
International Journal of Smart Home

Vol. 6, No. 1, January, 2012

51

Design and Efficiency Analysis of a New Protocol for Malicious

Hosts Detection

Mohammed Chihoub and Ramdane Maamri

Mentouri University, Constantine, Algeria, Computer Science Department

Laboratory Lire, Route Ain-El-Bey 25000, Constantine, Algeria

mchihoub@yahoo.com, rmaamri@yahoo.fr

Abstract

Mobile agents’ paradigm wide acceptance depends on the ability to overcome its major

problem of security. In this context, the major concern is the subtle issue of malicious hosts.

Many solutions had been proposed in this area, varying from tamper free hardware to pure

software protocols. Nevertheless, neither of them is fully satisfactory. This paper investigates

the problem on a novel basis. It develops an incremental protocol giving the opportunity to

appreciate the benefit of making weaker hints available (.i.e., information about the lower

suspicious character of malicious hosts). Upon these hints and progressively, the protocol

can unambiguously confirm the stronger malicious character of hosts by a process of truth

enforcement. This paper develops the issues raised by the protocol and validates the protocol

efficiency in regard to the weaker hints use to verify the veracity of what we have called

explicitly the lower suspicious character of a host.

Keywords: Mobile Agent’s Security, Efficiency, Incremental, Malicious Hosts, Truth

1. Introduction

In general, the objective of using autonomous mobile agents in a network

environment, from the World Wide Web to the Data Grid, is clearly to search, i.e., to

locate some required ―items‖ (e.g., information, resource...) in the environment [1]. The

use of autonomous roving agents to accomplish some specified tasks, on the behalf of

an agent owner, had discarded the need to maintain a permanent connection during

mobile agent journey. Within this assertion, the mobile agents‘ model outperforms the

paradigm of client/server both at [2]:

1. Coping seamlessly with the transient nature of channels,

2. Producing a better overall performance, especially at low bandwidth and low

reliability networks.

This model presents many advantages. However, its major drawback can be found in

the fact that, no online supervision can anymore be done. Thus, the visited hosts have a

total control over their visiting agents. The assumption that hosts are harmless is only

not realistic in an open network. Visited hosts can severely damage mobile agents.

Protecting an agent from ―hosts‘ attacks‖ has become a pressing security concern.

Attacking hosts leaving no such evidence of their harmful actions is known as the

problem of malicious hosts. This subtle issue is by far the most difficult facet of mobile

agents‘ security concern. Many solutions had been proposed in the area of mobile

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

52

agents‘ trustworthiness, varying from tamper free hardware to pure software protocols.

However, neither of them is fully satisfactory [10], [11].

Our paper addresses the topic of mobile agents‘ trustworthiness on a novel basis. The

proposed solution proceeds incrementally. It makes a clear distinction between the

lower suspicious character derived from weak hints and the stronger malicious one of a

host. This latter is unambiguously confirmed by the ultimate stage of truth enforcement

named mediation. In essence, we are exploiting principles from the era of distributed

systems investigations.

These principles are related to scarce resources such as CPU cycles and storage. Due

to Barak [3], ―any server whose load is proportional to the size of the system is destined

to be clogged once the system grows beyond a certain size‘‘. Therefore, the truth

stability property can be used to distinguish between an honest and a malicious host.

Expressing truth does not require any kind of any provision. However, a malicious host,

perhaps, will keep trace of previous information. This latter is used for example, to

maintain multiple answers coherences. Enforcing truth for a malicious host should use a

memory and a processor intensive approach. Our desire is to overload the host, pushing

it rapidly to the limit of a clogged state. We could hope that before becoming faulty

(i.e., clogged), the malicious host will not be able to give coherent answers due to

scarce resources capacity lack. Then, we can say that the interrogated host is becoming

amnesic.

Most approaches improving agents‘ owner survivability are focusing on ways that

detect if malicious acts have been attempted. They rely on a Third Trust Party to solve

potential dispute. We believe that the impartial party should have more prerogatives and

promoted to have a mediation role where more flexibility is gained.

