
International Journal of Smart Home

Vol. 6, No. 4, October, 2012

93

A Study on the Smart Virtual Machine for Executing Virtual

Machine Codes on Smart Platforms

YangSun Lee
1
 and YunSik Son

2*

1
Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Korea

2
Dept. of Computer Engineering, Dongguk University

26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Korea

yslee@skuniv.ac.kr, sonbug@dongguk.edu

*Corresponding Author: sonbug@dongguk.edu

Abstract

In the existing smart devices, the contents for each platform there are a unique

development environment, and thus are developed in a suitable method and the development

of language is also different. These issues cause additional costs when developing the

contents on various target platforms it is impossible to make the contents compatible on the

various devices or platforms.

Proposed The Smart Virtual Machine (SVM) based on the language independent

intermediate language is a newly developed virtual machine solution which is aimed towards

solving these problems. It uses an intermediate language, the Smart Intermediate Language

(SIL), which can cover the object oriented languages such as C++, Java, Objective C and

more.

In this paper, we deal with a virtual machine, SVM, based on stack and capable of being

run on various smart devices. SVM receives a SIL code which is semantically equivalent to a

program created with different languages and interprets it based on stack on a software level.

Then it runs the programs so that specific smart device operation systems and devices can

load them and therefore have the advantage of being platform independent.

Keywords: Smart Virtual Machine (SVM), Smart Intermediate Language (SIL), Smart

Platform, Virtual Machine, Stack Interpretation, Runtime Model

1. Introduction

Existing smart phone contents developing environments requires target codes to be made

depending on the target device or platform. Each platform also has different development

languages [1, 2]. Therefore even if the contents are identical, according to the target device,

they are required to be redeveloped and require different compilers for different target devices.

This leads to inefficient contents development. The SVM(Smart Virtual Machine) is a

solution invented to solve this drawback. It is a stack based virtual machine which allows

application programs to be downloaded and run platform independently once loaded on smart

devices. It is run by inserting the SIL(Smart Intermediate Language) designed by our research

team.

The SVM solution largely consists of three parts; a compiler, assembler and virtual

machine. It is designed in a hierarchical way which minimizes the burden of the retargeting

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

94

process. In this research, a virtual machine, SVM, has been specifically de-signed and created

to be run on various smart devices after receiving a SIL code input [3-7].

2. Related Studies

2.1. Smart Intermediate Language (SIL)

SVM’s virtual machine code, SIL [3-7], has been designed as a standard model of virtual

machine codes for ordinary smart phones and embedded systems. SIL is a set of stack based

commands which has the characteristics of language independence, hardware independence

and platform independence. In order to accommodate various programming languages, SIL

has been defined based on the analysis of existing virtual codes such as .NET IL [8, 9],

bytecode [10-11] and etc. It possesses an operation code set which can accommodate both

object-oriented language and procedural language. SIL is composed of a Meta code which

carries out particular jobs such as class creation and an operation code with responds to actual

commands. An operation code has an abstract form which is not subordinated to specific

hardware or source languages. It is defined in mnemonic to heighten readability and applies a

consistent name rule to make debugging in assembly language levels easier. In addition, it has

a short form operation code for optimization. SIL has 6 groups of operation codes and Figure

1 shows the category of SIL operation codes.

Figure 1. Category of SIL Operation Codes

2.2. Smart Assembly Format (SAF)

The code created using high level programming language is converted into SVM’s

assembly format, through the code converter. The SAF format consists of pseudo code and

operation code. This is then converted into a Smart Executable Format (SEF) through the

assembler and is run using the SVM regardless of the system’s operating system or structure.

Table 1 shows the descriptions of SAF’s major mnemonics.

SAF includes a pseudo code which carries out class creation and other specific jobs and an

operation code which responds to the actual commands run in the virtual machine. The

operation code is a set of stack based commands which is not subordinate to specific

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

95

programming languages, therefore possessing language independence, hardware

independence and platform independence. As a result, an operation code’s mnemonic has an

abstract form as it is not subordinate to any specific hardware or source languages [4-7, 12].

Table 1. Selected Major Mnemonics for SAF

Mnemonic Description

%HeaderSection[Start/End] Define the range of the header section.

%CodeSection[Start/End] Define the range of the code section.

