
An Interplatform Service-Oriented Middleware for the Smart
Home

Ehsan Ullah Warriach, Eirini Kaldeli, Alexander Lazovik and Marco Aiello
Department of Mathematics and Computer Science

University of Groningen
Groningen, The Netherlands

Email: e.u.warriach,e.kaldeli,a.lazovike,m.aiello@rug.nl

Abstract

In domotic scenarios, where ubiquitous computing pervades housing, the capability to ef-
fectually discover, integrate and coordinate different devices with diverse implementation
details, communication protocols, and functionalities is a central aspect. Basing on a lay-
ered domotic architecture for smart embedded devices which builds on the paradigm of Service
Oriented Computing, in this paper we focus on the pervasive layer and the requirements it
has to fulfill, so as to realize a high degree of automation and serve the needs of the higher
application levels of the architecture. We show how a discovery framework can take care of
new devices independently of their protocols through the use of proxies. Because with the
development of home network and service applications, different protocols and transmission
modes are proposed. There are more digital devices and home appliances which compliance
to the protocols. The proposed protocols are different and they are typically unable to inter-
connect with each other. We design and implement a middleware framework for smart homes
to integrate protocols which are popular such as UPnP on OSGi framework and collaborating
Zigbee and Bluetooth to converge various service oriented applications. Additionally, with
the well-developed Zigbee and Bluetooth technology, majority of devices has been developed
to support these technologies, we propose two new base drivers to integrate diverse devices
communication protocol on our platform. The availability of standardized service type de-
scriptions can further assist towards automating the tasks of integration and coordination
through intelligent algorithms. From the technical point of view, the implementation builds
on the OSGi/UPnP standards. An experimental setup for testing the discovery plugins for
Bluetooth and ZigBee devices, along with an evaluation of the performance of the Bluetooth
proxy verify that the proposed solution is a viable and effective one.

1 Introduction

Smart homes constitute an environment where appliances inter-work with each other and
coordinate to proactively support the user in his/her daily activities and in case of special
home events. Home appliances, sensors and actuators are highly heterogeneous in a number
of ways. They come from many vendors, have hardware and software resources that go
from minimal to being as powerful as a desktop computer, and have the ability to change
the physical space around them or just to sense it. This high heterogeneity needs to be

1

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

115

RonCay
Rectangle

reconciled to lay the foundations for a smart home, where devices are aware of each other
existence and interaction interface. The reconciliation goes through the use of common
ontologies, standardized protocols and unified techniques for discovering and messaging.

An extreme solution to the coordination problem is to force all devices to adhere to a
unique networking protocol. Even though standardization efforts and industrial alliances
have done a great job in the last years to reduce the number of protocols and to come up
with excellent standards (e.g., Konnex, UPnP, Bluetooth, WiFi, ZigBee) as well as software
pervasive architectures (e.g., Jini), we are still far from the point where all devices follow
a common protocol. Therefore, the association and interoperation between heterogeneous
home appliances is still an open problem in the context of creating smart homes. In this
paper, we focus, in particular, on the problem of discovery and interoperation across different
protocols to build a middleware for the smart home.

The functionalities or services offered by each device, e.g., turning on/off or setting the
channel of a TV, are made available through some specific interface exposed by the device.
The problem of service discovery has received growing attention in the research arena.
Proposals provide mechanisms for searching and browsing services, for choosing the right
service, and for utilizing it. Yet, each protocol has its own communication mechanism,
characteristics, and base on different techniques to service discovery, thus leaving many
issues related to cross-protocol interoperation open.

In this article, we propose a middleware for smart homes where heterogeneous devices can
dynamically connect, and services are offered across protocols. The middleware is the basis
for building smart homes in the context of a European Framework 7 project, Smart Homes
for All (SM4ALL), which has the goal of making homes pro-active to address the needs
of people with specific physical disabilities. Here we overview the project and dig into the
details of the middleware component named Pervasive Discovery Framework (PDF). This
framework is responsible for the physical discovery of devices using low-level communication
technologies. PDF is composed of discovery modules, one per each communication tech-
nology supported by the framework, thus being able to perform discovery of heterogeneous
devices. This discovery framework transforms the devices proprietary representation into a
common representation that can be understood by the rest of the middleware layers.

This abstraction from the pervasive layer through the availability of machine-parsable
and standardized device descriptions becomes an essential element if we want to move to
genuinely intelligent houses, which are able of building efficient and flexible added-value
applications, decoupled from the particularities of the functionality implementation, opera-
tional platforms and communication protocols used by the underlying devices. One distin-
guishing feature of the SM4ALL framework is that it offers extensive support for building
complex services through the combination of automatic and semi-automatic compositions
algorithms [7,14]. These compositions are context-aware and self-adaptable, so as to be able
to dynamically adjust to changes in the environment and recover from failures, without sac-
rificing performance, user friendliness and reusability. To enable the development of such
complex and intelligent functionalities that are based on service compositions. To this end,
a semantic repository is used to collect and store standardized descriptions of the function-
alities offered by each device type, specified in the UPnP standard. This way, every time a
new device of a supported type is discovered in the home network, all steps of its integration
up to the highest levels of abstractions can take place in a purely automated fashion. The
overall layered architecture thus provides for semi-automatic device discovery and integra-
tion of the respective services into a centralized gateway, offering uniform management of

2

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

116

RonCay
Rectangle

services to higher-level applications, while keeping the need for human intervention at all
these stages to the minimum.

A discussion of related work is presented in Sections 2. We introduce the Smart Homes
for All project and its global Service-Oriented Architecture in Section 3. A description of a
possible scenario in a smart home is presented in Section 3.1. Section 4 is dedicated to the
device discovery framework. The device layer and implementation of discovery plugins for
each supported technology is explained in Section 5. Section 6 describes the pervasive con-
troller and explains the patterns and protocols of the implementation. Middleware clients,
with emphasis to the composition engine, are presented in Section 7. Section 8 illustrates
an implementation based example on the concepts deployed in a physical home and the
results performance and conclusions is presented in Section 9.

2 Related Work

The advantages offered by Service-Oriented Architectures (SOA), such as platform in-
dependence, loose coupling and interoperability are important to build applications that
involve different devices in home networks [20]. During the last two decades, several SOAs
targeting pervasive environment have been developed, e.g., UPnP [25] or Jini [9]. As a net-
working architecture for the home devices UPnP [25] is used for over a decade [15] to simplify
the implementation of home networks and support connectivity. We therefore choose UPnP
as the basic networking technology, without however restricting the pervasive layer to only
UPnP devices. Other technologies such as Bluetooth and ZigBee are also supported through
the use of appropriate drivers, one per supported protocol.

The development of the OSGi platform [9] has contributed towards these requirements,
constituting the most mature technology for bringing the SOA paradigm into the home
network of appliances. OSGi is a platform- and device-independent framework that can be
used to develop service gateways [17, 18], The OSGi platform offers the means to manage
all services and computation tasks at the service gateway in a centralized manner, and is
therefore used as a fundamental component at the pervasive layer in the architecture we
propose herein. As already mentioned, in this paper we propose to describe all devices as
UPnP devices, a protocol that is easily integrated as an OSGi bundle into the common
registry. Several approaches propose extending the OSGi framework so as to integrate
devices that use alternative protocols, such as SIP (Session Initiation Protocol) [6, 8], so
that they can talk to other devices. Their solution can be used to support SIP devices
in the common OSGi registry, since the higher application levels (itnerface, composition,
visualization) of the proposed SM4ALL architecture do not make a distinction between
OSGi bundles, as long as a description of the functionalities of the services exposed at the
service gateway exists.

