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Abstract 

In this paper, a new approach based on the Honey bee mating optimization (HBMO) 

technique is proposed to tune the parameters of the multi-machine power system stabilizers 

(PSSs). The honey-bee mating process has been considered as a typical swarm-based 

approach to optimization, in which the search algorithm is inspired by the process of real 

honey-bee mating. The PSSs parameters tuning problem is converted to an optimization 

problem with time domain-based objective function which is solved by a HBMO algorithm. 

To ensure the robustness of the proposed stabilizers, the design process takes a wide range of 

operating conditions into account. The performance of the newly designed PSSs is evaluated 

in a three-machine power system subjected to the different types of operating conditions in 

comparison with the genetic algorithm based PSSs. The effectiveness of the proposed 

technique is demonstrated through nonlinear time-domain simulation studies over a wide 

range of loading condition. 
 

Keywords: Power system stabilizer, Honey bee mating optimization, Dynamic stability, 

Low frequency oscillation, Multi-machine power system 
 

1. Introduction 

Stability of power systems is one of the most important aspects in electric system 

operation. This arises from the fact that the power system must maintain frequency and 

voltage levels, under any disturbance, like a sudden increase in the load, loss of one generator 

or switching out of a transmission line, during a fault [1]. Since the development of 

interconnection of large electric power systems, there have been spontaneous system 

oscillations at very low frequencies in order of 0.2 to 3.0 Hz. Once started, they would 

continue for a long period of time. In some cases, they continue to grow, causing system 

separation if no adequate damping is available. Moreover, low-frequency oscillations present 

limitations on the power-transfer capability. To enhance system damping, the generators are 

equipped with PSSs that provide supplementary feedback stabilizing signals in the excitation 

systems [2]. Novel intelligent control design methods such as fuzzy logic controllers [1] and 

artificial neural network controllers [3] have been used as PSSs. Unlike other classical control 

methods fuzzy logic and neural network controllers are model-free controllers; i.e., they do 

not require an exact mathematical model of the controlled system. Moreover, speed and 

robustness are the most significant properties in comparison to other classical schemes. H∞ 

optimization techniques [4] have been also applied to robust PSS design problem. However, 

the importance and difficulties in the selection of weighting functions of H∞ optimization 

have been reported. In addition, the additive and/or multiplicative uncertainty representation 

cannot treat situations where a nominal stable system becomes unstable after being perturbed. 
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Despite the potential of modern control techniques with different structures, power system 

utilities still prefer the conventional lead-lag power system stabilizer (CPSS) structure [5, 6]. 

The reasons behind that might be the ease of online tuning and the lack of assurance of the 

stability related to some adaptive or variable structure techniques. On the other hand, Kundur, 

et al., [7] have presented a comprehensive analysis of the effects of the different CPSS 

parameters on the overall dynamic performance of the power system. It is shown that the 

appropriate selection of CPSS parameters results in satisfactory performance during system 

upsets. In addition, Gibbard [8] demonstrated that the CPSS provide satisfactory damping 

performance over a wide range of system loading conditions. The robustness nature of the 

CPSS is due to the fact that the torque-reference voltage transfer function remains 

approximately invariant over a wide range of operating conditions. A gradient procedure for 

optimization of PSS parameters at different operating conditions is presented in [9]. 

Unfortunately, the optimization process requires computations of sensitivity factors and 

eigenvectors at each iteration. This gives rise to heavy computational burden and slow 

convergence. In addition, the search process is susceptible to be trapped in local minima and 

the solution obtained will not be optimal [10]. Unfortunately, the problem of the PSS design 

is a multimodal optimization problem (i.e., there exists more than one local optimum). Thus, 

conventional optimization methods that make use of derivatives and gradients are, in general, 

not able to locate or identify the global optimum, but for real-world applications, one is often 

content with a good solution, even if it is not the best. Consequently, heuristic methods are 

widely used for global optimization problems [11].  

Recently, global optimization techniques like genetic algorithms (GA), evolutionary 

programming, simulated annealing, and rule based bacteria foraging, particle swarm 

optimization and chaotic optimization algorithm [12-17] have been applied for PSS 

parameters optimization. These evolutionary algorithms are heuristic population-based search 

procedures that incorporate random variation and selection operators. However, the 

performance of evolutionary strategy greatly depends on its parameters, and it often suffers 

the problem of being trapped in local optima so as to be premature convergence. Over the last 

decade, modeling the behavior of social insects, such as ants and bees, for the purpose of 

search and problem solving has been the context of the emerging area of swarm intelligence. 

