledge base parts and the expert system
shell part (Figure 15).

Running time comparisons, presented in Figure 13, are the results from a series of
experimentation performed with the call on predicates expertshell, top_goal, and
menuask. These predicates are implemented in both the logic-based and constraint-
based paradigms, and the expert system shell of both paradigms can consult knowledge
base that either in the form of Prolog language or CLP language. We thus design the
three kinds of experimentation:

(1) PL-PL means to process the logic-based expert system shell with the logic-based
knowledge,

(2) CLP-CLP means to process the constraint-based expert system shell with the
constraint-based knowledge, and

(3) CLP-PL means to process the constraint-based expert system shell with the Prolog-
based knowledge.

Figure 12. Program Performance Comparison in Terms of Computational Time

(% CPU usage, averaged from three experiments) during Knowledge base
Consulting and Knowledge Inferring of the Expert System Shell

Figure 13. Time Comparison including Interactive User Interfacing Time (in
seconds) observed from the calling of Predicates expertshell (left), top_goal

(middle), and menuask (right)

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

171

Figure 14. File Size Comparison (in bytes) of LP versus CLP on the Knowledge
Base Part (left), the Expert System Shell Part (middle), and the Integrated Part of

Knowledge Base and Inference Engine (right)

Figure 15. Line-of-code Comparison (in unit: number of lines) of LP versus CLP

on the Knowledge Base Part (left) and the Expert System Shell Part (right)

From the experiments, we can observe that the program implemented with constraint-
based paradigm consumes less percentage of CPU resource. The running time of CLP
program on the CLP knowledge base is faster than the logic-based paradigm using
Prolog language. The constraint-based formalism of encoding knowledge is also shorter
than the pure logic-based formalism. But to compare the expert system shell part, we
observe that the CLP coding is longer with a little bit bigger file size than the Prolog
coding.

5. Conclusion

We present in this paper a comparative study of rapid prototyping the expert system
shell using logic and constraint based programming paradigms. The main purpose is to
observe program coding difficulty, running and memory usage behavior. The insight
understandability is expected to be fundamental knowledge for designing constraint
solver that is more appropriate for the expert system shell development.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

172

Knowledge base contents are conventionally constructed by knowledge engineers
who are not an expert of the specific domains. With constrain-based method, the
knowledge elicitation task is expected to be less error prone. The constraint paradigm is
also planned to be used as automatic knowledge extraction scheme to learn specific
knowledge from stored experiences and expertise.

Acknowledgements

This research was supported by the SUT Research and Development Fund, Suranaree
University of Technology.

References
[1] K. R. Apt and M. Wallace, “Constraint Logic Programming using ECLiPSe”, Cambridge University Press,

(2007).
[2] M. Bavarian and V. Dahl, “Constrained based methods for biological sequence analysis”, Journal of

Universal Computer Science, vol. 12, no. 11, 2006, (2006), pp. 1500-1520.
[3] S. Bistarelli and F. Bonchi, “Soft constraint based pattern mining”, Data and Knowledge Engineering, vol.

62, (2007), pp. 118-137.
[4] I. Bratko, “Prolog Programming for Artificial Intelligence”, 3rd ed., Pearson, (2001).
[5] L. De Raedt, T. Guns and S. Nijssen, “Constraint programming for itemset mining”, Proceedings of KDD

Conference, (2008), pp. 204-212.
[6] A. Fallahi and S. Jafari, “An expert system for detection of breast cancer using data preprocessing and

Bayesian network”, International Journal of Advanced Science and Technology, vol. 34, (2011), pp. 65-70.
[7] E. A. Feigenbaum, “Expert systems: principles and practice”, The Encyclopedia of Computer Science and

Engineering, Stanford: Knowledge Systems Laboratory, (1992).
[8] E. Flior, T. Anaya, C. Moody, M. Beheshti, H. Jianchao and K. Kowalski, “A knowledge-based system

implementation of intrusion detection rules”, Proceedings of the 7th International Conference on Information
Technology: New Generations, (2010), pp. 738-742.

[9] J. C. Giarratans and G. D. Riley, “Expert systems: Principles and Programming”, fourth edition, Canada:
Thomason Learning, (2005).

[10] R. Girratano, “Expert Systems”, Principles and Programming, PWS, (1998).
[11] L.-C. Huang, S.-S. Tseng and Y.-S. Chu, “Building a wafer fab lot scheduling knowledge-based system”,

WSEAS Transactions on Information Science and Applications, vol. 3, no. 10, pp. 1994-2001, (2006).
[12] N. Kerdprasop and K. Kerdprasop, “Frequent pattern discovery with constraint logic programming”,

International Journal of Mathematical Models and Methods in Applied Sciences, vol. 5, no. 8, (2011), pp.
1345-1353.