%DataSection[Start/End] Define the range of the data section.

%DebugSection[Start/End] Define the range of the debug section.

%DefinedLiteralCount Number of literals.

%IntializedVariableCount Number of initialized global variables.

%UninitializedVariableCount Number of uninitialized global variables.

%ExternalVariableCount Number of external variables.

%ExternalFunctionCount Number of external functions.

%InitFunctionName Name of the initialize function for object.

%EntryFunctionName
Name of the entry point function for program

execution.

%SourceFileName Describe the program source file name.

%Function[Start/End] Define the range of the function.

%Label Describe the program source file name.

%Line Describe the program source file name.

%LiteralTable[Start/End] Define the range of the literal table section.

%InternalSymbolTable[Start/End]
Define the range of the internal symbol table

section.

.func_name Describe the function name.

.func_type Describe the function types.

.param_count
Describe the number of parameters for the

function.

.opcode_[start/end]
Define the range of the operation code section

for the function.

2.3. Smart Executable Format (SEF)

SEF’s structure largely consists of a header section which is in charge of expressing SEF

files’ composition, a program segment section and a debug section expresses debugging

related information. The program segment section can be divided again into three sections

which express codes and data [4-7, 12]. The following Figure 2 is a simple diagrammed form

of the SEF structure.

In the header section, the detailed composition of program segments is expressed

while information on programs’ entry points is recorded. In addition, information

related to the SEF file’s header section is exclusively read to predict the entire memory

expected to be used, and it is composed so that easy approaches can be made using

detail sections as entry points.

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

96

Program segments are a form which is loaded and run in the SVM’s memory and

consists of pure codes and data. It separates data such as symbol tables and debugging

information which are unimportant when running a SEF’s program segment. This

specific design is aimed towards minimizing the loading speed and memory space

required by the SVM memory.

Figure 2. Structure of SEF

Program segments can be classified into the RO section, the RW section or the ZI

according to the characteristics of the program components. Each of these areas has the

following definition. First, the RO section stores codes and literal data which have read -

only approach characteristics. Next, the RW section stores all global variable data

which have initialization values on the source codes which have read-write approach

characteristics. Finally, the ZI section refers to the section of global variables which do

not have initialization values on the source codes.

The debug section is space for expressing the debugging information of application

programs stored in SEF. It is not loaded on the SVM’s running memory and is used

through IDE (Integrated Development Environment) or the debugger tool. According to

the SVM compiling options, the debug section on SEF exists selectively and does not

influence the running of the program.

3. The Smart Virtual Machine for Smart Platforms

SVM is a stack based virtual machine solution, loaded on smart devices, which al-lows

dynamic application programs to be downloaded and run platform independently. SVM is

designed to use an intermediary language, SIL, which is capable of accommodating both

procedural and object-oriented languages. It has the advantage of accommodating languages

such as C/C++, Java, and Objective-C used in the iOS, which are currently used by a majority

of developers. Figure 3 is a diagram of SVM system.

The SVM system consists of three parts; a compiler which compiles application programs

to create a SAF form file made from SIL code, an assembler which converts the SAF file into

the execution formation SEF, and a virtual machine which receives the SEF form file and

runs the program. SVM’s system is designed in a hierarchical manner to minimize the burden

of retargeting processes caused by different devices and execution environments. SIL which

is generated during the compile/translate process is converted into SEF through the assembler

and SVM receives SEF input to run a program [4-7, 12].

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

97

Figure 3. System Configuration of SVM

3.1. Composition of the Smart Virtual Machine

The composition of SVM detailed modules is as Figure 4. It is composed of four factors; a

SEF loader which loads inserted files on to the memory, an interpreter which calculates

commands to stack bases, a module for managing the execution environment and a library. In

addition, it has a native interface in order to use the native platform’s function, an interface

for debugging and profiling and additional components.

Figure 4. System Configuration of the Smart Virtual Machine

The core model of SVM is the interpreter which is the actual routine which runs the SIL

codes of SEF files. Actual processing actions for each SIL codes has been written and

formulated. It refers to the Meta information stored through the loader and carries out

commands. The data that occurs during program execution are stored and controlled in the

stack and hip.

