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Abstract 

When the uniform circular array (UCA) is used to estimate the direction-of-arrival (DOA) 

of the coherent sources, it is necessary to transform the UCA data to the interpolated uniform 

linear array (ULA) data. Thus, the transformed array data can be applied to the spatial 

processing algorithm for the coherent sources such as the forward-backward smoothing 

algorithm. To select a more robust transformation matrix, a modified denoise approach for 

UCA estimation in low SNR case is proposed in this paper. First, a denoise method is 

investigated to maximize the SNR in the process of the interpolated transformation. The 

pseudo signal to noise ratio (PSNR) obtained from the eigenvalues of the forward-backward 

smoothing virtual covariance matrix estimate is used as the parameter of this maximization 

problem. Second, a modified maximization problem and its solution are presented to obtain 

more accurate estimates. The simulation results demonstrate the effectiveness of the proposed 

method, which improve the resolution ability and the estimation accuracy of the coherent 

sources in the low SNR case at the same time. 
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1. Introduction 

The circular array antennas have gained immense popularity in the radar system. It 

has proved to be a better alternative over other types of antenna array configuration due 

to its all-azimuth scan capability and a beam pattern which could be kept invariant. In 

[1], Fabio and Visa focus on the uniform circular array (UCA) Unitary root-MUSIC 

algorithm and propose a novel technique for reducing the bias which leads to practically 

bias-free DOA estimates. In [2], the authors consider the scenarios which are the time-

varying terrestrial multipath propagation with the medium-to-low SNR and very short 

capture records (single-packet processing). The DOA estimation performance of the 

procedure is close to the Cramer-Rao Lower Bound. A generalized algorithm for two-

dimensional angle estimation of a single source with uniform circular arrays is reported 

in [3]. An antenna selection method in beamspace is developed for MIMO systems 

using compact uniform circular arrays at the receiver in [4]. The ergodic capacity for a 

system employing multi-element antenna array (such as the uniform circular array) at 

the transmitter and receiver side is analyzed in [5]. In [6], the authors consider a blind 

source separation problem in which the number of sources is unknown and all or some 

of the sources may be networks with the frequency hopping spread spectrum capability. 

In this proposed method, there is no need to have several antennas for the DOA 

estimation and it significantly reduces implementation cost and complexity of the 
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algorithm. In [7], Tewfik and Hong have shown that it is possible to extend the Root-

MUSIC to UCA using the phase mode excitation concept. In [8], the authors analyze 

the spatial smoothing technique with UCA. In [9], the authors propose the real beam 

space MUSIC to UCA that yields the reduced computation and the better resolution. 

Generally, when the uniform circular array (UCA) is used to estimate the direction -of-

arrival (DOA) of the coherent sources, it is necessary to transform the UCA data to the 

interpolated uniform linear array (ULA) data. However, how to select a more robust 

transformation matrix in low SNR case has not been investigated sufficiently yet. In 

this paper, a modified denoise approach for UCA DOA estimation in low SNR case is 

investigated. 

 

2. The Interpolated Array Technique of UCA 

Consider a UCA with N identical and the omni directional sensors. Let r be the radius of 

the array and d be the circumferential spacing between the adjacent elements. Let   denote 

the angle (azimuth angle) of the interfering signal source measured in the plane containing the 

elements. We assume for simplicity that the interfering signal sources are in the same plane as 

the UCA. The scenario is shown in Figure 1. 
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Figure 1. The UCA and the signals  

The steering vector of the UCA with regard to the center of the array could be expressed as 

cos cos( 2 / ) cos( 2 ( 1)/ )( ) , , ,
T

j j N j N Ne e e             a                                    (1) 

where 2 /r   ，  is the wavelength, and ( )T represents the transpose of )( . Denote the 

nth antenna data in the ith sample as ( )nx i , we have the array data vector in the ith sample 

1 2( ) [ ( ), ( ), , ( )]T

Ni x i x i x iX .                                              (2) 

Generally, in the spatial spectrum estimation technique of UCA, the forward-backward 

smoothing algorithms are needed to solve the coherent sources [10]. Meanwhile, the UCA 

data is needed to be transformed to the interpolated ULA data [11-14].  

To design the interpolated array, the field of view of the array is divided into sectors. The 

lth sector is defined by the interval (1) (2)[ , ]l l  . And define a set of angles [10] 

(1) (1) (1) (2)[ , , 2 , , ]l l l l l        θ                                              (3) 
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for each sector, where   is the angle interval. These angles are used only in the design of 

the interpolation matrix. Compute the steering vectors associated with the set 
l  for the given 

array and arrange them in a matrix as follows: 

(1) (2)[ ( ), , ( )]l l l A a a .                                                 (4) 

In other words lA  is a section of the array manifold of the real array. Denote lA  as the 

section of the interpolated virtual array manifold computed for the set of angles l : 

(1) (2)( ), , ( )l l l  
 

A a a                                                    (5) 

where ( )la  is the response of the interpolated virtual array to the same signals of l . 