Honey bee is among the most closely studied social insects and honey bee mating may also be 

considered as a typical swarm based approach to problem optimization, in which the search 

algorithm is inspired by the process of marriage in real honey bee. Honey bee has been 

applied to model agent based systems [18]. In a recent work, Abbass [19, 20] developed an 

optimization algorithm based on the honey bee marriage process. This paper presents an 

improved version of the honey bee mating optimization (HBMO) algorithm for design of 

multi-machine PSSs. The effectiveness of the proposed HBMOPSS is tested on a multi-

machine power system under different operating conditions and results are demonstrated 

through nonlinear time simulation. Results evaluation shows that the proposed method 

achieves good robust performance for damping low frequency oscillations under different 

operating conditions. 

 

2. Honey Bee Mating Optimization Algorithm 

The honey bee is one of the social insects that can just survive as a member of colony. The 

activity of honey bee suggests many characteristics like together working and 

communication. A honey bee colony normally includes of a single egg-laying queen with 

which it’s life-span is more than other bees; that with depend upon that seasons usually have 

more than 60,000 workers or more. A colony may contain a queen during its life-cycle. That 
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is named monogynous one. Only the queen is fed by royal jelly. The Nurse bee take care of 

this gland and feed it to queen. The royal jelly causes the queen bee biggest bee in the hive. 

Several hundred drones live with queen and its workers. Queen bee life-span is about 5 or 6 

years, whereas rest of the bees, especially worker bees, oven their period of living do not 

reach to 1 year. The drones die after mating process [20]. 

The drones act in father function in the colony, which are haploid and amplify or multiply 

their mother’s genome without changing their genetics combinations, but mutation. So, 

drones are agents that anticipate one of the mother’s gametes and by the sake of that female 

can do genetically like males. Broods, that be cared by workers, improve from fertilized or 

unfertilized eggs. They represent potential queens and prospective drones, respectively. In 

marriage process, the queens in mating period, their mate flight of the nest to the far places. 

Insemination ends with the gradual death of drones, and by the sake of that queens receive the 

mating sign. Any drone can take part in mating process just one time, but the queens mate 

several times. These features make bee mating very interesting among insects. A drone mates 

with a queen probabilistically using an annealing function like this [21]: 

 

))(/exp()(Pr tSfDob            (1) 

 

Where Prob(D) is probability of adding drone’s sperm D to queen’s spermatheca, Δ(f) is 

perfect difference of fitness D and queen, and s(t) is speed of the queen at time t. The mating 

is high either when queen’s speed level is high, or when drone’s fitness is equal with queens. 

After every transition, speed of queen will decrease according to the following equations: 

 
( 1) ( )s t s t                                                                  (2) 
( 1) ( )E t E t                                                               (3) 

 

Where, α is a factor ϵ (0, 1) and ɤ is the amount of energy, E(t) reduction after each transition. 

Firstly, speed of queen randomly generated. A number of mating flights are realized. 

The queens play the most important function in mating process in nature and also HBMO 

algorithm. The spermateca is a place for sperm of drones and queen’s, all drones, however are 

originally haploid; after that a mating done successfully, the drone’s sperm is stored in the 

queen’s spermatheca. A brood is reproduced by coming of some genes of drones into the 

brood genotype. Therefore, an HBMO algorithm would be constructed by the following five 

important stages [21]: 

1. The algorithm starts with mating flight, where a queen selects drones probabilistically 

from the spermatheca. A drone is selected from list randomly for the creation of 

broods. 

2. Creating of new broods by combining of drone’s genotypes with the queens. 

3. Using of workers to lead local searching on broods. 

4. Adaptation of worker’s ability, based on the improvement of broods. 

5. Substitution of worker queens by stronger and aptitude broods. 

However, when all queens completed their mating flight, start breeding. After all 

broods have been generated, they are sorted according to their fitness. The best brood is 

replaced by the worst queens until all of queens are better and there is no only needing 
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to broods. After completing of mating, remaining broods finally killed in order to new 

mating process begin. The main steps in the HBMO algorithm are presented in Figure 1. 