In our opinion, splitting the characterization of a host into two different

distinguishable aspects, the inexpensive suspicion property, and the stronger malicious

character, should enable a better care of malicious hosts‘ problem. In fact, we may feel

free to use any suitable protocol to construct the proof ground characterizing the low

suspicious behavior. It must not be as accurate as it should be. Later on, the proof

ground will be handed on to the stronger mediation activity where the false allegations

are declined or the malicious acts are confirmed.

The paper is organized in six sections. In the second section, some related works are

described with the objective to show the benefit of our approach. The third section

shows the main contribution of this work. In the fourth section, we will develop an

inexpensive suspicion detection protocol. Thereafter, it explains the mediation

principles and gives our protocol proposal, and answers to practical questions. To

comfort our proposed protocol, we have chosen to devote the last section to hosts‘

suspicious character detection efficiency validation experiment i.e., weaker hints

soundness based on a statistical analysis approach. We will conclude, in the last

section, by pointing out aspects of future work.

2. Related Works

With regards to the malicious hosts‘ problem, techniques that make tampering

impossible or more difficult such as mobile cryptography, tamper free hardware, and

mutating agents as in the time limited black box are less viable than those focusing on

ways detecting tampering acts [4], [5], [9], [6]. When the agents‘ owner is provided

with improper information, it is almost under some form of information assault. If the

assaults can be thwarted then the survivability of the agent owner is increased [7].

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

53

Albeit, our suspicious character detecting protocol shares the key ideas presented

both in Vigna‘s and Esparsa‘s schemes [8], [10], it proceeds differently.

Vigna privileged the idea of establishing unaltered initial and final states at each

agent‘s hop. The idea is concretized via the redundancy of the hashed intermediate

traces and playing fair rules enforcement. Intermediate traces key information is black

statements values, i.e., system calls results. Consequently, tampering would be checked

by the re-executing simulation of the agent with respect to the unaltered intermediate

traces and any disparity will confirm host‘s cheating. Vigna‘s protocol accuracy is paid

at the expense of excessive storage demand, increased and complicated protocol stages

to implement non repudiation (i.e., fair play), and simulated re-execution of the agent.

Esparsa took another direction. His key idea is to limit the execution time of the

roving agent at each host. The protocol begins by setting up a general time reference.

Since truly synchronized hosts‘ time is unfeasible, a transmission time evaluator is

activated to estimate:

1. The difference between the general time reference and the time reference of

each host,

2. The transmission delay between consecutive hosts in the agent‘s itinerary.

Yet, an execution time estimator is also needed to calculate the necessary time for

each host to execute the agent completely. According to this protocol, an honest host

would exhibit values of the real execution time, the real transmission time which are

confined respectively within the limit of:

1. The estimated execution time,

2. The difference between its arrival time at the new host and its finalizing time in

the predecessor host.

Obviously, the absolute finalization time at a host cannot be but less than the

absolute arrival time at its successor. The crucial point of the protocol is its time

estimating components. When the estimation is static, better estimated times would be

abstracted from extensive pre-simulation. Sophisticated real time estimation will incur

additional overhead and require a permanent connection of the origin host until the

transaction finishes. Hence, the off-line property is violated.

In our approach, we also care about black statements and the agent‘s time spent in a

host. However, unlike:

1. Vigna, we consider black statements the source of irregularities in execution

time. Therefore, the execution time can be settled down by ignoring the time

devoted to such statements. Removing the irregularities would make the

processing power of any host proportional to its load.