Several proposals for extending the OSGi description with appropriate semantics have
been made in the literature, with the purpose to facilitate the discovery process [11] or for
supporting their automatic parsing by software agents. Herein, we use established standards
(proposed by the OSGi alliance) as they are: assuming that a common data model is used so
as to avoid message-level heterogeneity, no extra expressive power or semantics are needed
for automatic discovery and composition.

A number of research and industrial projects focusing on supporting a wide range of
household devices over heterogeneous network environments have been performed and are

3

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

117

RonCay
Rectangle

underway. The majority of the solutions examines the integration of technology and ser-
vices through home networking for a better quality of life. Microsoft’s EasyLiving [5] is
a middleware for building intelligent environments based on XML messaging, integrating
geometric knowledge of people, devices and places. The adaptive house [19] allows the
home to program itself by observing the lifestyle of inhabitants and then learning to predict
their needs, by means of neural networks. The Gator Tech Smart House [12] develops and
deploys extensible smart house technologies, employing a service-oriented OSGi framework
that facilitates service composition. The distinctive contributions of the SM4ALL middle-
ware proposed herein include the semi-automatic discovery of devices with heterogeneous
network protocols, and their integration into a common registry as services, so that they
expose their functionalities in a standardized and unified way, and can thus be used by
clients in complex applications without the need to know about low-level particularities of
each device. This is achieved by the use of a semantic registry, so that every time a new
device of a supported type is discovered in the home network, all steps of its integration up
to the highest levels of abstractions take place in a purely automated fashion.

Eventing is the basic communication mechanism used in the middleware architecture
proposed in this work, with clients-subscribers expressing their interest in particular kinds
of events, and devices-publishers which deliver appropriate notifications each time their
state changes. An event-based distributed middleware architecture is proposed in [22],
focusing on providing high scalability, while the BOSS [24] project deals basically with
smaller-scale home environments. The latter makes use of UPnP, but focuses on sensors,
which are just event sources and not services that may provide functionalities to manipulate
the environment. The middleware architecture proposed in this paper builds on using WS-
Notification as an event-based mechanism.

3 SM4All

Smart Homes for All (SM4All) is a European Union research project in the context of the
seventh framework program (FP7). The goals of SM4All include the study and development
of an innovative middleware platform where smart embedded services can interwork in
immersive and person-centric environments through the use of composability and semantic
techniques, in order to guarantee dynamicity, dependability and scalability, while preserving
the privacy and security of the platform and its users. This is applied to the challenging
scenario of homes in presence of users with different abilities and needs (e.g., young, aged
and disabled).

For SM4All’s middleware architecture we follow a layered approach. It is based on three
layers as shown in the Figure 1. On top is the user layer which provides the interfaces to
the home such as touch screen and a Brain-Computer Interface for disabled people [3]. The
composition layer receives high-level goals issued by users through the user interface layer
and computes the corresponding complex tasks by controlling the execution of lower-level
services offered by devices deployed within the SM4ALL architecture. The composition
layer details can be found in [14]. At the bottom is the pervasive layer, where the heteroge-
neous actuators, sensors and mobile devices of the house live. It is responsible for enabling
physical devices to interact with the upper layer components, by publishing available service
descriptors, executing service instances, decoupling interactions from the specific commu-
nication mediums, etc. This layer realizes an abstraction layer wrapping all the devices

4

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

118

RonCay
Rectangle

currently connected into the house.

Figure 1: SM4All Architecture

3.1 An interoperation scenario

When a new device enters into a smart home, it first needs to negotiate its integration
with the environment. Some fundamental questions need to be answered: Where does it sit
in the network? What services does it provide? Does it need to be told what to do by the
system? How can it co-operate with the other devices available in the house? To address
these issues in an effective way, it is desirable to design a system that can seamlessly integrate
new devices without user intervention. Ideally, one would want to take a device to home,
and do nothing else. Clearly, zero-configuration is an idealized view, however, in SM4All
we try to automate the integration process as much as possible by minimizing the amount
of setting up and configuring new devices. The average home user is keen at maximum to
provide some input on what are the goals he/she desires to frequently accomplish with the
devices available in the home, however, he/she should stay as decoupled as possible from
the technical details of the particular implementations.

Let’s assume that a house owner, Andrea, wants to integrate a new device into the smart
home. Andrea goes to a store and purchases a new device, e.g., a TV. The next step is
to establish permanent connectivity between the TV and the smart home platform over a
secure network. So, when Andrea comes home with the new TV and installs it by connecting
its cable to the network, the TV will start sending basic information to the home gateway
depending on its communication protocol. The Home Gateway detects the presence of the
new device, identifies its type and basic characteristics, and downloads the corresponding
control software and appropriate description from a semantic repository (a local or a remote
one, e.g., by connecting to the Internet). The home gateway exposes the TV services to
the rest of the system, and informs the user interface that gives access to all home devices
about the operations that control the new TV. After successful installation, Andrea can
start using his new device, and the system components can communicate with it.

Let us now see how a newly installed device can cooperate with the other devices in
the house. Obviously, the addition of a new device broadens the potentials for buinding
added-value, more complex funcitonalities that leverage the degree of automation of the

5

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

119

RonCay
Rectangle

inhabitants’ routine. Exploiting the benefits offered by a newly discovered service and
properly incorporating it into existing composite services should take place with the min-
imum amount of effort, without the need of re-designing the whole composite service and
independently of whether it uses a different protocol than the other devices which partici-
pate in it. For example, let us consider a “good night” goal which is a request addressing
to the composition module (see Section 7.2 about how the goal is specified in a declarative
way), and prescribes the desired bedroom conditions that the user wants to accomplish
when going to sleep: the alarm clock is set to some preferred wake-up time, the lights in the
bedroom are turned off, and the curtains are closed. Let us assume that a disabled user of
the house buys a motorized bed, which after being plagged is automatically detected by the
system, and added to the homeway, after deriving its description from the repository. Let
us also assume that this description derived from the repository also includes a set of se-
mantic descriptions (see Section 7.2 about how these semantic descriptions look like), which
enable the automatic composition engine to use the device in is complex reasoning tasks.
All the user needs to do in order to take into account the functionalities exposed by this
new acquirement of his in his going to bed routine, is to add an extra requirement about the
bed to be at the low position (see Section 7.2). Thanks to the automatic recognition of the
type of the bed device and the retrieval of its semantic description, which is consistent with
the description of the rest of the devices and can be automatically parsed by the composi-
tion engine, nothing more is needed: the next time the user wants to sleep, on top of the
other service invocations that will take place, the motorized bed will also be automatically
lowered, despite the fact that it uses a different protocol from the other devices which are
invoked by the plan.

4 The Framework

The pervasive framework is a dynamic and open environment where devices join and
leave while offering and consuming services. It is an extension of framework shown in
the Figure 2 by the addition of the Semantic Repository component. In order to support
scenarios such as the one described, the smart home platform has to satisfy a number of
requirements. Firstly, a new device should be automatically detected and installed on the
home gateway, when joining the physical network. Secondly, all interested parties compo-
nents of the platform should be notified about the services offered by the newly detected
device. Thirdly, the available services should be described in a standardized programmatic
manner, so that the subscribed clients-components can control them in accordance with
this description. Fourthly, interested parties should be notified about changes of services’
states in a event-driven manner, and communication between services should be enabled
regardless of the platform each service runs on. On top of these, the pervasive layer and
discovery framework have to be scalable and secure, and perform well with varying loads
and number of participating devices.