Assume that there exists a interpolated transformation matrix 
lB  such that 

ll l B A A .                                                             (6) 

Of course, the interpolation is not exact and therefore the equality above not really holds. The 

“best” interpolation matrix is the one which will give the best fit between the interpolated 

response 
l lB A  and the desired response lA [10]. Given these interpolation matrices we can 

compute the array data vector X  of the real array: 

l lX B X                                                               (7) 

where 
1( )H H

l l l l l

B A A A A                                                      (8) 

where ( )H represents the conjugate transpose of ( ) . The spatial smoothing method can now 

be applied to the virtual array (i.e., to lX ) rather than to the real array (i.e., to X ). Denotes 

the antenna element number of the virtual ULA array as N . Divide the virtual array into P 

subarrays with the equal antenna element number M. Let K be the number of the coherent 

sources, according to the restraint K M N  , there are P= - 1N M  subarrays. We can 

express the pth virtual subarray data vector as 

, , , 1 , M-1( ) [ ( ), ( ), , ( )]T

l p l p l p l pi x i x i x i X                                          (9) 

where , ( )l nx i  is the nth virtual antenna data in the ith sample of the lth sector, 

, , 1n p p M    , and 1, ,p P  . The average M  M virtual array covariance matrix is 

expressed as 

, , ,

1

1
( ) ( )

I
H

l p l p l p

i

i i
I 

 R X X                                                (10) 

where I is the sample number. 

From (10), the virtual array covariance matrix estimate using the forward-only smoothing 

can be expressed as 

,

1

1 P
f

l l p

pP 

 R R .                                                      (11) 

Also, the forward-only smoothing virtual signal covariance matrix estimate of the coherent 

sources can be obtained by 
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where 2 sink kd    , ( )ks i is the complex envelopes of the kth coherent signal in the ith 

sample, 1, ,k K  , k  is the azimuth of the kth coherent source,  is the wavelength. d  is 

the adjacent antenna element space of the virtual ULA. In like manner, the estimation matrix 

using backward-only smoothing are given by 

*( )b f

l lR J R J                                                         (13) 

where *( ) represents the conjugate of ( ) , and J is a M  M exchange matrix with 1’s on 

the anti-diagonal. Finally, the forward-backward smoothing virtual covariance matrix 

estimate bf

lR can be expressed as the mean of the forward-only smoothing and the 

backward-only smoothing estimate matrices. We can compute the signal subspace sE  of 

the interpolated array by the eigenvalues decomposition. It spans the signal subspace of 

the interpolated array. The noise subspace nE  of the interpolated array can be found by 

computing the subspace orthogonal to sE . The peaks of 
2

1/ ( )H

na E  provide the 

MUSIC DOA estimates based on the interpolated array, rather than the real array. 

 

3. A Modified Denoise Approach 

In general, the “best” interpolation matrix ˆ
lB  is obtained by solving the following 

minimization problem 

ˆ arg min
l

l l l
F

l

l
F




B

A B A
B

A
                                                (14) 

where 
F

is Frobenius norm. For convenience, this minimization problem is named the 

minimization error criterion (MEC). Nevertheless, if the SNR is quite low, the MUSIC DOA 

estimation might fail by using MEC. Thus, it is necessary to maximize the SNR in the process 

of the interpolated transformation [15-18]. To solve this problem, a new modified denoise 

approach is presented in the following. 

In fact, the real SNR of the signals is constant in one experiment data batch. Thus, the 

pseudo signal to noise ratio (PSNR) obtained from the eigenvalues of bf

lR  is used as the 

variable for this optimization problem. In ideal case, the signal and the noise are the 

stationary and ergodic complex-valued random processes with zero mean, and they have the 

infinite data length. The noise is assumed to be uncorrelated with the signals and it is 

uncorrelated from element to element. Consequently, the variance of the noise may be equal 

to the minimum eigenvalue of the forward-backward smoothing virtual covariance matrix 

estimate bf

lR . Moreover, the variance of the signal is equal to its maximum eigenvalue. 

Nevertheless, in the practical application, the data length is finite and the noise might 

correlate with the signals and correlated from element to element. Consequently, denotes the 
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eigenvalues of bf

lR  as n , and 1 2 M     , where 1, ,n M   and M is the antenna 

element number of the virtual subarray. We define the pseudo noise variance estimate by 

2

1

1
ˆ

M

noise n

n KM K
 

 




                                                   (15) 

where K is the number of the coherent sources. And the pseudo signal variance estimate is 

denoted as 

2 2

1

1
ˆ ˆ-

K

signal n noise

nK
  



  .                                                 (16) 

Thus, the variable of PSNR is written as 
2

10 2

ˆ
10log

ˆ

signal

noise

PSNR




 
   

 

.                                              (17) 

And a denoise method to obtain the interpolation matrix ˆ
lB  is available by solving the 

following maximization problem 

ˆ argmax( )
l

l PSNR
B

B .                                                (18) 

This denoise method could largely improve the resolution ability of UCA DOA estimation. 

