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Abstract

Wireless Network Systems are usually deployed in hostile environments where they en-
countered a wide variety of malicious attacks. A wireless sensor network (WSN) is a wire-
less network composed of a large number of sensor nodes. In WSNs the scarcest resource
is energy which includes low power, less storage space, low computation ability and short
communication range. For this reason, algorithmic research in WSN mostly focuses on the
study and design of energy aware algorithms for data computation. This problem becomes
harder in the case of security, as most of the security algorithms are quite heavy. Although
symmetric cryptography may be one of the approaches to solve the problem due to their
small computation requirement. In order to further reduce the computational cost of any
protocol for WSN, Elliptic curve cryptography (ECC) has been attractive to the researcher
due to its smaller key size and its high strength of security. Scalar multiplication is most
important cryptographic operation in elliptical curve cryptography. This paper proposes the
efficient scalar multiplication algorithms for WSNs which are resistant of side channel at-
tack.

Keywords: Scalar multiplication, side channel attack, ECDLP.

1 Introduction

Sensor network devices are extremely limited resources in terms of computing, commu-
nication, memory, and battery and all the Elliptic Curve Cryptography implementation
choices must be made with this aspect in mind. Certainly, the optimal choices for sensor
network implementation will be quite different than for a workstation application. In many
cases, a single best set of choices is almost impossible to decide on. A more realistic scenario
would assume different Elliptic Curve Cryptography parameters for various classes of WSN
applications [3].

Elliptic curve cryptography (ECC) was first proposed by Miller and Koblitz in 1985.
In virtue of no sub-exponential algorithms known for the elliptic-curve discrete logarithm
problem (ECDLP), ECC provides equivalent security strengths with shorter keys compared
to other public-key cryptosystems. Due to this advantage, ECC has acquired wide attention
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in research community as well as industry. However ECC is found to be vulnerable to simple
power analysis (SPA) attacks on wireless sensor nodes as other public-key cryptosystems.
SPA attackers examine the power traces of cryptographic computations and distinguish the
power consumption caused by the secret key. The core operation of ECC is binary scalar
multiplication, which consists of a point doubling operation if the key bit is ’0’, or of a point
doubling followed by point addition operation if the key bit is ’1’. This is a serious threat
for WSNs [3]. Thus, implementers need algorithms that are not only efficient, but also
side channel attacks(SCA)-resistant for WSNs. The main target for side channel attacks
against ECC implementation on WSNs is the algorithm used for scalar multiplication on
the elliptic curve [12] [6]. We can improve several elliptic curve multiplication algorithms
secure against side channel attacks (SCA). While some efficient SCA resistant algorithms
were developed that apply only to special classes of curves, we are interested in algorithms
that are suitable for general elliptic curves and can be applied to the recommended curves
found in various standards [8] [5] [9].

1.1 Resources Constraints in WSNs

A wireless sensor network has many resource constraints. The MICA2 mote consists
of an 8 bit ATMega 128L macro-controller working on 7.3 MHz. As a result nodes of
WSN have limited computational power. Normally, radio transceiver of MICA motes can
achieve maximum data rate of 250 Kbits/sec which puts a limitation on the communication
resources [3]. The flash memory which is available on the MICA mote is only 512 Kbyte.
Apart from these the battery which is available on the board is of 3.3.V with 2A-Hr capacity.
Due to the above boundaries the current state of art protocols and algorithms are expensive
for sensor networks due to their high communication overheads.

2 Background

This section describes about Elliptic Curve Arithmetics, elementary concepts of Elliptic
Curves and Elliptic Curve Discrete Logarithm Problem.