The pervasive layer of the SM4ALL platform relies on a service-oriented and event-driven
architecture. Figure 2 illustrates the current implementation of the pervasive framework.
At the bottom is the device layer, where the physical devices are located (see Section 5).
UPnP devices use TCP/IP and UDP as basic networking protocols to communicate with the
pervasive controller. Other heterogeneous devices, use their own standard communication

6

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

120

RonCay
Rectangle

protocol, such as Bluetooth1 and ZigBee2 through the deployment of discovery drivers. The
pervasive controller is a special OSGi bundle responsible for handling eventing and control
of the UPnP services available at the OSGi framework. It thus functions as a bridge between
the OSGi layer and the Web Services (WS) layer, which provides a standardized API to the
upper layers (more details about the pervasive controller are provided in Section 6).

Figure 2: Architecture of the Pervasive Framework

On top of Figure 2, there is the middleware client layer which contains middleware clients,
which communicate with the pervasive controller, and can invoke the services exposed by
the available devices. The clients may include a visualization and simulation tool (see
Section 7), a BPEL orchestration engine [16], or a composition layer [14], user interface [7]
etc.

4.1 Protocols

We use Universal Plug and Play (UPnP) [25] as the protocol for direct access to hardware
services, WSDL and SOAP protocols to expose high-level services, and the Open Service
Gateway initiative (OSGi) framework is as middleware technology.

4.1.1 Universal Plug and Play

The UPnP protocol plays the role of a device-neutral technology which is used by the de-
vice abstraction layer, required to fulfill the requirement for device independence. According
to the UPnP specification, a device includes a set of services, each of which maintains some
actions, i.e., operations that can be invoked, and involves some state variables, which model
the current state of the service. UPnP archives platform independence because it is built
upon standard technologies such as TCP/IP, UDP, HTTP, XML and SOAP. It offers sup-
port for discovery, description, control, event notification and presentation [25]. Three kind

1http://www.bluetooth.com
2http://www.zigbee.org

7

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

121

RonCay
Rectangle

of components are involved in the UPnP architecture, such as service, device and control
points.

In UPnP, a service contains some parameters used to maintain the operating status of
the service. UPnP uses an XML based format to describe services. There are two types of
elements that can be described using this format: actions and state variables. Actions are
used to control UPnP services. State variables describe the current state of UPnP service
and they may send events when their state changes. UPnP services can be controlled by
invoking their actions. These invocations go via SOAP request/response messages. UPnP
services support eventing using General Event Notification Architecture (GENA) as shown
in the Figure 4. GENA uses HTTP as a request with an XML message body.

4.1.2 OSGi

The OSGi framework is a dynamic module system and service platform for Java [21],
whose original purpose was to build service gateways in a server-centric architecture [28].
It provides a central coordinating point for managing the home network with multiple
heterogeneous communication technologies, and allows services from different devices to be
loaded and run on a common service gateway. The framework is meant to facilitate the
deployment of services and applications on a residential gateway.

5 Device Layer

The main goal of the device layer is to seamlessly integrate heterogeneous networks and
devices (sensors and actuators) into the pervasive discovery framework and provide devices
services and information using a common and standard device abstraction interface, no
matter which underlaying technology is the device based on, as shown in Figure 2.

5.1 Discovery Framework

A dynamic, adaptable discovery process is needed to find new devices and register their
basic information, given that devices are highly mobile, corresponding to physical things
that move inside the smart home. Furthermore, there is a need to work in a unified way
with devices using different protocols and networking technologies (e.g., Bluetooth, ZigBee,
UPnP). In order to enable the loose coupling of devices, a service discovery framework is
proposed, which abstracts away the underlying device technology to a common representa-
tion, and permits users to find and use services offered by heterogeneous devices without
any previous knowledge of their location or characteristics. Moreover, it allows other com-
ponents connected to the home gateway to get information about the existence of a device
service and its description. Figure 3 provides a high-level overview of the working of the
discovery framework.

The requirement for automatic recognition and integration of devices, independently of
their network technology, implies the use of a device abstraction layer. This brings along the
notion of abstract device models, as opposed to the instance of a particular device and its
respective implemented operations. For example, in a home there may be a number of lamps
which are instances of the same lamp model. The basic assumption is the existence of a
semantic repository which keeps the descriptions of the device models the platform supports,

8

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

122

RonCay
Rectangle

Figure 3: Pervasive Discovery Framework Architecture

specified in UPnP, which is the unified standard we use for the device descriptions. This
can be also used for service composition. This can be also used for service composition [14]

The general sequence of actions that takes place in the middleware framework and par-
ticularly in the discovery framework from the moment in which a physical device appears in
the network to the one in which its services are available to be used as UPnP for the upper
layers of the middleware are:

1. The home gateway, which contains the communication technology adapters and one
driver listener for each communication technology, such as Bluetooth, ZigBee, etc.,
tracks periodically the local network for new devices.

2. When the framework receives a signal from a new device, irrespectively of the used
network technology, it parses the information conveyed by the basic notification, which
includes a device instance unique identifier, and its respective type-model identifier.
This process is called physical device discovery. The control flow of the physical device
discovery is presented in Algorithm 1. The components responsible for extracting the
basic information from a device are the discovery plugins.

3. Based on the retrieved device model, the discovery framework first checks whether it
can find the respective model description in the local repository of known models. If
it fails, and assuming that an Internet access is available, it can go on by looking in
public, external repositories of device models. If the appropriate device model cannot
be found either in the local or remote repository, then automatic integration is not
possible, and manual intervention is required in order to connect the device. The new
device model description, if available, should be added to the semantic repository so
that instances of the same model can be automatically treated in the future.

4. Having retrieved the appropriate device description, the discovery framework now
holds all necessary information about the specific device, i.e., the specification of the
services and actions offered by the device specified in UPnP. Thus, it can generate a
unique UPnP instance-level representation of the device, by using the device’s serial
number, and further wrap it into the OSGi framework as a bundle. Authorized clients
receive a notification about the appearance of the new device instance, and can control
it in accordance with its specification.

9

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

123

RonCay
Rectangle

5. The OSGi bundle is installed and started and, as part of the process, UPnP services
are created. The OSGi bundle announces itself in the local network and the pervasive
controller discovers it using the SSDP UPnP protocol (UPnP Discovery). The devices
advertise their integration in the network sending multicast messages when they are
added or refreshed.

The pervasive controller also sends periodical multicast messages searching for new de-
vices in the network.

1. Once a device is discovered, the device description including its services is exchanged
between the UPnP device and the pervasive controller.

2. Once the device is fully discovered at UPnP level, the pervasive controller sends the
information to the semantic repository, where the upper layers of the middleware will
query (semantically) for services and devices to fulfill the requirements of the goals
and plans to be carried out.

3. The pervasive controller takes care of the UPnP eventing process, based on the GENA
protocol. The pervasive controller subscribes to the changes in state variables in the
devices and forwards them to the eventing hub in a standard way. The previous steps
are depicted in Figure 4.

Figure 4: Pervasive Controller Sequence Diagram

The semantic discovery control flow is presented in the Algorithm 2. The home designer
puts in the OSGi framework the most standard and highly used device types expects to
be useful for the user. The home designer also puts the drivers for the most well-known
communication technologies, if the user want to manually install a device instance of type
not in OSGi manually. However, all subsequent instances of the same device types are
automatically installed. After having a successful semantic discovery, the system is able to
load and configure a software component called OSGi bundle, and translating the service
invocations to the device’s specific communication technology.

The device abstraction layer in Figure 2 abstracts away the underlying device technology
layer above it. For each communication technology (Bluetooth, UPnP, ZigBee) that the
system supports, a driver must be available. The responsibility of the driver is to wrap

10

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

124

RonCay
Rectangle

Figure 5: An example of a device model

devices as instances of the UPnPDevice3 interface and register them as OSGi services. This
allows the home controller to communicate transparently with heterogeneous devices.