To improve its estimate accuracy, a modification is needed to be introduced. Thus, a modified 

denoise approach is obtained by solving the following modified maximization problem 

ˆ argmax( )
l

l PSNR
B

B  subject to  
l l l

F

l
F





A B A

A
                          (19) 

where   is the error which is limited in some ranges for the practical application. When the 

DOA is estimated in an interested area, the azimuth angle range of the area is often fixed. 

Thus, the interpolated transformation matrix 
lB  might only be obtained by changing the 

parameters of the virtual array antenna. Besides, the number of the virtual array elements is 

equal to the number of the real array elements. Consequently, let the ratio of the space 

between the adjacent elements d  to the wavelength   denotes the virtual array parameter 

variables, we have 

dvratio  .                                                       (20) 

And the (19) could be rewritten as 

)(maxarg PSNRvratio
vratio

opt 
 subject to 

l l l
F

l
F





A B A

A
                            (21) 

where optvratio  is the “best” vratio . The (18) is rewritten as 

 argmax( )snr
vratio

vratio PSNR .                                            (22) 

And the (14) is rewritten as 

arg min
l l l

F
error

vratio
l

F

vratio



A B A

A
                                         (23) 

http://dict.baidu.com/s?wd=practical%20application
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where snrvratio  is the virtual array parameter obtained by (22) and errorvratio  is the virtual 

array parameter obtained by (23).  

As the practical SNR is different in the different received data batch and the subspace 

decomposition for equation (22) is nonlinear, it is difficult to solve the optimization problem 

in (21) by the mathematical solution exactly. It needs an approximate solution. From (22) and 

(23), we could obtained the solution of (21) with the following equation 

modified snr snr error errorvratio w vratio w vratio                                           (24) 

where 
snrw  and 

errorw  is the weighting coefficients of snrvratio  and errorvratio . Assuming the 

0% ineffective probability of MEC is SNRerror0, and the 100% ineffective probability of MEC 

is SNRerror100, we have the weighting coefficient 

error0

error0 error100

error100

0

1

snr

SNR SNR

w w SNR SNR SNR

SNR SNR




  
 

                                 (25) 

where SNR is the variable of the SNR of the received data, and 

error0

error0 error100

SNR SNR
w

SNR SNR


 


                                              (26) 

and 

1error snrw w  .                                                       (27) 

Although the SNR could not be obtained exactly, it could be approximately estimated 

from the DFT spectrum of the received data. Consequently, the weighting coefficient in 

the equation (25) could be obtained. 

 

4. Simulation and Analysis 

In this section we evaluate the performance of the modified denoise approach mentioned 

above. Consider a UCA with 64 identical and omni directional sensors in a radar system, and 

the radius of the array is 20m, the circumferential space between the UCA elements d=1.96m, 

the frequency investigated is 400MHz. The antenna element number of the virtual ULA array 

N  is equal to N. The adjacent antenna element space of the virtual ULA d  ranges from 

01.0  to 5.0  with the span 01.0 . And the number of these parameters is 50. We assume 

that there are two interfering signal sources. And they have the same frequency. Thus they are 

the coherent sources. The azimuth angles of the interfering signal sources are -15.0º and 30.0º 

measured in the plane containing the elements. The snapshots are 256. We assume for 

simplicity that the interfering signal sources are in the same plane as the UCA. The noise is 

the additive white Gaussian noise. We might obtain the estimate of the SNR by investigate 

the difference of the spectra amplitude to the noise power level based on the DFT spectra of 

the received signal. In this simulation, with the above simulation parameters, we have 

SNRerror0=3.098dB, SNRerror100=0dB. We selected the SNR that is larger than the SNRerror100 and 

smaller than the SNRerror0. 

Simulation 1: In this simulation, we selected the input signals with SNR which is larger 

than SNRerror0, such as 4dB. Figure 2 depicts the MUSIC spectra of the 50 different virtual 

ULA d  in this case. The d  correlated to the denoise method is 01.0 , and the d  correlated 

to the MEC is 44.0 , both of which are invariant with the different SNR.   
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Figure 3 depicts the MUSIC spectra of the denoise method and the MEC. The chain line 

represents the result based on the denoise method. The active line represents the result based 

on the MEC. The estimate results based on the denoise method is -14.6º and 30.8º，and the 

estimate results based on the MEC is -15.1º and 29.9º. In this circumstance, the MEC is much 

more accurate than the denoise method. Table 1 depicts the performance of the 20 times 

simulation for each method. From Table 1, we might see that in the circumstance of 

error0SNRSNR  , the MEC is much better than the denoise method because its bias and 

variance of estimates is much smaller. In this circumstance, the estimate results of the 

modified denoise approach equals those of the MEC rather than those of the denoise method. 