2.1 Elementary concepts of Elliptic Curve

An elliptic curve E over a field K is defined by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0
∆ is called discriminant of E and is defined as follows

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4
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If L is any extension field of K , then the set of L rational points on E is

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6} ∪ {O}

where O is a special point, called the point at infinity . The equation is called Weierstrass
equation [4]. If characteristics of K 6= 2 or 3 then the admissible change of variables

(x, y) → (
x− 3a2

1 − 12a2

36
,
y − 3a1x

216
− a3

1 + 4a1a2 − 12a3

24
)

transform E to the curve y2 = x3 + ax + b where a, b ∈ K and ∆ = −16(4a3 + 27b2)
We will consider the elliptic curve E of the above simplified equation and have no multiple
roots i,e 4a3 + 27b2 6= 0

2.2 Group Law

Let E be an elliptic curve defined over the field K. There is a chord and tangent rule
for adding two point in E(K) ,if P1, P2 ∈ E(K) then P1 + P2 ∈ E(K) denoted as a third
point R which is the reflection of the point of intersection of the chord P1P2 to the curve
for P1 6= P2. If P1 = P2 then the tangent of E(K) at P1 gives rise to the point P1 + P2.
The double R of P is defined as follows [7]
First draw a tangent line intersect the elliptic curve at a second point.Then R is the reflec-
tion of this point about X-axis. E(K) form an Abelian group with addition operation for
E/K : y2 = x3 + ax + b

1. Identity : P +O = O + P = P, for all P ∈ E(K)
2. Negative : if P (x, y) ∈ E(K) then (x, y) + (x,−y) = O, The point (x,−y) is dented

as -P called negative of P.
3. Point addition: Let P ((x1, y1), Q(x2, y2) ∈ E(K),then P + Q = R ∈ E(K) and

coordinate (x3, y3)of R is given by x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1 where
λ = y2−y1

x2−x1

4. Point doubling : Let P (x1, y1) ∈ E(K) where P 6= −P then 2P = (x3, y3) where
x3 = (3x2

1+a
2y1

)2 − 2x1 and y3 = (3x2
1+a

2y1
)(x1 − x3)- y1

Definition 1 Group Order Let E be the elliptic curve defined over the field Fq. The no.
of points in E(Fq) denoted as #E(Fq) is called the order of E over Fq.

Theorem 1 Hasse’s Theorem It states that number of points #E(Fq) = q + 1− t,where
t ≤ 2

√
q or we can write (q + 1 − 2

√
q) ≤ t ≤ (q + 1 + 2

√
q),[q + 1 − 2

√
q, q + 1 + 2

√
q] is

called Hasse interval.

Definition 2 Group Structure Ler E be the elliptic curve defined over Fq, then Eq is
isomorphic to Zn1 ⊕ Zn2. Where n1 and n2 are uniquely determined positive integer such
that n2/n1 and n2/q − 1.
#E(Fq) = n1n2, If n2 = 1 then E(Fq) is a cyclic group. If n2 > 1 then E(Fq) is said to
have rank 2.
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Table 1. Cost of Group Operations in ECC for Various Point Representations for
Characteristic > 3

Coordinates Cost(Addition) Coordinates Cost(Doubling)
A+A → A 1[i] + 2[m] + 1[s] 2A → A 1[i] + 2[m] + 2[s]
P + P → P 12[m] + 2[s] 2P → P 7[m] + 3[s]
J + J → J 12[m] + 4[s] 2J → J 6[m] + 4[s]
C + C → C 11[m] + 3[s] 2C → C 5[m] + 4[s]

3 Point Representation and Cost of Group Operations

Point addition and point doubling are two important operations in (H)ECC. Inversion
in a finite field is an expensive operation. To avoid these inversions, several point represen-
tations have been proposed in literature. The cost of point addition and doubling varies
depending upon the representation of the group elements. This section briefs with some
point representations commonly used. Let [i], [m], [s], [a] stand for cost of a field element
inversion, a multiplication, a squaring and an addition respectively. Field element addition
is considered to be a very cheap operation. In binary fields, squaring is also quite cheaper
than a multiplication. If the underlying field is represented in normal basis then squaring
is almost for free. Inversion is considered to be 8 to 10 times costlier than a multiplication
in binary fields. In prime field the I/M ratio is even more.

3.1 Elliptic Curves

Point representation in ECC is a well studied area. In the following two sections we
describe some of the point representation popularly used in implementations.

3.1.1 Fields of Characteristic > 3

Elliptic curves over fields of characteristic > 3 have equations of the form y2 = x3+ax+b.
For such curves the following point representation methods are mostly used [10].