2. Esparza, we discard the need to resort to the general time reference and the

estimating components. Rather, we consider the first host as the referential model

of execution. In reality, even when the first host could cheat, our protocol would

detect such acts. Our protocol does not require more than a host‘s signed instance

of time with load at arrival, departure, and black statements boundaries. As we

can see, there is no need for a permanent connection with the agent owner during

the agent whole journey. The obvious benefit is the off-line property preservation

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

54

3. Major Contributions

Our proposed strategy lies within techniques detecting tampering attempts. To the

best of our knowledge, no published solution has taken that direction for malicious

hosts‘ problem exploration. Besides the truth enforcement mechanism, our solution

does not limit the flexibility and power of mobile agents‘ paradigm. The mobile agent

does not need to interact with its home base during its whole journey. Besides, neither

traces of intermediate execution states are required nor are more burdens put on agents‘

developer. In our solution, we have relaxed the need to provide the Third Trusted Party

with an accurate proof of malicious acts. Capabilities of the Third Trust Party are

enlarged. Consequently, an inexpensive protocol is derived to detect the suspicion

character of hosts based on irregularities that could be observed on times of executions .

These times are readjusted by the mediating activity (i.e., Third Trusted Party) to reflect

hosts‘ referential power of processing and load. This will give better accuracy. Third

Trusted Party elaborates more developed analysis. When more confidence is gained on

the claim, the analysis will use a process of truth enforcement. Alternatively, when the

claim is no more than allegations, the process will stop. Truth enforcement tries to

flood the suspicious host with some forms of interrogating questions. However, the

interrogation must not be blind and floods both the interrogation parties. The

distinction is possible if the flooding task is suspicious‘ host pertinent information

centric. Consequently, the Third Trusted Party can proceed normally as long as i t can

afford the management of questions/responses, and will switch to the average

calculation otherwise.

4. A New Strategy Dealing with Malicious Hosts’ Problem

We propose a new strategy dealing with the problem of malicious hosts. The defined

strategy has two stages. During the strategy‘s first stage, we will develop an off-line

property preserving protocol to detect the low suspicious character of any host. The

protocol makes the processing power of a host proportional to its load. This goal is

achieved by ignoring external data time acquisition (i.e., black statements). In its final

step, the protocol will look for incoherencies that may occur between time fragments

spent at each host with respect to the ones spent at first hop. Thereafter, these

incoherencies are sent to the Third Trusted Party for depth evaluation. When better

claim confidence is gained, the truth enforcement activity takes over. Its goal is to push

the suspicious host to the limits of its full capacities. Crossing suspicious host sca rce

resources boarder of practical management will hopefully procreate a situation where

the host is in full disarray. The host disarray, illustrated by incoherencies in its

responses‘ log, is considered as the confirming proof of malicious acts. The next figure

tries to depict the essence of agent‘s execution in a host, principal element for the

comprehension of the strategy functionality:

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

55

Figure 1: Agent’s Code Fragmentation

4.1. Suspicious Character Detection Protocol

Our protocol requires only a simple model of mobile agent paradigm. Hence, the

technology underlying the implementation of the mobile agent model provides only

cryptographic mechanisms, which can protect the agent‘s confidentiality and integrity

during transit. Besides, each net host must communicate to the Third Trust Party service

(i.e., mediation), its referential power of processing and the corresponding load. The

communication must take place before a host is made available.

We are considering a scenario in which the mobile agent performing a particular task

is roving from host to host starting at a home base. Eventually, the agent will terminate

and the results are delivered to its owner at the home base. Then, the agent owner at the

home base checks for suspicious acts, and forwards them for deeper investigations to

the mediating service. We will explain the protocol steps in every stage by describing

tasks fulfilled when the home base or an executing host is involved. Protocol‘s steps are

explained below:

1. The origin host ciphers the mobile agent with the public key of the first hop host

and moves it forward.

2. When receiving the mobile agent, the host deciphers it and saves into its state

the signed arrival time and current load before running it. When the execution

reaches the first boundary of a black statement, the host again will save the

signed current time and load to agent‘s state. The same task is performed upon

black statement termination as well as just before the next jump is initiated.

When a jump is encountered, the actual host ciphers the mobile agent with the

next hop public key and sends it to its destination. When the mobile agent

finishes, it will return to the home base.