ALGORITHM 1: Physical device discovery
1: Preconditions: The pervasive layer is active and scanning for devices
2: if new device appears in the network then
3: Extract basic information such as device type
4: if new device = Bluetooth || ZigBee || UPnP then
5: Extract all information the device is capable of providing i.e., device id, address, model
6: if device model type description exists in the Semantic Repository then
7: add device -> do Sematic device discovery
8: else
9: device can not be resolved with provided information

10: end if
11: else
12: Device type is unknown
13: end if
14: else
15: start scanning for new devices
16: end if

The discovery framework has been designed to be extensible, new technology modules
could be introduced in the system dynamically. This would easily allow developers to
introduce new communication technologies in the pervasive layer that would appear in the
future or integrate an already existing technology for devices.

5.2 Discovery Plugins

The Discovery framework is composed by discovery plugins, one per each communication
technology integrated in the middleware framework for discovery of heterogeneous devices.
The plugins scan the network in order to search for new devices. The device discovery
plugins are responsible for translating low-level or hardware states and activities of the
devices (a window, a light, etc.) into events and obtain further information about the
newly discovered device. The respective device plugin for the discovery framework reads

3org.osgi.service.upnp.UPnPDevice, http://www.osgi.org/javadoc/r4v42
/org/osgi/service/upnp/UPnPDevice.html

11

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

125

RonCay
Rectangle

ALGORITHM 2: Semantic device discovery
1: Preconditions: A device has been physically discovered and its device model has been retrieved

from the Semantic repository
2: if proxy exists in the semantic repository then
3: Proxy instance is downloaded into the middleware
4: New proxy object is created
5: Proxy object is configured for particular discovered device
6: Pervasive controller exposes the device services as UPnP
7: Device is exposed as SM4All device
8: else
9: Proxy could not be downloaded, installed or created

10: end if

all available information from the device. Which information the device provides mainly
depends on the technology used, e.g., Bluetooth. Typically, information about the device
name, type and possibly, about the services provided by the device can be obtained. The
information is used to perform the reasoning towards the OSGi registry to infer the type of
device and the services it provides, and it returns a device model, containing the device id,
type, name, services, etc. An example of a device model is shown in Figure 5. Each plugin
must extract as much information as it can about the discovered device. The richness of
this information depends on the communication standard.

Figure 6 shows the required sequence of actions for the device discovery process to add
a new heterogeneous device. The pervasive layer is active and scanning for new devices
appears in the network. When a new device announce itself in the network, discovery
framework confirms the discovery plugin for the new device communication protocol. The
discovery framework extracts the basic information from the device, otherwise needs to add
a new discovery plugin for new communication protocol. The discovery plugin sends this
information to the semantic repository, then semantic repository finds a suitable device
type description based on the extracted information and returns this information to the
discovery plugin. If not a suitable device type description can be found, the device is
marked as unknown to the system.

In Section 8, Bluetooth and ZigBee plugins are explain as these technologies are suitable
for low data rate applications with limited battery power. Each plugin has its own properties
and is properly designed according to the correspondent communication protocol. The home
gateway is loaded with Bluetooth and ZigBee adapters. This device is called base node in
the context of device discovery. It always has a Bluetooth and ZigBee client applications
for incoming connections within the home network. These client applications are part
of discovery framework and always active and scanning for new devices periodically and
establishes communication with the middleware layer.

6 Pervasive Controller

The main goal of the pervasive controller is to manage the devices that run in the local
network, making them known to the upper layers of the middleware framework, so they
can access the services provided by the devices. The access to the services is done using
UPnP interfaces (based on the SOAP protocol for the message interchange) as shown in the
Figure 3. The pervasive controller is an extended UPnP Control Point for UPnP devices

12

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

126

RonCay
Rectangle

Figure 6: A New device addition

(native or proxies) that provides a common access for the upper middleware layers and
applications to the UPnP services provided, feeding the system with updated information
about the existing devices and services in the system.

Once the device has been physically discovered and semantically resolved, and the OSGi
bundle with its UPnP interfaces is created, the pervasive controller is able to perform the
UPnP discovery in the network, maintaining an internal and up to date registry of services
and devices in the local network. The pervasive controller is responsible for:

• Keeping the descriptions of the services provided by the OSGi bundles that control
the devices in the network.

• Informing the OSGi framework about the addition and removal of services and devices
in the network.

• Taking care of event managing and sending the events to the composition layer or
other subscribed clients in a standard way.

The layer pattern it is using ensures device and platform independence, which primarily
means that device and platform precise details need to be abstracted away. Another im-
portant feature is eventing, and we overcome this challenge using publish/subscribe based
patterns [4].

6.1 Contract-First Service Development

Herein, we follow the contract-first development paradigm for the Web Services develop-
ment, i.e. we first start with the WSDL contract, and use Java to implement the prescribed
contract. This way, one can guarantee among others contract ability for long time, inde-
pendence from SOAP stacks particularities, re-usability, and good response times. This is
useful for the interactions between the home gateway which exposes the WS functionalities
and the middleware client. To support eventing there need to be two-way communication

13

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

127

RonCay
Rectangle

between the pervasive controller and the middleware clients. This means, that clients must
be able to interact with the pervasive controller server, written in Java, independently of
their technology (e.g. the visualization tool is written in Ruby), but also the other way
around.

Figure 7: Contract and code generation process

The code generation scheme for the two-way communication using contract first develop-
ment is shown in Figure 7. There are two services described by WSDL files which share their
data types via a XSD file which they both import. For the server side (pervasive layer), a
stub is generated from the server WSDL and proxy is generated from the client WSDL. The
stub of the server WSDL is used to implement operations to register, control and subscribe
to services. A client proxy is instantiated for each registered client and used for further
communication with that client. For the client side (middleware clients) a stub is generated
of the client WSDL and a proxy for the server WSDL. The stub is used to implement the
logic for handling events from the pervasive layer. The proxy is used to register, control
and subscribe to services in the pervasive layer.

6.2 Publish/Subscribe

The pervasive controller uses the publish/subscribe pattern to decouple the UPnP services
(the producers) and the client applications (the consumers). This decoupling can take place
in time, space and synchronization [10]. There are many publish/subscribe based patterns,
all offering specific advantages. We used two variations in the architecture of the pervasive
layer, such as listener and eventing.

The listener pattern is a simple pattern for publish/subscribe based eventing. The event-
driven communication between the pervasive controller and the middleware clients is also
based on the listener pattern. In the middleware framework, the whiteboard [2] pattern
is used for the event-based communication between the UPnP importer/exporter and the
controller.

Eventing is an important feature in the proposed framework. The proposed architecture
supports event driven communication as it is more efficient and scalable than communication
based on polling [22]. The eventing support of pervasive layer is based on the UPnP eventing
mechanism. This is because all heterogeneous devices are abstracted to UPnP in the device
abstraction layer. UPnP eventing is based on state variables, which represent a visible
state of a UPnP service. Using a publish/subscribe based technology, interested parties
can register to such state-variables. If such a state-variable changes, then registered parties
receive a notification.

Figure 8 shows the flow of an event which starts as an UPnP state-variable that is changed,
passes through the layers and eventually reaches the web service clients. As soon as the
state-variable changes to which a client is subscribed (step 0), the following steps take place:

14

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

128

RonCay
Rectangle

1. A UPnP device sends an event using the General Event Notification Architecture
(GENA) to subscribers, including the UPnP service wrapper component of the per-
vasive layer.

2. The UPnP service wrapper looks up event listeners in the OSGi service registry to
initiate OSGi eventing using the whiteboard pattern [2].

3. The UPnP service wrapper propagates the event to the controller.
4. The controller running in the OSGi framework notifies the server that there is a

separate process outside the OSGi framework.
5. The server invokes the stateVariableChanged operation (defined in the clients WSDL)

for registered clients.