Main difference (or one of them) HBMO algorithm from classic evolutionary 

algorithms is that be storing of many different drone’s sperm in spermatheca by queen 

cause which the queen uses of them to create new solution for fittest of broods. The 

computational flow chart of HBMO algorithm is shown in Figure 2. 

 

 

Figure 1. The HBMO algorithm [20] 
 

3. Problem Statement 

3.1 Power system model 

The aim of this study is to determine the parameters of power system stabilizers for 

damping oscillations. For this reason appropriate modeling of the power system has a main 

role on better designing of stabilizers. The complex nonlinear model related to an n–machine 

interconnected power system, can be described by a set of differential- algebraic equations by 

assembling the models for each generator, load, and other devices such as controls in the 

system, and connecting them appropriately via the network algebraic equations. The 

generator in the power system is represented by Heffron-Philips model. In this study, the two-

axis model [22] given in Appendix A is used for time domain simulations. 
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Figure 2. Flowchart of the HBMO algorithm 
 

3.2 PSS structure 

The operating function of a PSS is to produce a proper torque on the rotor of the machine 

involved in such a way that the phase lag between the exciter input and the machine electrical 

torque is compensated. A widely speed based used conventional PSS is considered 

throughout the study [10-13]. The transfer functions of the ith PSS is [23]: 
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Where, Δωi is the deviation in speed from the synchronous speed. This type of stabilizer 

consists of a washout filter, a dynamic compensator. The output signal is fed as a 

supplementary input signal, Ui, to the regulator of the excitation system. The washout filter, 

which essentially is a high pass filter, is used to reset the steady-state offset in the output of 

the PSS. The value of the time constant Tw is usually not critical and it can range from 0.5 to 

20 s. In this study, it is fixed to 10 s. The dynamic compensator is made up to two lead-lag 

stages and an additional gain. The adjustable PSS parameters are the gain of the PSS, Ki, and 

the time constants, T1i-T4i. The required phase lead can be derived from the lead-lag block 

even if the denominator portion consisting of T2i and T4i gives a fixed lag angle. Thus, to 

reduce the computational burden in this paper, the values of T2i and T4i are kept constant at a 

reasonable value of 0.05 s and tuning of T1i and T3i are undertaken to achieve the net phase 

lead required by the system. In this paper, the problem of robust PSS design is formulated as 

an optimization problem and HBMO is employed to solve this problem. Robustness is 

achieved by considering several operating conditions and system configurations 

simultaneously. 
 

3.3 Objective function  

To acquire an optimal combination, this paper employs HBMO algorithm [20] to improve 

optimization synthesis and find the global optimum value of fitness function. For our 

optimization problem, objective function is time domain-based objective function [17]:  

                                                                                                    

dttJ
NP

j

n

i

tsim
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1 1

0
                                        (5) 

Where, speed deviations (Δω), of machines are considered for evaluation of the J. The tsim 

is the time range of simulation, n is the number of machines and NP is the total number of 

operating points for which the optimization is carried out. It is aimed to minimize this fitness 

function in order to improve the system response in terms of the settling time and overshoots. 

The advantage of this selected objective function is that minimal dynamic plant information is 

needed. The design problem can be formulated as the following constrained optimization 

problem, where the constraints are the PSS parameter bounds: 

 

tosubjectJMinimize  
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33
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3
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1

maxmin

iii
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iii

TTT

TTT

KKK


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                                                      (6) 

 

The proposed approach employs HBMO algorithm to solve this optimization problem and 

search for optimal or near optimal set of PSSs parameters (Ki, T1i and T3i for i=1,2,…,m) 

where, m is the number of machines in the multi-machine environment. 
 

4. Case Study 

In this study, the three-machine nine-bus power system shown in Figure 3 is considered. 

Detail of the system data are given in Ref. [22]. To assess the effectiveness and robustness of 

the proposed method over a wide range of loading conditions, three different cases designated 
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as nominal, light and heavy loading are considered. The generator and system loading levels 

at these cases are given in Tables 1 and 2. 
 