3. The origin host deciphers the mobile agent and starts suspect acts verification.

Just as explained before, the first hop execution time is taken to be as the

referential model of time. Therefore, subsequent hops‘ fragments of time are

readjusted to reflect the actual processing power of the referential host. The

essence of the readjustment task is to bring a host‘s fragments of times to the

corresponding segments‘ load of the referential host . i.e., the referential model

of time. Recall that, the processing power of a host is made proportional to its

load by ignoring black statements times. Hence, the readjustment factors are

computed on the basis of relevant loads. Concretely, the new time value of a

fragment i of a host is recalculated as in the following formula:

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

56

) t - t (fragment host_
oad)_average_l ment(host_frag

oad)_average_lagmental_host_fr(referenti
_time_FragmentReadjusted finalinitiali

i

i
i 











An ordinary host (i.e., a one which is different from the referential host) is declared

to be suspicious when at least one of its readjusted fragments of times is greater than its

relative referential host‘s fragment of time. However, the referential host would be

declared to be suspicious when each of its fragments of times is greater to any other

host relative readjusted fragment of time. When at least one host is declared to be

suspicious, the agent owner builds a self signed proof ground and sends it to the

mediation entity. Proof ground is composed of relevant hosts‘ signed fragments of

times, and corresponding loads. There are two distinct cases worth noticing here,

depending upon the identity of the suspicious host. When the referential host (i.e., first

hop host) is declared to be suspicious, the proof ground must include all hops relative

information. Otherwise, only suspicious and referential hosts‘ relative information is

required. The signed proof ground will be analyzed in the mediation activity by the

Third Trusted Party.

4.2. Mediation Protocol

The mediation task is performed by Third Trusted Party. Its goal is to check whether

or not a claim of an agent owner is just an allegation or the malicious character of a

host is confirmed. The Third Trusted Party proceeds in a progressive manner; it starts

by asserting the veracity of the referential host. Then, it verifies the soundness of the

claim. When more confidence is gained, the Third trusted Party conducts the ultimate

stage (i.e. Truth enforcement). Conducted steps are developed according to their

natural sequence:

4.2.1. Asserting Referential Host Veracity

Upon receiving a signed complaining message, i.e., a proof ground from an agent

owner, the Third Trusted Party starts by asserting the veracity of the referential host.

We must notice that in the referential host, an agent execution is supposed to be safe

since it excludes surreptitious modifications. Therefore, its duration is expected to be

minimal. This represents a crucial key for referential host veracity checking. Based on

this assumption, the process of veracity checking starts by readjusting other hosts‘

fragments of times, using the same formula as in the former paragraph. Then, it brings

each host‘s fragment of time to real time by using the host‘s referential load and

referential power of processing. After that, it selects the resulting minimal duration real

time of all hosts. The referential host‘s status is declared to be the one of referential

model of execution (i.e.; trusted) in case where the sum of minimal durations of real

times is equal to the referential host‘s total duration of real times. More accurate

mathematical expressions are given below where order steps should be preserved:

1. For each host different of the referential host do

For each fragmenti do

) t - t (fragment host_
oad_average_l enthost_fragm

load average __fragment_host lreferentia
_time_FragmentReadjusted finalinitiali

i

i
i 











International Journal of Smart Home

Vol. 6, No. 1, January, 2012

57

2. For first hop Host Only

For each Fragmenti_time do

 _timegmentl_host_frareferentia _timeagmental_host_fr_referentiReadjusted ii 

 For each host including the referential host do

 For each Readjusted_fragmenti_time do

ime__FragmentReadjusted essinger_of_Procential_Powhost_refer
oad_average_lenthost_fragm

 dential_loahost_refer
_timeentReal_fragm i

i

i t
















3. For each fragmenti_time of all hosts

 Select the minimal Real_fragment i time

 If (  _timel_fragmentl_host_Reareferentia_timeentReal_fragm minimal ii

 Then the referential host is truly the model of execution

Figure 2: Referential Host Veracity Checking Process

4.2.1. Soundness of the Claim

Here, we verify the soundness of the claim as previously done in the suspicious

character detection protocol formula. More confidence is gained on the claim when at

least one host‘s real fragment of time is greater than the real time of the relative

referential host‘s fragment, or all referential host real fragments of times are superior to

all others hosts‘ real fragments of times. Then, the Third Trusted Party conducts the

ultimate stage (i.e. Truth Enforcement). Otherwise, the claim is found to be just an

allegation, and the Third Trusted Party may increase the severity log relative to the

agent owner, send him a warning or decide to punish him if a threshold is reached.