Figure 8: Event propagation

6.3 Implementation

The are three main components of the pervasive controller that can be distinguished:
the WS gateway, the home controller and virtual devices. The home controller and virtual
devices are OSGi bundles. The WS gateway is a web service that middleware clients can
use to interact with the pervasive controller. The home controller is responsible for the
communication within the OSGi framework to the WS gateway. The proposed middleware
platform runs on the Apache Felix4 implementation of the OSGi framework. Its important
features include eventing and the device and platform independence.

6.3.1 WS Gateway

The WS gateway is a web service which allows clients to control services and receive
notifications of events. It advertises the following operations to clients through a WSDL
interface: (de)registerClient, (un)subscribe, listServices and invokeAction. It is written in
Java and uses the Apache CXF5 framework to run the web service and to generate Java

4http://felix.apache.org
5http://cxf.apache.org/

15

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

129

RonCay
Rectangle

code from the WSDL files. The WS gateway is the glue between middleware clients and
the pervasive controller. It administers the communication with the controller, keeps track
of registered middleware clients and propagates events from the home controller to the
registered clients.

A web service can support any of the following three styles: a Remote Procedure Call
(RPC), a document-oriented style that is associated with Representational State Transfer
(REST), or a hybrid style that is called REST-RPC. We considered two styles that are used
mostly on the modern web to communicate with the outside world, such as Rest and the
RPC style. The communication with the home controller happens via message passing over
a socket.

6.3.2 Home Controller

The home controller is an OSGi bundle that is responsible for handling eventing and
controlling the UPnP services available in the OSGi framework. It functions as a bridge
between the OSGi layer and the web WS gateway. It uses message passing over a socket
to communicate with the pervasive server. The advantage is that it is not necessary to
port Apache CXF framework with all its dependencies to an OSGi bundle. With regard to
eventing, the home controller acts as a bridge between the eventing based on the whiteboard
pattern [2] that is used in the OSGi framework, and the eventing based on the listener
pattern that takes places in the WS gateway.

6.3.3 Virtual devices

Virtual devices are devices that are implemented only as software and have no real hard-
ware. Virtual devices can be useful for testing and demonstration purposes. They can be
implemented by using the UPnP interfaces defined by the OSGi framework. After imple-
menting these interfaces, the virtual devices can be deployed in the OSGi framework as
bundles. If these bundles are activated, the virtual devices function as real devices in the
system.

7 Middleware Clients

The middleware client layer provides the means to the final users to interact with the
middleware and control several devices. The clients may be a visualization and simulation
tool, a user interface, or an intelligent composition agent. We introduce a middleware client
layer above the middleware to interact with rest of the framework as shown in Figure 2.
The potential clients communicate with the pervasive controller at the middleware layer
through the exchange of SOAP messages as shown in the Figure 10. Currently, there
are three extensions implemented for the pervasive layer as a middleware client: a home
visualization and simulation [16] (RuG ViSi Tool), a service composition planner [14] and
user interfaces [7]. All are implemented as middleware clients, but for different purposes.

7.1 RuG ViSi Tool

Testing and verifying the behaviour of such large pervasive systems is costly, setup time
in a real home is high, and tuning the physical devices consumes a great deal of time.
Therefore, an environment that mimics as closely as possible the real setting and is able

16

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

130

RonCay
Rectangle

to simulate a number of interactions and behaviours can greatly help the development and
testing of the proposed middleware framework with different communication technologies.
It also serves the purpose of acceptability testing with potential users of the system. More
details about the architecture and implementation of the RUG ViSi tool can be found in
Appendix A

7.2 Service Composition Planner

To satisfy the wishes of the home users and guarantee their comfort and safety, the house
has to be able to exhibit quite complex functionalities rather than just being able of trig-
gering some single service. To this end the ability to construct and execute compositions
of individual services is of paramount importance. To this end, one can resort to standard
Business Process descriptions and execution engines such as BPEL [16] or employ more
intelligent approaches that support automatic, dynamic and customizable compositions.
In [14] such a flexible composition component that bases on Artificial Intelligence domain-
independent planning has been proposed, to generate context-aware compositions at run-
time, in a constantly evolving environment. The abstraction and unified view-description of
all available devices offered by the pervasive layer as already described allows the composi-
tion planning component to automatically build the necessary compositions without caring
about the heterogeneity in implementation details or data.

The composition engibe bases upon a domain-independent planner, which ultimately
models the home domain as a Constraint Satisfaction Problem (CSP). The planner is
equipped with a number of special features that go beyond classical planning and are of
particular importance to the requirements associated with modeling and controlling service
interactions in a smart home environment. Firstly, it supports efficient handling of variables
ranging over large domains, which are commonly used by smart home components (tem-
perature measurements, TV channels, the locations monitored by the location component
are all essential pieces of information). Secondly, the representation of the home domain
as a dynamic constraint network, which allows connecting and disconnecting constraints
on-the-fly, enables the efficient update of the current environmental state as delivered by
the context-awareness model, without the need of re-loading the whole domain. Another
important characteristic of the planner, which makes it particularly wellsuited for adapt-
able and user-centric environments, is that it accommodates for a high level language for
expressing extended goals [13]. The nature of the goal language is declarative, decoupled
from the procedural and operational details of the services. The service operations that
fulfill the properties prescibed in the goal are synthesized by the planner automatically and
at runtime, depending on the current state of the environment and the devices available at
the moment. More details about the planner and the techniques it uses can be found in [13].

The planner takes the following ingredients as input:

• The representation of the home in the form of a planning domain, i.e. the description of
the available service operations as actions, in terms of preconditions and effects. This
representation of service operations as actions is stored in the Semantic Repository,
as part of the information about each available service.

• The description of the current state of the home as delivered by the Context Awareness
component. The planner subscribes to all state variables it is interested in, and is thus
asynchronously notified whenever their value changes. Whenever it receives a change

17

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

131

RonCay
Rectangle

event, it changes its initial state accordingly.
• A goal prescribing a set of properties to be achieved. Goals are stored in the Semantic

Repository, and can be requested either by the User Interface or by the Rule engine.

Given the goal and the description of the domain instance, the planner computes a
plan, i.e. a partially ordered set of actions which have the potential to satisfy the goal. The
planner executes the plan step-by-step, by asking from the Invocation Dispatcher to execute
the respective waiting to be informed about its outcome. If the response indicates a failure,
then the planner will perform re-planning, i.e. it will come up with an updated plan starting
from the new initial state as delivered by the Context Awareness component. If the failure
indicates that a service is permanently out of order, then the plan will look whether the
same goal can be satisfied by an alternative plan, without using the defective appliance.

In the followings we provide an example of how the semantic description of the three
operations (one for each of the possible positions of the bed) offered by the service “Motor-
izedBed”, represented in xml format, looks like:

<service name="MotorizedBed">
<variable name="bed_position" type="BedPosition"/>
<operation name="setHigh">
<pre>

<eq-val var="bedPosition" value="MIDDLE"/>
</pre>
<assign-val var="bedPosition" value="HIGH"/>

</operation>
<operation name="setLow">
<pre>

<eq-val var="bedPosition" value="MIDDLE"/>
</pre>
<assign-val var="bedPosition" value="LOW"/>

</operation>
<operation name="setMiddle">
<pre>

<neq-val var="bedPosition" value="MIDDLE"/>
</pre>
<assign-val var="bedPosition" value="MIDDLE"/>

</operation>
</service>

A set of predefined goals depending on the user’s routine and needs are stored in the
Semantic Repository and made available in the supported UIs. In the followings we present
how the “good night” goal described in the example described Section 1 looks like. The
achieve-maint construct prescribes that the propositions which follow should be satisfied
in some future state and remain true till the end of the plan (more about the goal language
van be found in [14]).