1. In Standard Projective Coordinates the curve has equation of the form Y 2Z = X3 +
aXZ2 +bZ3. The point (X : Y : Z), with Z 6= 0 in projective coordinates is the point
(X/Z, Y/Z) in affine coordinates. The point at infinity is represented by the point
(0 : 1 : 0) and the inverse of (X : Y : Z) is the point (X : −Y : Z).

2. In Jacobian Projective Coordinates the curve has equation of the form Y 2Z = X3 +
aXZ4 + bZ6. The point (X : Y : Z), Z 6= 0 in Jacobian coordinates correspond to the
affine point (X/Z2, Y/Z3). The point at infinity is represented by the point (1 : 1 : 0)
and the inverse of (X : Y : Z) is the point (X : −Y : Z). Point doubling becomes
cheaper in Jacobian coordinates if the curve parameter a = −3.

3. In Chudonovski Jacobian Coordinates, the Jacobian point (X : Y : Z) is represented
as (X : Y : Z : Z2 : Z3). Cost of point addition in Chudonovski Jacobian coordinates
is the minimum among all representations.

In Table 1, we present the cost of addition and doubling in the coordinate systems
described above. In the table we use A, P, J , C for affine, projective, Jacobian and
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Table 2. Cost of Group Operations in ECC for Various Point Representations in Even
Characteristics

Coordinates Cost(Addition) Coordinates Cost(Doubling)
A+A → A 1[i] + 2[m] 2A → A 1[i] + 2[m]
P + P → P 13[m] 2P → P 7[m] + 3[s]
J + J → J 14[m] 2J → J 5[m]
L+ L → L 14[m] 2L → L 4[m]

Chudnovski Jacobian respectively. By 2A → A we mean the doubling formula in which the
input is in affine and so is the output. Similarly for addition and other coordinate systems.

3.1.2 Fields of Characteristic 2

We will consider only non-super singular curves. Elliptic curves (non-super singular)
over binary fields have equations of the form y2 + xy = x3 + ax2 + b. For such curves the
following point representation methods are mostly used.

1. In Standard Projective Coordinates the curve has equation of the form Y 2Z +XY Z =
X3 + aX2Z + bZ3. The point (X : Y : Z), with Z 6= 0 in projective coordinates is
the point (X/Z, Y/Z) in affine coordinates. The point at infinity is represented by
the point (0 : 1 : 0) and the inverse of (X : Y : Z) is the point (X : X + Y : Z).

2. In Jacobian Projective Coordinates the curve has equation of the form Y 2 + XY Z =
X3 + aX2Z2 + bZ6. The point (X : Y : Z), with Z 6= 0 in Jacobian coordinates
correspond to the affine point (X/Z2, Y/Z3). The point at infinity is represented by
the point (1 : 1 : 0) and the inverse of (X : Y : Z) is the point (X : X + Y : Z).

3. In Lopez-Dahab Coordinates, the point (X : Y : Z), with Z 6= 0 represents the
affine point (X/Z, Y/Z2). The equation of the elliptic curve in this representation is
Y 2 + XY Z = X3Z + aX2Z2 + bZ4. The point at infinity is represented by the point
(1 : 0 : 0) and the inverse of (X : Y : Z) is the point (X : X + Y : Z).

In Table 2 we present the cost of addition and doubling in the coordinate systems over
binary fields. In the table we use A, P, J , L for affine, projective, Jacobian and Lopez-
Dahab respectively. The table follows the same notational convention as in last subsection.
we have neglected squaring also. That is because in binary fields squaring is a much cheaper
operation than multiplication. It has been reported that [14] if one point is in affine and
the other is in projective or some other weighted co-ordinate, then point addition becomes
relatively cheaper. This operation is called addition in mixed coordinates or mixed addition.
In (H)ECC, the base point is generally stored in affine coordinates to take advantage of
mixed additions.