 

Load C

Load A Load B

1

2 3

4

5 6

7 8 9

G1

G2 G3

  

Figure 3. Three-machine nine-bus power system 
 

 

Table 1. Generator operating conditions (in pu) 

Gen 

 

Nominal Heavy Light 

P Q P Q P Q 

G1 0.72 0.27 2.21 1.09 0.36 0.16 

G2 1.63 0.07 1.92 0.56 0.80 -0.11 

G3 0.85 -0.11 1.28 0.36 0.45 -0.20 

 

Table 2. Loading conditions (in pu) 

Load 
Nominal Heavy Light 

P Q P Q P Q 

A 1.25 0.5 2.0 0.80 0.65 0.55 

B 0.90 0.30 1.80 0.60 0.45 0.35 

C 1.0 0.35 1.50 0.60 0.50 0.25 

 

4.1 PSSs design using HBMO 

The PSS is connected to all machines in the test system. In the proposed method, we must 

tune the PSSs parameters optimally to improve the overall system dynamic stability in a 

robust way under different operating conditions. The optimization of PSS parameters is 

carried out by evaluating the objective function as given in (5), which considers a multiple of 

operating conditions. The operating conditions considered are: 

i) Nominal case of the system 

ii) Heavy loading of the system 

iii) Light loading of the system  

In order to acquire better performance, number of size of spermatecha , number of 

variables, maximum  number of mating flight, Nqueen, Nbrood, and Nworkers is 

chosen as 150, 9, 100, 1, 50 and 3000, respectively. In order to facilitate comparison 

with genetic algorithm (see the Appendix B), the design and tuning of stabilizers were 

used.  Results of PSSs parameter set values are given in Table 3. 
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4.2 Nonlinear time-domain simulation 

To investigate the power system performance with proposed algorithm based designed 

stabilizers, two classes of disturbances are studied. These classes are chosen to represent the 

large, as well as small power system disturbances: 
  

Table 3. Optimal PSSs parameters using HBMO and GA 

Controller 

parameters 

GA HBMO 

1PSS  2PSS  3PSS  1PSS  2PSS  3PSS  

K  59.78 14.15 25 50.51 16.06 29.23 

1T  0.1258 0.1403 0.1187 0.0713 0.0832 0.1602 

3T  0.0801 0.1743 0.1891 0.1226 0.2148 0.1175 

 
Scenario 1 

In this scenario, to evaluate the performance of the proposed method a disturbance of 0.1 

pu input torque is applied to the 2
th
 machine after 0.5 second, respectively. The study is 

performed at three different operating conditions. The results are shown in Figures 4-6. 
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Figure 4. Dynamic responses for Δω in scenario 1 with nominal loading 
condition: Solid (HBMOPSS) and Dashed (GAPSS) 
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Figure 5. Dynamic responses for Δω in scenario 1 with light loading condition: 
Solid (HBMOPSS) and Dashed (GAPSS) 

 

 

Figure 6. Dynamic responses for Δω in scenario 1 with heavy loading 
condition: Solid (HBMOPSS) and Dashed (GAPSS) 
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Figure 4 shows the speed deviations of 1G , 2G  and 3G , respectively, under nominal 

condition. For case under heavy loading condition, the simulation results are shown in Figure 

5, respectively. It can be concluded that the proposed PSS achieves robust performance and 

damps the oscillations very well over a wide range of operating conditions. The simulation 

results in Figure 6, respectively, shows the speed deviations of generators under light loading 

conditions. It is clear that the proposed PSSs provide good damping characteristics to low-

frequency oscillations and greatly enhance the dynamic stability of power system. 

 

Scenario 2 

In this scenario, the performance of the proposed PSSs under transient conditions is 

verified by applying a 6-cycle three-phase fault at t = 0.5 sec, at bus 7 at the end of line 5-7 is 

considered [22]. The fault is cleared by permanent tripping of the faulted line. The speed 

deviations of generators G2 and G3 under the nominal, light and heavy loading conditions are 

shown in Figures 7-9. It can be seen that the HBMO based PSSs achieves good robust 

performance and provides superior damping in comparison with the genetic algorithm. 
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Figure 7. Dynamic responses for Δω in scenario 2 with light loading condition: Solid 
(HBMOPSS) and Dashed (GAPSS) 
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Figure 8. Dynamic responses for Δω in scenario 2 with nominal loading 
condition: Solid (HBMOPSS) and Dashed (GAPSS). 