<achieve-maint>
<eq-val var="MotorizedBed_bedroom1Bed_bedPosition" value="LOW" />

<eq-val var="Lights_bedroom1Light01_lightStatus" value="OFF" />
<eq-val var="Lights_bedroom1Light02_lightStatus" value="OFF" />

<eq-val var="ALARM_bedroom1Alarm_alarmClockTime" value="08:00"/>
</achieve-maint>

18

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

132

RonCay
Rectangle

.

7.3 User Interface

The user interface provides the means for the finals users to interact with and control the
devices. The basic module of the user layer is the Abstract Adaptive Interface (AAI) [7],
which acts as a proxy that provides services to the particular User Interfaces (UIs) that can
be connected to the system. Its task is to collect information about the available service
operations of active devices and the goals kept in the repository, and forwards them to the
concrete UIs, with which it interacts via the exchange of SOAP messages. The information
collected from the repository includes visual data (icons) associated with the devices, as well
as information about the location of the devices, so that they can be organized accordingly,
depending on the capabilities of the concrete UIs. Moreover, the AAI is seamlessly updated
to reflect the most recent status of the devices and notifies the concrete UIs connected to
the system accordingly. Its implementation is based on Apache Tomcat6 and Apache Axis7.

8 Implementation, Experiments and Validation

To evaluate whether the middleware framework is effective and the used techniques have
adequate performance, a technical evaluation of the system is described next. The signifi-
cance of our proposed work lies mainly in the heterogeneous device discovery and middleware
framework based on OSGi and UPnP for smart homes. The former provides highly dynamic,
extendable and open discovery framework to achieve heterogeneity, in which devices join and
leave while adopting different communication technologies, while the later achieves interop-
erability among devices and multi-platforms. We first describe the application scenario to
address those two significant features, and then experimental setup of the different possible
tests to evaluate the system performance as well as the results of the experiments.

8.1 Case Study Evaluation

We assure that the pervasive layer can be used to integrate heterogeneous devices in
a middleware framework and that the upper layers can use the device’s services without
having information about devices low level communication technologies. Let’s have a look
at the necessary steps required in the proposed architecture to fully integrate a device which
appear in the network layer. Section 3.1 explains a scenario to add a TV in smart homes
that has Wireless Home Digital Interface (WHDI), we take it as an example and explain the
operations required at the middleware framework. Figure 6 shows the required sequence of
actions for the device discovery process to add a new heterogeneous device.

8.1.1 Pervasive Layer Operation in the Case Study

The pervasive layer is active and scanning for devices on the home gateway. When the
TV turns ON and appears in the network layer, the WHDI adapter, part of the discovery
framework, extracts some basic information such as device id, type and unique address
from the device’s profile by using extractBasicInfo and getDeviceModel method. There are

6http://tomcat.apache.org/download-70.cgi
7http://axis.apache.org/axis2/java/core/

19

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

133

RonCay
Rectangle

several possibilities when device cannot be discovered physically, such as: the device cannot
be discovered because its communication technology is not supported by the pervasive layer,
the device type is unknown, the device cannot be resolved with the information provided
and the device model of the discovered device could not be retrieved.

The home gateway is loaded with a WHDI adapter and discovery plugin to discover TV.
To integrate a new device and to achieve interoperability, well-known protocol discovery
plugins and adapters must be available at home gateway. As the number of protocols grow,
further development effort is required. However, our experiences of developing the case
study indicate that this effort is not infeasible; each protocol needs to be developed only
once. Generally, each new protocol required almost one month development time for a single
experienced Java developer.

Once the device information is known, the WHDI discovery plugin queries the semantic
repository to decide on the device type using getTypeDesrciption method. The result of the
query is a link to a proxy (device type description) residing in the semantic repository, and a
proper OSGi bundle is downloaded and installed at the pervasive controller that can handle
the communication with the device and offer the UPnP interfaces. This OSGi bundle will
be capable to control the TV. An instance of this particular device is added as an OSGi
bundle in the OSGi framework. The OSGi bundle is paired with the device and discovered
by the pervasive controller (UPnP Control Point) as a UPnP device. This way the services
offered by the TV are register in the OSGi registry, and become available for the upper
middleware layers. The middleware clients at upper layers can access the services offered
by the UPnP proxy as UPnP clients. The pervasive layer has a real time knowledge about
the status of the device and can detect any change in the status of the device or its services
and notify this change to the rest of the middleware layers.

8.2 System Setup

The middleware framework architecture is fully implemented to test its technical prop-
erties. A prototype of the home gateway system was built on a laptop equipped with
a Bluetooth and ZigBee using an open source OSGi framework and UPnP protocol with
Java (Figure 9). The core software modules of the proposed architecture, including, the
discovery plugins (Bluetooth and ZigBee), device abstraction layer, discovery framework,
semantic repository, pervasive controller (WS Gateway, home controller, virtual devices)
and middleware clients (RUG ViSi tool, service composition planner and user interfaces)
were implemented.

8.2.1 Bluetooth Device Discovery Plugin

The home gateway is loaded with a Bluetooth adapter (BT discovery). This device is
called base node in the context of Bluetooth discovery. The home gateway always has a
Bluetooth client application for incoming connections within the home network. Bluetooth
discovery is a part of the PDF. It is always active and scanning for devices, and establishes
communication with the middleware layer.

The proposed architecture is implemented for two kind of devices: a desktop system
with Java Standard Edition and a Java Mobile Edition (1.2 J2ME) running on a mobile
phone (Nokia N85 - Symbian OS 9.3, Bluetooth v2.0 with A2DP). We have split the home
gateway software part into a Bluetooth generic interface library and a Bluetooth device
discovery specific part (BluetoothDiscovery). A simulated UPnP lamp device is registered

20

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

134

RonCay
Rectangle

Figure 9: System Configuration

to the UPnP network as an OSGi bundle. A Bluetooth device that has been discovered is
registered in the middleware. When the device is properly configured, it is installed at the
OSGi framework. Thus, a lamp UPnP representation can control the discovered physical
Bluetooth device.

The experimental setup is based on using a 2.66 Ghz computer running Windows Vista
32 bits and Java 1.6.0 for Bluetooth desktop application and a Nokia N85 mobile phone
running Java Mobile Edition. Another computer using a 2.66 Ghz running Windows Vista
32 bits and Java 1.6.0 as a home gateway. One Sentilla JCreate USB adapter is attached
with home gateway. Two USB Bluetooth (Bluetooth version 2.0 with Enhanced Data Rate)
sticks, one for home gateway (PC A) and another for a desktop application which is a
Bluetooth remote control (PC B) to control devices connected with home gateway. We used
Java APIs for Bluetooth (JSR 82) on the N85 and apache felix UPnP or any UPnP network
scanner. The phone is exported as an OSGi bundle.

After the bootstrap, the Bluetooth discovery framework is turns on and also the Bluetooth
client application (Java application) on PC A. It start apache felix or any UPnP network
scanner that is searches for devices to nearby home gateway within smart environments.
A new device will be discovered, and at this point device information is extracted, e.g.,
friendly name (BluetoothLamp) and also a query is made to UPnP controller to configure
the device OSGi bundle. Device OSGi bundle (BluetoothLampUPnPDevice) is installed
at UPnP controller. After having a successful Bluetooth connection between PC B and
home gateway, then Bluetooth adapter on PC B can be used as a remote control to setting
ON and OFF some other device such as lamp in RuG ViSi tool connected to PC A (home
gateway).