4 Scalar Multiplication Algorithms for WSNs

In ECC and HECC, computationally the most expensive operation is scalar multiplica-
tion. It is also very important from security point of view. The implementation attacks
generally target the computation of this operation to break the cryptosystem on WSNs.
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Table 3. Left-to-right and Right-to-left Binary Algorithm
Algorithm DBL-AND-ADD Algorithm DBL-AND-ADD
(Left-to-right binary method) (Right-to-left binary method)
Input : X, m (mk−1, · · ·m1,m0) Input : X,m (mk−1, · · ·m1,m0)
Output : mX. Output : mX.
1. E = mk−1X 1. E0 = X, E1 = 0
2. for i = k − 2 down to 0 2. for i = 0 to k − 1
3. E = DBL(E) 3. if mi = 1
4. if mi = 1 4. E1 = ADD(E0, E1)
5. E = ADD(E,X) 5. E0 = DBL(E0)
6. return E 6. return(E1)

Given a point X and an positive integer m, computation of m×X = X+· · · (m times) · · ·+X
is called the operation of scalar multiplication. The basic algorithms to compute the scalar
multiplication are the age old binary algorithms. They are believed to have been known to
the Egyptians two thousand years ago. The two versions of DBL-AND-ADD algorithm are
defined above. These algorithms invoke two functions ADD and DBL. ADD takes as input
two points X1 and X2 and returns their sum X1 + X2. DBL takes as input one point X
and computes its double 2X.

Both the algorithms first convert the scalar multiplier m into binary. Suppose m has
a n-bit representation with hamming weight h. Then, mX can be computed by n − 1
invocations of DBL and h−1 invocations of ADD. Hence cost of the scalar multiplication is
(n−1)× cost(DBL)+h× cost(ADD). As the average value of h is n/2, on the average these
algorithms require (n−1) doubling and n/2 additions. As doubling are required more often
than additions, attempts are made to reduce complexity of the doubling operation. The
scalar multiplication is the dominant operation in (H)ECC. Extensive research has been
carried out to compute it efficiently and a lot of results have been reported in literature. To
compute the scalar multiplication efficiently there are three main approaches. As is seen in
the basic binary algorithms the efficiency is intimately connected to the efficiency of ADD
and DBL algorithms. So the first approach is to compute group operations efficiently.
The second approach is to use a representation of the scalar such that the number of
invocation of group operation is reduced. The third approach is to use more hardware
support (like memory for pre-computation) to compute it efficiently. In some proposals
these have approaches have been successfully combined to yield very efficient algorithms.
The cost of ADD and DBL depend to a large extent on the choice of underlying field and
the point representation. Hence the cost of scalar multiplication also depend upon these
choices. Based on the underlying field more efficient operations have been proposed. Over
binary fields for ECC, using a point halving algorithm instead of DBL has been proved
to be very efficient. Over fields of characteristic 3, point tripling has been more efficient.
There are proposals for using more fancier algorithms like the ones efficiently computing
2P + Q, 3P + Q etc. instead of ADD and DBL.

The second approach has also been extensively studied and techniques based on this idea
have been successfully employed. We will discuss three techniques of this approach, namely
NAF, w-NAF and base-φ expansion of the scalar, where φ is the Frobenius map.

The third approach is to use more hardware resources to compute the scalar multipli-
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(Algorithm: Computation of NAF)
Input: An integer m.
Output: NAF representation Σdi2i of m.
1. i ← 0
2. while m ≥ 1 do
3. if m is odd di ← 2− (m mod 4)
4. else di = 0
5. m ← m/2, i ← i + 1
6. return (d0, d1, · · · , di−1)

cation efficiently. This includes methods using pre-computations, parallel methods and
pipelining. Many algorithms use a pre-computed table of values to compute the scalar mul-
tiplication. These algorithms use more memory for efficiency and are ideal when the base
point is fixed. Many parallel algorithms for (H)ECC have been proposed. Recently pipelin-
ing techniques have been proposed. All these methods require more hardware support than
the basic binary algorithms.