While running a program, if an error occurs, an exception occurs. This exception put out as

a message and will be shut down through the exception processor.

3.2. Interpreter Runtime Workspace

Being a virtual machine, SVM claims to develop and run contents that can be inter-

converted regardless of what device is being used. In order to provide such flexible portability,

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

98

SVM must be transferred to various devices and have a runtime workspace structure which is

not subordinate to any hardware or platforms.

Due to the characteristics of a virtual machine, SVM uses a certain section’s memory that

it is delegated from hardware or platform. Of this memory, the memory space required for the

SIL interpreter to carry out calculations is called Runtime Workspace. Runtime workspace

consists of three elements; runtime stack, activation record and display vector. The diagram

of the system composition and the relationship between each element is as can be seen in

Figure 5.

Figure 5. Configuration of Runtime Workspace

Runtime stack is the storage space for the operand used by the SIL interpreter during

calculations and includes call information related to function calls. The local variable storage

space, Activation Record, is being referred to through the Call Information’s arPointer

category. Also, in order to refer to the higher blocks (which involve one’s function) within a

function or all sections’ variables, the Display Vector information must be maintained.

Firstly, runtime stack is a 4 byte signed integer type sequence. The size of runtime stack is

set to be static and the runtime space used for each function call is set as stack frame. Thus,

runtime stack is a linear stack structure made up of more than one stack frame. The size of

runtime stack is set by the interpreter depending on the size of the operation stack used by an

average function and the acceptable call depth. Figure 6 is a diagram of runtime stack.

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

99

Figure 6. Configuration of Runtime Stack

Next, activation record is space for storing local variables. Thus, for one stack frame, one

activation record can be delegated. When the function is terminated and the stack frame is

collected, the activation record too is cleared. Figure 7 is a diagram of an Activation Record.

Figure 7. Diagram of Activation Record

Activation records are created in separate space from runtime stack and have pointers for

Activation Records in Stack Frame’s Call Information. This value is set in the display vector

when activating stack frame and carries out simple local variable reference. The size of

activation records is the sum of the size of the function’s factor and the local variable. The

size is received from the proc operation codes’ instruction parameter after which memory is

delegated. In the case of variable factor functions, the size of the factor can be known at the

function call point. As a result, in the compiler, before the variable factor function call, the

code for loading the factor’s size on the stack is created and the local variable’s size is created

as the first factor of the procva operation code. The data within activation records can be

approached in a byte unit offset and this value is generated in the compiler.

Finally, the display vector is a Byte* type sequence which holds purpose in maintaining

the Static Chain between the data sections for each stack frame. Figure 8 shows the diagram

of the Display Vector.

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

100

Figure 8. Diagram of Display Vector

The first index of the Display Vector sets a pointer for the global data section and when all

sections’ variables of the program are referred to, this value is used as the base to take the

offset calculation approach. The value of the first index is set at the point of contents loading

and does not change even when exiting the program. From the second index, when calling

functions an Activation Record pointer is set on the function’s the index for the relevant block

No. Block No. is called up from the second instruction parameter of the proc operation code

and shows the functions comprehension depth. Thus, for a function with the block No. 2

which refers to the local variable that comprehends itself, the display vector’s index value can

be used as a base for approach. The values of the display vector, excluding the first index,

change every time a stack frame is delegated/collected. The size of the display vector is

defined by the Workspace Manager after consideration of the acceptable functions’

comprehensive depth.

Next, in case of function call, the runtime workspace changes explain. Figure 9 shows a

function call example code for runtime workspace.

Figure 9. Example Code

Firstly, at the time of the main function execution, the activation record and the stack

frame for main function have been assigned in the runtime workspace. And the pointer for the

activation record is stored in arPointer of the call information. A pointer value for the global

data section is stored in the display vector's [0] index when loading the program, and

arPointer of the main function is assigned to [1] index of the display vector at the start of the

main function.

Next, the function f is called in the main function, the stack frame and the activation

record for the f are newly allocated in the runtime workspace, and the sfBase and the stack

top pointer are adjusted for the new execution conditions. The arPointer is set up to the call

information of f, and the sfBase value of the caller (main) function is stored for use as

dynamic chain. In the activation record of the function f, storage for the function arguments (a,

b) and the local variables (c, i) is allocated, and the arPointer value of the f is stored in the

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

101

display vector's [1] index. Preparing to run the function f is a completed process. Figure 10

shows the configuration of the runtime workspace for the example code in Figure 9.