Table 1. The performance of the 20 simulations (SNR = 4dB) 

Method Bias(degree)    Variance Failed Times 

MEC 0.13           0.0015 0 

Denoise 1.01           0.8500 0 

Modified Denoise 0.13          0.0015 0 

 

Simulation 2: In this simulation, we selected the input signals with SNR which is lower 

than SNRerror0 and larger than SNRerror100, such as 1.4dB. Figure 4 depicts the MUSIC spectra 

of 50 different virtual ULA d  in this case.  

 
Figure 4. The MUSIC spectra of 50 different virtual ULA d  (SNR = 1.4dB) 

Figure 2. The MUSIC spectra of 

the 50 different virtual ULA d  

(SNR = 4dB) 

Figure 3. The MUSIC spectra of the 

denoise method and MEC (SNR = 

4dB) 
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Figure 5 depicts the MUSIC spectra of the denoise method and MEC while the latter is 

effective. The estimate result based on the denoise method is -14.6º and 30.3º，and the 

estimate result based on the MEC is -15.1º and 29.8º. In this circumstance, the MEC is still 

more accurate than the denoise method. Figure 6 depicts the MUSIC spectra of the denoise 

method and MEC when the latter fails. The estimate result based on the denoise method is -

13.6º and 30.0º, and the estimate result based on the MEC is -15.1º and 46.7º. Apparently, 

46.7º is beyond the margin of error. We can see it from Figure 6 that sometimes the MEC 

might fail to estimate the azimuth angles correctly, but the denoise method is more robust. 

Table 2 depicts the performance of the 20 times simulations. From Table 2, we could see that 

in the case of error100error0 SNRSNRSNR  , the MEC is still much more accurate than the 

denoise method while it is effective, but sometimes it might fail. The modified denoise 

approach is a weighted fusion method, which takes the weighted sum of the denoise method 

and the MEC results. Thus, the modified denoise approach fails no times in the simulations, 

which is more robust than MEC. Moreover, its bias is 0.26 degree and its variance is 0.14, 

which are smaller than the denoise method. 

Table 2. The performance of the 20 simulations (SNR = 1.4dB) 

Method Bias(degree)    Variance Failed Times 

MEC 0.1125        0.0029 4 

Denoise 1.13            0.3625 0 

Modified Denoise 0.26            0.14 0 

 

Simulation 3: In this simulation, we selected the input signals with SNR which is lower 

than SNRerror100, such as -3.5dB. Figure 7 depicts the MUSIC spectra of 50 different virtual 

ULA d in this case. 

Figure 5. The MUSIC spectra of the 
denoise method and MEC while the 

latter is effective (SNR = 1.4dB) 

Figure 6. The MUSIC spectra of the 

denoise method and MEC when the 

latter is ineffective (SNR = 1.4dB) 
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Figure 8 depicts the MUSIC spectra of the denoise method and MEC. The estimate results 

based on the denoise method are -13.8º and 28.6º, and the estimate results based on the MEC 

are beyond margin of error. We can see it in Fig. 8 that in this circumstance, the MEC has 

completely failed. In another words, the MEC might not be used for the estimation the DOA 

anymore when the investigated error100SNRSNR  . Table 3 depicts the performance of the 20 

times simulation for each criterion. From Table 3, we can see that in the circumstances of 

error100SNRSNR  , the minimum error criterion is completely ineffective. The hybrid criterion 

takes the estimate result based on the denoise method. It might still be effective at a very low 

SNR while keep accurate at the same time. 

Table 3. The performance of the 20 simulations (SNR = -3.5dB) 

Method Bias(degree)    Variance Failed Times 

MEC \                       \ 20 

Denoise 4.45           0.5995 0 

Modified Denoise 4.45            0.5995 0 

 

5. Conclusion 

We present a modified denoise approach by selecting a more robust interpolated 

transformation matrix for UCA DOA estimation in low SNR case. It could be applied to 

the spatial smoothing technique to handle the DOA estimation of the coherent signal 

sources. We compared the performance of the MEC and the denoise method, both of 

which have advantages and disadvantages. The denoise method is more robust, but the 

MEC is more accurate. The modified denoise approach is the organic fusion results of 

them. It is more robust and accurate even if the SNR is very low. The statistics of bias, 

variance and failed times of the simulation results demonstrate the validity of the 

proposed method. 
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