4.1 NAF and w-NAF

The efficiency of computation of scalar multiplication depends upon the hamming weight
of the scalar multiplier. The lesser the hamming weight the more efficient is the method.
Also, for curves over prime fields, the computation of negation of a point is virtually for free.
Hence point addition and point subtraction have almost the same cost. Therefore there
are proposals for representing the multiplier in signed binary representation with lesser
hamming weight. One such representation is Non Adjacent Form (NAF). We formally
define it below.

Definition 3 A representation of m as Σimi2i is in Non Adjacent Form if and only if
mimi+1 = 0 for all i.

The following theorem ensures that every integer has a unique NAF representation.

Theorem 2 Every integer has a unique NAF representation. This representation has the
lowest weight among the signed digit representations and its length is at most one bit longer
than the binary representation. The average density of NAF is one third [8] [5].

The following algorithm computes the NAF of a given integer.
Average hamming weight of an integer of n bits in NAF is n/3. Hence, the computation

of scalar multiplication requires n doubling and n/3 additions on the average. The scalar
multiplication algorithm using NAF is similar to the left-to-right and right-to-left algorithm
described above, except that the addition step now becomes:

if di = ±1, then Q = Q± P .
The concept of NAF has been generalized to reduce the complexity of the scalar mul-

tiplication algorithm further. The general concept is that of w-NAF. It can be defined as
follows:

Definition 4 Let w be a positive integer. The width w NAF (or briefly w-NAF) represen-
tation of a positive integer m is an expression Σl−1

i=0di2i, where di are odd integers in the
range [−2w−1, 2w−1 − 1], dj 6= 0 and at most one of any w consecutive integers is nonzero.
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(Computation of w-NAF)
Input: An integer m.
Output: w-NAF representation Σdi2i of m.
1. i ← 0
2. while m ≥ 1 do
3. if m is odd di ← 2w−1 − (m mod 2w)
4. else di = 0
5. m ← m/2, i ← i + 1
6. return (d0, d1, · · · , di−1)

(Scalar Multiplication using w-NAF)
Input: An integer m = Σn−1

i=0 di2i in w-NAF.
Output: mP .
1. precompute Pi ← iP for odd i in [−2w−1, 2w−1 − 1]
2. set Q = P
3. for i = n− 1 to 0
3. Q = 2Q
4. if di > 0 then Q = Q + Pdi

5. if di < 0 then Q = Q− Pdi

6. return Q

The w-NAF representation of an integer m satisfies the following properties:

Theorem 31. The w-NAF representation of an integer in unique.
2. The NAF representation is a special case of w-NAF, with w = 2.
3. The length of the w-NAF representation of an integer is at most one more than the NAF

representation.
4. The average hamming weight (number of nonzero digits in the representation) of an integer

is n/(w + 1), where n is the length of representation.

The following algorithm calculates the w-NAF representation of a given integer m.
The cost of computation of scalar multiplication goes down drastically if some pre-

computation is done, particularly when the base point is fixed. If the base point is not
fixed the pre-computation can be done online. One pre-computes the points Pi = iP for
odd i in the range 1 ≤ i ≤ 2w−1− 1. Note that the computation of negation of these points
is very cheap(virtually “for free” over prime fields). So Pi for negative i’s need not be
computed, which also reduces the storage requirement. The following algorithm computes
the scalar multiplication [14].

The above algorithm requires 1 doubling and 2w−2−1 additions for the pre-computation.
The scalar multiplication computation requires n doublings and n/(w+1) additions on the
average [4].

4.2 Frobenius Map

Koblitz had suggested the use of Frobenius map to speed up scalar multiplication algo-
rithm. For hyperelliptic curves, it has been shown that the Frobenius map based method
can be used over any field of finite characteristic. Let q be a prime power, Fq be the finite
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(Scalar Multiplication Using Frobenius Map)
Input : integer m =

∑n−1
i=0 uiφ

i and point X.
Output : mX.