8.2.2 ZigBee Device discovery Plugin

ZigBee is a global standard for wireless communication and particularly adopted for use
in home control automation. A ZigBee device plugin is developed to dynamically integrate
ZigBee devices in the pervasive controller. The ZigBee supported device that is selected
for the experimental work is Sentilla mote [23], as shown in the Figure 9. It is chosen
on the basis of their innovative potential and the large number of new applications they
can support. A single Sentilla mote contains the following elements: 3-axis accelerometer, a

21

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

135

RonCay
Rectangle

temperature sensor, eight LEDs, two standard connectors (analog inputs), and an expansion
connector. Communication between mobile devices and host PC (home gateway) is realized
using the USB Gateway device. A laptop is equipped with a Sentilla network adapter and
running the network-monitor inside the Sentilla environment.

The Sentilla mote accelerometer provides us three values representing the acceleration
in the x-, y- and z-axis. By implementing the AccelSensorMonitor method in the Read-
Sensor class of client application, the sensor data is captured and processed. A simulated
UPnP door device is registered to the UPnP network as an OSGi bundle to test the ZigBee
discovery module as shown in Figure 9. A ZigBee Sentilla mote that is coupled with the
discovered door is registered in the middleware. When the device is properly configured,
it is installed on the OSGi framework. Thus, a door UPnP representation can control the
discovered physical ZigBee device. Whenever the door is open, the accelerometer sensor
y-axis and UPnP device values change which can be visualized in simulation. We evaluate
its performance on a real testbed of Sentilla JCreate wireless nodes.

After having successful installation of heterogeneous devices, such as Bluetooth and Zig-
Bee at home network. The corresponding discovery plugin bundle automatically import the
devices and services from each different network device into OSGi framework. All services
offered by the discovered devices are available at the OSGi service registry.

8.3 Bluetooth proxy tests

The visualization tool can be used for initial tests, and provides a first indication of the
system’s behaviour and performance in real world scenarios. Reaction to events is nearly
instantaneous for both real and simulated devices.

The purpose of these tests is to analyze the behaviour of the pervasive layer with Blue-
tooth devices, in particular in terms of good-put, throughput, round trip time and packet
error rate. To investigate the performance of a Bluetooth device proxy, we conducted a
series of tests are conducted using the measurement setup explained above. Good-put is the
application level throughput, i.e., the number of useful information bits, delivered by the
network to a certain destination, per unit of time. We define throughput to be the ratio
of the number of error free transmissions between the PC B , where the home gateway is
running, and PC A which is connected to a Bluetooth adopter in a given time interval.
Packet error rate, where a single reported packet error could result from one or more bit
errors occurring in the packet, the bit error rate provides additional information, reporting
the total number of errors occurring in the demodulated packets. The term round-trip time
represents the elapsed time for the transit of a signal over a closed-circuit. A web service
call is made from PC B and is sent to the receiver PC A, and PC A again sends back
the response spontaneously to the PC B. The connection is established across the L2CAP
(Logical Link Control and Adaptation Protocol) layer [27]. On the basis of this layer, we
add time stamps to each web service request/response invocation at both PC A and PC B.

The measurements are taken five times for the physical device running on PC A. The
total time interval is set to one minute. The results are shown in the Table 1.

Round trip time varies between 35 and 260 ms. The packet loss and packet error rate
results are not predictable normally in our current experimental setup because testing is
done at the application layer instead of lower layers, such as RFCOMM. In most cases, the
packet error rate increases when the distance of the communicating devices increases. We
observe that the good-put is directly proportional to the offered load. The good-put varies

22

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

136

RonCay
Rectangle

Calls Throughput Avg. Round-Trip time Avg. Goodput
one min. kbps ms kbps

22 723 76 550
21 723 105 579
19 723 98 560
20 723 80 598
26 723 92 584

Average 723 90,2 574,2

Table 1: Bluetooth proxy Test results

between 550 and 600 Kbit/s. Bluetooth supports both asynchronous and synchronous
communication. We used asynchronous communication to transfer data between PC A
(home gateway) and PC B (BT remote control). It can be seen from Table 1 that we have
maximum throughput in all experiments.

9 Conclusions

To satisfy the needs for interoperability and dynamicity, while keeping human intervention
to the minimum, we have designed and implemented a layered architecture which abstracts
away from the particularities of the lower device levels to a higher level where all devices are
exposed in a unified way as services, and an application level on top that allows building
more complex applications that utilize and combine different services. More specifically,
we have built a middleware that allows the automatic discovery and connection of devices
with heterogeneous network protocols, e.g. Bluetooth, ZigBee, etc. by the use of established
standards, namely UPnP and OSGi. All that is needed at this level of automatic discovery
is deploying a driver once per communication technology. In order to support a high degree
of automation and dynamicity at the application level all available devices are exposed as
services. To enable the development of more complex functionalities that are based on
service compositions, the availability of machine-parsable and standardized descriptions of
their provided functionalities becomes paramount. To this end, each vendor should provide
a a description of the functionalities offered by each device type in a standardized format.
A semantic repository is used to collect and store these descriptions. This way, every time a
new device of a supported type is discovered in the home network, all steps of its integration
up to the highest levels of abstractions can take place in a purely automated fashion.

We have described a case-study and shown how the components of architecture co-operate
to accommodate for the requirements of discovery and integration. We have described an
experimental setup to show how the discovery plugins work for two particular protocols,
Bluetooth and ZigBee. We have conducted some performance tests regarding the behavior
of the Bluetooth device proxy, which verify that the overhead introduced by the adopter is
almost negligible.

Although the proposed service-oriented architecture promises a better solution for smart
home network, a number issues still remain open, and require further research. One of the
most challenging issues that need to be addressed are related to concurrency. For example,
what happens if the DVD theater requests the curtain to close, but the illuminometer asks
it to open at the same time? At the level of more complex applications, like the parallel

23

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

137

RonCay
Rectangle

execution of service compositions, the number of conflicts increases, and their resolution
require special attention. Another issue is adaptation and recovery from failures, that may
stem from different levels of the architecture (network failures, device failures, application
failures) and are thus due to different causes. For example, device failures in the OSGi
environment are due to the inherent properties of ad-hoc and pervasive computing. Appli-
cation failures on the other hand may occur due to unverified code, mismatched libraries,
and even intentionally malicious codes [1]. Network failures occur either at the network or
node level because the collected data is faulty due to internal and external influences, such
as battery drain, environmental interference, sensor aging [26]. Thus, depending on the
different nature of failures that may occur, different, tailored strategies have to be employed
to effectively deal with them.

Acknowledgement

Here we thank people from SM4ALL consortium, programmers in Groningen and people
who helped/participated in evaluation. The research is supported by the EU project Smart
Homes for All, contract FP7-224332.

References

[1] Ahn, H., Oh, H., Sung, C.O.: Towards reliable osgi framework and applications. In:
Proceedings of the 2006 ACM symposium on Applied computing. pp. 1456–1461. SAC
’06, ACM, New York, NY, USA (2006)

[2] Alliance, O.: Osgi alliance, listeners considered harmful, the whiteboard pattern (2004),
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

[3] Babiloni, F., Cincotti, F., Marciani, M., Salinari, S., Astolfi, L., Aloise, F., Fallani,
F.D.V., Mattia, D.: On the use of brainâĂŞcomputer interfaces outside scientific labo-
ratories: Toward an application in domotic environments. In: International Review of
Neurobiology, International Review of Neurobiology, vol. 86, pp. 133 – 146. Academic
Press (2009)

[4] Baldoni, R., Querzoni, L., Virgillito, A.: Distributed event routing in publish/subscribe
communication systems: a survey. Tech. rep., DIS, Universit‘a di Roma La Sapienza
(2005)

[5] Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.A.: Easyliving: Technologies
for intelligent environments. In: Proceedings of the 2nd international symposium on
Handheld and Ubiquitous Computing. pp. 12–29. HUC ’00, Springer-Verlag (2000)

[6] Bushmitch, D., Lin, W., Bieszczad, A., Kaplan, A., Papageorgiou, V., Pakstas, A.: A
sip-based device communication service for osgi framework. In: First IEEE Consumer
Communications and Networking Conference (CCNC). pp. 453–458 (2004)

[7] Catarci, T., Ciccio, C.D., Forte, V., Iacomussi, E., Mecella, M., Santucci, G., Tino,
G.: Service composition and advanced user interfaces in the home of tomorrow: The
sm4all approach. In: Ambient Media and Systems (AMBI-SYS). pp. 12–19 (2011)

[8] Chang, G., Zhu, C., Ma, M., Zhu, W., Zhu, J.: Implementing a sip-based device
communication middleware for osgi framework with extension to wireless networks.