4.2.3. Truth Enforcement

During this stage, the process of truth enforcement is activated. It starts by requesting

the suspicious host pertinent information (e.g., its price). Thereafter, it will manage the

questions/responses dialogue formed from first order logic propositions. We must

notice that the Third Trusted Party knows in advance the true outcomes of its

propositions. This dialog will go through sessions attached to two different operating

modes. In the first operating mode, session‘s management purposes are:

1. Generating suspicious host price centric questions (i.e., first order logic

propositions) at random where any former questions are reinserted.

2. Detecting any suspicious host attempt to remember former questions.

3. Detecting incoherencies among sessions‘ responses.

The first operating mode will last as long as the Third Trusted Party can manage

required resources efficiently and responses are coherent (when responses are

incoherent the suspicious host is declared to be malicious and the mediation protocol

stops). However, upon this frontier, the Third Trusted Party moves onto the second

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

58

operating mode. Then, the Third Trusted Party would favor truth enforcement initiation

whenever it had noticed the suspicious host‘s attempt to remember any previously

asked question at any moment of the dialog. Otherwise, the host is declared to be

honest. Truth enforcement process tries to push rapidly the suspicious host to the limit

of clogged state. Hopefully, before becoming faulty, the suspicious host will not be able

to give coherent answers. During this stage of the second operating mode, the Third

Trusted Party sessions performs the following actions to enforce truth:

1. Generating suspicious host price centric questions (i.e., first order logic

propositions) at random where the first mode of operating questions are

reinserted.

2. Supervising responses will focus only on the average of their results. We

should notice now that the Third Trusted Party cannot afford individual

response supervision due to the lack of resources.

3. Terminating this second operating mode when the average of the responses

results is not as expected. Thereafter, the host is declared to be malicious.

Previously, the former section has sketched the essence of our mediating protocol

performed by the Third Trusted Party. As the protocol‘s finest part aims at pushing the

suspicious host into full disarray progressively, we will discuss practical questions

related to this particular aspect. Among questions of great importance are propositions

generation, sessions‘ sizes, randomness of session‘s propositions ordering, and how to

express previous propositions.

Proposed answers would clarify why the suspicious host could be flooded whereas

the Third Trusted Party won‘t. We will start by considering sessions‘ sizes. In its initial

state, the protocol could use a hyper geometric function to set randomly the first

session‘s size. Subsequent sessions‘ sizes must increase to manage the set of previous

propositions as well as the relevant new ones. Obviously, the propositions generation

mechanism is of prime importance. A systematic generation requires propositions

which are suspicious host price centric. In practice, a centered price interval which

includes implicitly a range of values set equals to the session‘s size is enough. Hence,

expressing a proposition could be for instance as simple as: ―is (price – a lower interval

constant value) equal to the real value of the difference‖. Propositions‘ generation

process must enclose a germ for detecting hosts attempts to remember previously asked

questions. Consequently, previous propositions must be expressed differently, in a way

which can make remembering attempts Third Trust Party perceivable. For this purpose,

we will use a reserved key word denoting the right hand term of a proposition. Then, we

can incorporate previously asked propositions as simply as using a key notation

referring to the second member of a proposition as in the following example: ―is (price

– Former_Session[i].Right_Hand_term) {=, >, <} to the real value of the difference‖.

Clearly, to randomly rearrange propositions‘ ordering, we can use any standard method

that could be found in the computer science literature.