Figure 10. Runtime Workspace for the Example Code

After finish of the function f's execution, completion of the return function f, the activation

record for the function f is released and the stack frame of f is collected. The stack top pointer

is adjusted by the value of the f’s sfBase and the sfBase value is reset by the dynamic chain

information. The value of the display vector's [1] index is set to arPointer of the main function,

and the return value of f stored in a temporary location is pushed on the stack. The code of the

main function is ready to continue.

4. Experimental Results and Analysis

In this research, the virtual machine for smart devices was largely composed of four

modules and this virtual machine was designed and formulated. In order to test the formulated

SVM, the Objective-C compiler of the SVM system was used to compile a source program

for calculating factorials and the SAF files created were the subject of experimentation. The

contents of the SAF files created can be seen in Figure 11.

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

102

Figure 11. SAF Example for Calculating Factorial

To run the created SAF files on the SVM, they must be converted into SEF files through

the assembler. Figure 12 shows the conversion results of converting the SAF files from

Figure 11 into an executable format through the assembler.

Figure 12. SEF Example for Figure 11

The results of running the SEF file is as can be seen in Figure 13.

>svm factorial.sef
>input: 10
>result: 3628800
>svm factorial.sef
>input: 5
>result: 120

Figure 13. Execution Result of Factorial Example

Next, the results of using the same method for the games Elemental Force and Aiolos on

SVM can be seen. The contents of Elemental Force and Aiolos were in GNEX/WIPI contents

form and were converted using the GNEX/WIPI-Objective C contents converter [13-19]. The

converted contents were made to be executable on SVM using the Objective C-SIL compiler.

Figure 14 shows the execution result of compiled contents.

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

103

Figure 14. Execution Result of Elemental Force and Aiolos in SVM

Next, the compiler shown in Figure 15 was used to compile the game contents written in

Objective C. Figure 15(a) is a screenshot from an iOS simulator during the execution of

original game content written in Objective C; Figure 15(b) shows the execution of compiled

code using the proposed compiler for the SVM on the android platform. The implemented

compiler correctly generates SVM codes from the source contents for iOS.

a) Experimental Content

in iOS

b) Compiled Code for

Experimental Content in

SVM-Android

Figure 15. Execution Screenshots

5. Conclusions

A virtual machine has the characteristic of enabling application programs to be used

without alteration even if processors or operating systems are changed. It is a co re

technology for executing a variety of contents in the recent mobile, embedded and

smart systems.

In this study, a virtual machine which allows great numbers of applications to be

downloaded and run on smart devices has been designed and formulated. The virtual

machine formulated in this study enables contents to be run without alterations even if

there is a change in platforms. It is also a software technology which can accommodate

any development language such as C/C++, Objective-C and Java. Therefore

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

104

programmers need not be restricted by languages when developing application pro -

grams.

In the future, more research will be carried out to enhance the virtual machine’s

running speed, optimize executable codes and to actively analyze executable codes by

researching the modules such as the debugging module within the virtual machine.

Acknowledgements

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and

Technology(No. 20110006884).

This paper was extended from the previous research paper “A Study on the Virtual

Machine for Smart Device” in AITS-MSA 2012.

References

[1] Apple, iOS Reference Library, “iOS Technology Overview”, http://developer.apple.com/devcenter/ ios.

[2] Goole, “Android-An Open Handset Alliance Project”, http://code.google.com/intl/ko/android/.

[3] S. M. Oh, Y. S. Lee and K. M. Ko, "Design and Implementation of the Virtual Machine for Embedded

Systems", Journal of Korea Multimedia Society, vol. 8, no. 9, (2005), pp. 1282-1291.

[4] Y. S. Lee, "The Virtual Machine Technology for Embedded Systems", Korea Multimedia Society, vol. 6, no.

2, (2002), pp. 36-44.