1. For 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ A, compute Xi and ui,j ;
2. Set Y =

∑n−1
i=0 ui,AXi;

3. For j = A− 1 down to 0
4. Y = 2Y ; Y = Y +

∑n−1
i=0 ui,jXi

5. return Y .

field of order q and Fqn an extension field of Fq. Let C be the curve of genus g to be used
for the cryptosystem and we consider the Fqn-rational points of C. The Frobenius map φ
: Fqn → Fqn is an automorphism of Fqn and is defined as φ(x) = xq. The map is extended
to points of an elliptic or hyperelliptic curve over Fqn in the following manner: A point of
an elliptic curve is represented using a pair of elements of Fqn ; similarly a reduced divisor
of a hyperelliptic curve is represented using a tuple of elements of Fqn . An application of
the Frobenius map [1] to a point is to actually apply the map individually to the field
elements which represent the point. We note that φn is the identity map on Fqn . If the
field Fqn is represented using a normal basis, then the computation of φ(x) is “for free”. It
has been observed that in the case q = 2, the Frobenius map is φ(x) = x2 and hence can
be computed using a field squaring which is a relatively cheap operation even if polynomial
basis representation of elements is used. Let m be an integer, X a point (either a point
of an elliptic curve or a reduced divisor of a hyperelliptic curve) and we wish to compute
mX. The base-φ expansion of m is

∑n−1
i=0 uiφ

i, where under reasonable assumptions each
ui is an integer in the range [−qg, qg]. It is possible to obtain the base-φ expansion for each
integer m. Next we define the following parameters:

1. A = maxblog2(|ui|)c.
2. For i ∈ {0, . . . , n− 1} write |ui| =

∑A
j=0 u

′
i,j2

i, where u
′
i,j ∈ {0, 1}.

4. For 0 ≤ i ≤ n− 1, define X0 = X and Xi = φi(X0) = φi(X).

The expression mX can be written as

mX = u0X0 + u1X1 + · · ·+ un−1Xn−1

= (u0,0 + u0,12 + · · ·+ u0,A2A)X0

+(u1,0 + u1,12 + · · ·+ u1,A2A)X1

+ · · ·
+(un−1,0 + un−1,12 + · · ·+ un−1,A2A)Xn−1





(2)

Theorem 4 In the above algorithm, the average numbers of additions and doubling needed
to compute mX are n(A + 1)/2 and A respectively.

5 Elliptic Curve Addition and Multiplication Algorithms

The two operation in scalar multiplication algorithm are elliptic curve adding (ECADD)
and elliptic curve doubling (ECDBL). Both algorithms and their efficiency are described
below.
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5.1 Addition and Doubling Algorithms and their Efficiency

The curve in the simplified form of Weierstress Equation is given by

E : y2 = x3 + ax + b (3)

The coefficient a is arbitrary field element.However many curve recommended by specifi-
cation such as [NIST,ANSI,SEC2] use a = −3 for more efficient ECDBL implementation.
The general algorithm ECDBL requires time 4M + 6S + 11A, where M,S and A denote
time needed for multiplication,squaring and adding respectively. This uses 6 auxiliary vari-
ables.The optimized algorithm ECDBL for a = −3 requires 4M +4S +3A using 5 auxiliary
variables.

5.2 Window Based Methods

Window based methods come under the third category of scalar multiplication algo-
rithms, which require higher amount of computational resources. Window based methods
use higher amount of memory as they use a pre-computed table and are more efficient if
the base point is fixed. The target of these methods is to minimize the size of the look-up
table and maximize the gain in performance. Algorithms using w-NAF are window based
methods.

6 Conclusion

This article proposes efficient algorithms for scalar multiplication on Elliptic Curve can
be applied on Wireless Sensor Network. These are secured against side Channel Attack.
The window size may be a subject of trade off between the available RAM and ROM
at that particular instance on sensor node. As NAF method involves modular inversion
operation to get the NAF of binary number, the one’s complement subtraction can provide
a very simple way of recoding integer [9]. Due to physical characteristics of sensor node,
the power consumption and time consumption using the secret key can be clearly observed.
Thus Side Channel Attack(SCA)are a serious threat against these devices. The main target
for Side Channel Attack(SCA) against ECC implementation is the algorithm used for scalar
multiplication on elliptic curve .Therefore various elliptic curve multiplication algorithms
designed to resist Side Channel Attack and Differential Power Analysis Attack have been
proposed.
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