 
To evaluate the effectiveness of the supplementary controller, a Figure of Demerit (FD) 

used as a performance index expressed by: 

 

,)1000()500( 222
sTUSOSFD              (7) 

 

    Where, Overshoot (OS), Undershoot (US) and settling time of rotor angle deviation 

of the second machine is considered for the evaluation of the FD. It is worth mentioning 

that the lower the value of FD index is the better the system response in terms of time -

domain characteristics. Numerical results of the performance robustness for all cases in 

both two considered scenarios are listed in Table 4. It can be seen that the values of 

these system performance characteristics with the proposed  HBMO based tuned PSSs 

are much smaller in comparison with the GA based tuned PSSs. 
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Figure 9. Dynamic responses for Δω in scenario 2 with heavy loading 
condition: Solid (HBMOPSS) and Dashed (GAPSS) 

 
 

Table 4. Values of FD index in different operating conditions and scenarios 

Method 
Scenario 1 Scenario 2 

Nom. Heavy Light Nom. Heavy Light 

GAPSS 2.01 4.62 5.11 34.33 54.66 40.23 

HBMOPSS 0.945 2.051 2.836 15.32 28.98 25.45 

 

5. Conclusions 

In a multi-machine environment, the sequential tuning of PSS (i.e., CPSS) parameters does 

not guarantee the robustness of the PSS with variable operating condition, location, and 

severity of faults. For this reason, in this paper, PSSs parameters tuning problem is converted 

to an optimization problem which is solved by a honey bee mating optimization algorithm. 

The honey-bee mating process has been considered as a typical swarm-based approach to 
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optimization, in which the search algorithm is inspired by the process of real honey-bee 

mating. The effectiveness of the proposed method is tested on a multi-machine power system 

for a wide range of loading conditions. Time-domain simulations show that the oscillations of 

synchronous machines can be quickly and effectively damped for power systems with the 

proposed PSSs over a wide range of loading conditions and provides superior damping in 

comparison with the genetic algorithm. 

 

APPENDIX A 
Machine models 
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Where,  

 

δ rotor angle 

ω                                                          rotor speed 

Pm mechanical input power 

Pe electrical output power 

E'q internal voltage behind x'd 

Efd equivalent excitation voltage 

Te electic torque 

T'do time constant of excitation circuit 

KA regulator gain 

TA regulator time constant 

vref reference voltage 

v terminal voltage 

 

APPENDIX B 

Genetic algorithms are stochastic search techniques based on the mechanism of the natural 

selection and survival of the fittest [24]. Further, they combine function evaluation with 

randomized and/or well-structured exchange of information among solutions to arrive at the 

global optimum. The architecture of the GA implementation can be segregated into three 

constituent phases, namely: initial population generation, fitness evaluation and genetic 

operations. The GA control parameters, such as population size, crossover probability and 

mutation probability are selected, and an initial population of the binary strings of the finite 

length is randomly generated. Given a random initial population GA operates in cycles called 

generations, as follows [25]: 

- Each member of the population is evaluated using a fitness function. 
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- The population undergoes reproduction in a number of iterations. One or more parents are 

chosen stochastically, but strings with higher fitness values have higher probability of 

contributing an offspring. 

- Genetic operators, such as crossover and mutation are applied to parents to produce 

offspring. 

- The offspring are inserted into the population and the process is repeated. 

 

 

Figure 10. Flowchart of the Genetic algorithm 
 

The crossover is the kernel of genetic operations. It promotes the exploration of new 

regions in the search space using randomized mechanism of exchanging information between 

strings. Two individuals placed in the mating pool during the reproduction are randomly 

selected. A crossover point is then randomly selected and information from one parent up to 

the crossover point is exchanged with the other parent. Performance method is illustrated 

below for the simple crossover technique used in this paper.  

Parent 1: 1011↓ 1110    Offspring 1: 10111011 

Parent 2: 1010 ↓1011    Offspring 2: 1010 1110 

Another process also considered in this work is the mutation process of randomly changing 

encoded bit information for a newly created population individual. Mutation is generally 

considered as a secondary operator to extend the search space and cause escape from a local 

optimum when used prudently with the selection and crossover schemes [26].  

In order to obtain the optimal set of controller parameters, the time domain simulation is 

performed and the fitness function as given in Eq. (5) is optimized. The computational flow 

chart of the GA is shown in Figure 10. While applying GA, a number of parameters are 

required to be specified. Optimization is terminated by the pre-specified number of 

generations for the genetic algorithm. 
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