[5] Y. S. Son and Y. S. Lee, "Design and Implementation of the Virtual Machine for Smart Devices", Proc. of the

2011 Fall Conference, Korea Multimedia Society, vol. 14, no. 2, (2011), pp. 93-96.

[6] H. S. Choi and Y. S. Lee, "Development of an Assembler for Generating the Executable File of the

Ubiquitous Virtual Machine", Proc. of the 2007 Spring Conference, Korea Multimedia Society, vol. 10, no. 1,

(2007), pp. 73-76.

[7] Y. S. Son and Y. S. Lee, "An Objective-C Compiler to Generate Platform-Independent Codes in Smart

Device Environments", Information: An International Interdisciplinary Journal, to be published, International

Information Institute, (2013).

[8] A. Troelsen, “C# and the .NET Platform”, APRESS, (2001).

[9] Microsoft, “MSIL Instruction Set Specification”, Microsoft Corporation, (2000).

[10] J. Engel, “Programming for the Java Virtual Machine”, Addison-Wesley, (1999).

[11] J. Meyer and T. Downing, “JAVA Virtual Machine”, O'REYLLY, (1997).

[12] Y. S. Son and Y. S. Lee, "Design and Implementation of an Objective-C Compiler for the Virtual Machine on

Smart Phone", Multimedia, Computer Graphics and Broadcasting, CCIS, vol. 262, (2011), pp. 52-59.

[13] Y. S. Lee, H. J. Choi and J. S. Kim, "Design and Implementation of the GNEX-to-iPhone Converter for

Smart Phone Game Contents", Journal of Korea Multimedia Society, vol. 14, no. 4, (2011), pp. 577-584.

[14] Y. S. Son, S. M. Oh and Y. S. Lee, "Design and Implementation of the GNEX C-to-Android Java Converter

using a Source-Level Contents Translator", Journal of Korea Multimedia Society, vol. 13, no. 7, (2010), pp.

1051-1061.

[15] Y. S. Lee and Y. S. Son, "A Study on the WIPI-to-Windows Mobile Game Contents Converter using a

Resource Converter and a Platform Mapping Engine", Information: An International Interdisciplinary Journal,

to be published, International Information Institute, (2013).

[16] WIPI (Wireless Internet Platform for Interoperability), KWISF (Korea Wireless Internet Standardization

Forum), (2004).

[17] Y. S. Lee and Y. S. Son, "A Platform Mapping Engine for the WIPI-to-Windows Mobile Contents Converter",

Multimedia, Computer Graphics and Broadcasting, Springer, CCIS, vol. 262, (2011), pp. 69-78.

[18] Y. S. Lee, "Design and Implementation of the GNEX C-to-WIPI Java Converter for Automatic Mobile

Contents Translation", Journal of Korea Multimedia Society, vol. 13, no. 4, (2010), pp. 609-617.

[19] Y. S. Lee, "Automatic Mobile Contents Converter for Smart Phone Platforms", Korea Multimedia Society,

vol. 15, no. 1, (2011), pp. 54-73.

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

105

Authors

YangSun Lee

He received the B.S. degree from the Dept. of Computer Science, Dongguk University,

Seoul, Korea, in 1985, and M.S. and Ph.D. degrees from Dept. of Computer Engineering,

Dongguk University, Seoul, Korea in 1987 and 2003, respectively. He was a Manager of the

Computer Center, Seokyeong University from 1996-2000, a Director of Korea Multimedia

Society from 2004, a General Director of Korea Multimedia Society from 2005-2006 and a

Vice President of Korea Multimedia Society in 2009. Also, he was a Director of Korea

Information Processing Society from 2006, and a President of a Society for the Study of

Game at Korea Information Processing Society from 2006. And, he was a Director of Smart

Developer Association from 2011-2012. Currently, he is a Professor of Dept. of Computer

Engineering, Seokyeong University, Seoul, Korea. His research areas include smart system

solutions, programming languages, and mobile/embedded systems.

Yunsik Son

He received the B.S. degree from the Dept. of Computer Science, Dongguk

University, Seoul, Korea, in 2004, and M.S. and Ph.D. degrees from the Dept. of

Computer Engineering, Dongguk University, Seoul, Korea in 2006 and 2009,

respectively. Currently, he is a Researcher of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas include smart

system solutions, secure software, programming languages, compiler construction, and

mobile/embedded systems.

International Journal of Smart Home

Vol. 6, No. 4, October, 2012

106