[13] J. Lee, B. Song, T. Kim, D. Seo and S. Bae, “A design and implementation of u-health diagnosis system
using expert system and neural network”, International Journal of Future Generation Communication and
Networking, vol. 1, no. 1, (2008), pp. 83-90.

[14] C. Leon, F. Biscarri, I. Monedero, J. I. Guerrero, J. Biscarri and R. Millan, “Integrated expert system applied
to the analysis of non-technical losses in power utilities”, Expert Systems with Applications, vol. 38, (2011),
pp. 10274-10285.

[15] S.-H. Liao, “Expert system methodologies and applications-a decade review from 1995 to 2004”, Expert
Systems with Applications, vol. 28, (2005), pp. 93-103.

[16] R. M. Mateo, J. Lee and B. D. Gerardo, “Healthcare expert system based on group cooperation model”,
International Journal of Software Engineering and Its Applications, vol. 2, no.1, (2008), pp. 105-116.

[17] R. A. Miller, H. E. Pople and J. D. Myers, “INTERNIST-1, An experimental computer-based diagnostic
consultant for general internal medicine”, New England Journal of Medicine, vol. 307, no. 8, (1982), pp.
468-476.

[18] C. Rigotti, I. Mitasiunaite, J. Besson, L. Meyniel, J. F. Boulicaut and O. Gandrillon, “Using a solver over the
string pattern domain to analyze gene promoter sequences”, S. Dzeroski (ed.), Inductive Databases and
Constraint-Based Data Mining, Springer-Verlag, (2010), pp. 407-423.

[19] M. Seda, “Solving resource-constrained project scheduling problem as a sequence of multi-knapsack
problems”, WSEAS Transactions on Information Science and Applications, vol. 3, no. 10, (2006), pp. 1785-
1791.

[20] W. B. Schwartz, “Medicine and the computer: The promise and problems of changes”, New England Journal
of Medicine, vol. 283, (1970), pp. 1257-1264.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

173

[21] E. H. Shortliffe, “Computer-Based Medical Consultations: MYCIN”, Elsevier, (1976).
[22] G. Y.-C. Wong, K. Y. Wong and K. H. Yeung, “Solving 3-SAT using constraint programming and fail

detection”, WSEAS Transactions on Computers, vol. 4, no. 2, (2005), pp. 148-153.
[23] S. Yang, H. Kuma and P. Park, “An expert system for wide area surveillance based on ontology”,

International Journal of Database Theory and Application, vol. 5, no. 2, (2012), pp. 1-16.
[24] L. Zhao, T. Gu and J. Qian, “A goal-independent constraint-based correct partial answers semantics”,

WSEAS Transactions on Computers, vol. 6, no. 6, (2007), pp. 947-952.

Authors

Nittaya Kerdprasop is an associate professor at the School of
Computer Engineering, Suranaree University of Technology,
Thailand. She received her bachelor degree in Radiation Techniques
from Mahidol University, Thailand, in 1985, master degree in
Computer Science from the Prince of Songkla University, Thailand,
in 1991 and doctoral degree in Computer Science from Nova
Southeastern University, U.S.A, in 1999. Her research of interest
includes Knowledge Discovery in Databases, Artificial Intelligence,
Logic Programming, and Intelligent Databases.

Kanjana Intharachatorn is a computer engineer and research
assistant with the Data Engineering Research Unit. She received her
bachelor degree in Computer Engineering from Suranaree University
of Technology (SUT), Thailand, in 2009, and master degree in
Computer Engineering from SUT in 2012. Her current research
includes Data Mining, Constraint Logic Programming, and Artificial
Intelligence.

Kittisak Kerdprasop is an associate professor and chair of the
School of Computer Engineering, Suranaree University of
Technology, Thailand. He received his bachelor degree in
Mathematics from Srinakarinwirot University, Thailand, in 1986,
master degree in Computer Science from the Prince of Songkla
University, Thailand, in 1991 and doctoral degree in Computer
Science from Nova Southeastern University, U.S.A., in 1999. His
current research includes Data mining, Artificial Intelligence,
Functional and Logic Programming Languages, Computational
Statistics.

International Journal of Smart Home

Vol. 7, No. 4, July, 2013

174

	Prototyping an Expert System Shell with the Logic-Based Approach
	Abstract
	Acknowledgements