24

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

138

RonCay
Rectangle

In: First International Multi-Symposiums on Computer and Computational Sciences
(IMSCCS). vol. 2, pp. 603 –310 (june 2006)

[9] Dobrev, P., Famolari, D., Kurzke, C., Miller, B.: Device and service discovery in home
networks with osgi. Communications Magazine, IEEE 40(8), 86 – 92 (aug 2002)

[10] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35(2), 114 – 131 (2003)

[11] Gouvas, P., Bouras, T., Mentzas, G.: An osgi-based semantic service-oriented device
architecture (2007)

[12] Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator
tech smart house: A programmable pervasive space. Computer 38, 50–60 (2005)

[13] Kaldeli, E., Lazovik, A., Aiello, M.: Extended goals for composing services. In: Pro-
ceedings of the 19th International Conference on Automated Planning and Scheduling
(ICAPS 2009). AAAI Press (2009)

[14] Kaldeli, E., Warriach, E.U., Bresser, J., Lazovik, A., Aiello, M.: Interoperation, com-
position and simulation of services at home. In: 8th Int. Conf. on Service Oriented
Computing (ICSOC-10). vol. LNCS 6470, pp. 167–181. Springer (2010)

[15] Kim, D.S., Lee, J.M., Kwon, W.H., Yuh, I.K.: Design and implementation of home net-
work systems using upnp middleware for networked appliances. Consumer Electronics,
IEEE Transactions on 48(4), 963 – 972 (nov 2002)

[16] Lazovik, E., den Dulk, A., de Groote, M., Lazovik, A., Aiello, M.: Services inside
the Smart Home: A Simulation and Visualization tool. In: 7th Int. Conf. on Service
Oriented Computing (ICSOC-09). pp. 651 –652 (2009), http://www.cs.rug.nl/
~aiellom/publications/icsoc09.pdf

[17] Li, X., Zhang, W.: The design and implementation of home network system using osgi
compliant middleware. Consumer Electronics, IEEE Transactions on 50(2), 528 – 534
(may 2004)

[18] Marples, D.: The open services gateway initiative: An introductory overview (2002)
[19] Mozer, M., Dodier, R., Miller, D., Anderson, M., Anderson, J., Bertini, D., Bronder,

M., Colagrosso, M., , Cruickshank, R.: The adaptive house. In: IEEE Seminar Digests
(2005)

[20] Ngo, L.: Service-oriented architecture for home networks. In: Seminar on Internet
working. pp. 1 – 6 (2007)

[21] Service platform core specification v.4 (2010), www.osgi.org
[22] Pietzuch, P., Bacon, J.: Hermes: a distributed event-based middleware architecture.

In: Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International
Conference on. pp. 611 – 618 (2002)

[23] (2010), http://www.sentilla.com
[24] Song, H., Kim, D., Lee, K., Sung, J.: UPnP-Based Sensor Network Management Ar-

chitecture. In: Second International Conference on Mobile Computing and Ubiquitous
Networking (ICMU) (2005)

[25] Upnp device architecture version 1.1. (2008), http://www.upnp.org/specs/arch/UPnP-
arch-DeviceArchitecture-v1.1.pdf

[26] Warriach, E., Tei, K., Tuan, A.N., Aiello, M.: Fault detection in wireless sensor net-

25

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

139

RonCay
Rectangle

works: a hybrid approach. In: 11th ACM Conference on Information Processing in
Sensor Networks - POSTER Session (2012)

[27] Warriach, E., Witte, S.: Approach for performance investigation of different bluetooth
modules and communication modes. In: Emerging Technologies, 2008. ICET 2008. 4th
International Conference on. pp. 167 –171 (oct 2008)

[28] Wu, C.L., Liao, C.F., Fu, L.C.: Service-oriented smart-home architecture based on osgi
and mobile-agent technology. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 37(2), 193 –205 (march 2007)

APPENDIX

A RUG ViSi Tool

The challenge is to create a real-life simulation of a home in which home applications
are integrated as much as possible. The aim is to show that all heterogeneous networks
and devices (sensors and actuators) with different services and communication technologies
seamlessly integrate into the middleware, provide devices’ services and information using a
common and standard abstraction interface, and can communicate with each other. The
home instance visualized and controlled by the users is based on a virtual reconstruction
of a real apartment built at the premises of the Fondazione Santa Lucia (FSL) in Rome,
a hospital specialising in neuromotor rehabilitation (www. hsantalucia.it). The apartment
consists of four rooms (two bedrooms, a kitchen and a living room), equipped with 32
simulated devices (lights, doors, motorized bed, curtains, windows, TV, air condition etc).
The apartment modeled at the visualization platform (RuG ViSi tool) is equipped with
virtual devices implemented in Ruby8. Those simulated devices are coupled with the UPnP
devices at the pervasive layer. This way, whenever a device state is changed, the result
is reflected in real time at the visualization layer, and thus the effects of the instructions
issued by the UI can thus be visualized. Figure 10 depicts the interaction between the UI,
the pervasive layer and the RuG ViSi Tool visualization platform.

A 3D visualization platform based on Google SketchUp [16] is integrated in the framework,
as a middleware client of the pervasive controller shown in Figure 2, to simulate as closely
as possible the layout and behavior of a real home. It is upgraded by adding support for
eventing. The visual model of the house is updated in a event driven manner using the
Ruby.

Appliances, sensors and actuators that we wish to simulate are coupled with simulated
UPnP devices. These devices, thus, live outside the RuG ViSi tool and interact with it as
if they were actual physical devices. Figure 10 illustrates the virtual house and a number
of UPnP devices: a door controller, a light, a window controllers, and a television set. On
the bottom, there is also a UPnP module (Actor), which represent the position of a user in
the house. This can be coupled with a location detector of the house that gives to the home
constantly information over the position of the user. In our simulation, we use the module
to virtually move people inside the home.

The RuG ViSi tool can, naturally, be also coupled with real physical hardware devices.
For instance, we have coupled a door service with a sentilla mote equipped with an ac-

8http://www.ruby-lang.org

26

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

140

RonCay
Rectangle

Figure 10: General Architecture of the RuG ViSi tool

celerometer and a radio connection. The hardware is plugged in the OSGi layer and, when
shaken, triggers a state change. In other words, it opens and closes a specific door in the
virtual home. We have also coupled a light service with a Bluetooth enabled mobile. The
hardware is plugged in the OSGi layer and change the state of the light by sending ON
and OFF commands. In other words, it turns ON and OFF a specific light in the virtual
home. The architecture of the RuG ViSi tool is an instance of the general one proposed
in Section 3: it mainly covers the pervasive layer, allowing for dynamic join/leave of UPnP
compliant and UPnP proxies devices. It provides translation from the low-level invocation
into high-level web service invocations and call-backs which can then be orchestrated and
visualized in a 3D rendering environment as shown in Figure 10.

27

International Journal of Smart Home
 Vol. 7, No. 1, January, 2013

141

RonCay
Rectangle

RonCay
Rectangle

International Journal of Smart Home
Vol. 7, No. 1, January, 2013

142