5. Robustness Analysis of Suspicious Character Detection Protocol

In essence, our approach [12] makes the processing of each host proportional to its

load. The technique consists of ignoring catalog querying time. The suspicious

character detection protocol considers the first host as the referential model of

execution. Therefore, we bring other computing hosts times to its corresponding

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

59

computing speed. Not only, has this choice discarded the need to use managing

components for both the general time reference and the time estimation, but it reflects a

basic reality. Reality speaks for ‗‘first host has no fugitive action other than moving the

roving agent to a different next place‘‘. First host‘s safe execution excludes

surreptitious modifications, and thus, it is expected to be minimal. Essentially, a

fugitive action must leave the state of the agent coherent.

5.1. Working Example

We devote a special care for validating our approach. We have selected an example

providing an opportunity to exploit the power of the proposed solution. Our approach

had cut off the requirements complexity of Vigna‘s and Esparsa‘s works. Therefore,

Vigna‘s example is extended to encompass our approach particularities. For instance,

instead of two shops, the number is enlarged to be three. This larger number of shops

enables the particular scenario where first hop host could modify mobile agent

itinerary. In the simple chosen mobile agent application, we consider a user at site

home.sweet-home.com who wants to buy a home video of Tarantino‘s Pulp Fiction

movie. Therefore, he dispatches his agent to a site called agents.virtualmall.com

dedicated to maintain a directory of electronic shops. Once there, the agent performs

directory query for sites offering home video. Then, the mobile agent visits the

provided sites. At each site the agents contacts the local catalog service to determine

the current price of the Pulp Fiction home video. When all prices have been collected,

the agent identifies at home the best offer and, if the best price is less than a specified

amount —say, twenty dollars—the mobile agent goes to the selected site and buys the

home video.

5.2. Technical Considerations

Our roving agent carries with it visited host‘s signed computing times and loads.

Catalog querying frontiers represents borders between fragments of times. The test bed

java program had been carried on Lunix Pentium III 866 MHZ machine. The common

question people ask is ―How fast does a Program ‗‘ run on a Machine‘‘? In our earlier

discussion, we assumed this question could be answered with perfect accuracy. It turns

out that this problem is surprisingly complex. There are many factors that can vary from

one execution of a program to another. Computers do not simply execute one program

at a time; they continually switch from one process to another, executing some code on

behalf of one process before moving on to the next. The exact scheduling of processor

resources for one program depends on such factors as the number of users sharing the

system, the network traffic, and the timing of disk operations. The access patterns to

the cache depend not just on the references made by the program we are trying to

measure, but on those of other processes executing concurrently. If our proposed

protocol copes easily with the number of the programs currently in use, it ignores disk

operations, and considers the cache silent which is in fact, the real case in our context.

Unfortunately, we were unable to get values of the computer load during the test.

System‘s Load is a necessary element for the good work of our protocol. To overcome

our programming shortcoming, we will use a statistical approach. Specifically,

hypothesis Test for the Difference between Two Means called two sample t_test.

For the purpose of validation, different scripts of java programs had been developed.

Mainly, scripts iterate on mobile agent execution one hundred of times. The different

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

60

images of our mobile agent had encompassed both safe and unsafe (effectively

malicious) hosts. Thereafter, we had analyzed and plotted simulation results as

histograms for better readability. As iterations range is not important, execution times

fragments have been sorted. Next are times fragments graphs for the different images

of the mobile agent.

5.2. Simulation Results and Statistical Interpretation

The results as graphs show simulation outputs in different situations. These results

are obtained from the mobile agent different images executions. Images stand for

referential model host, safe and malicious hosts. Next are times fragments graphs of the

different images executions of the mobile agent:

Figure 3: Hosts’ Fragments of Execution Times Graphs

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

61

 Numerically speaking, the crucial graphs‘ information is summarized by the

following table, pointing out means (μ) and Standard Deviations (SD) with respect to

each host of the example:

Table 1: Agent Images’ Execution Times Means and Standard Deviations

Comparing graphs, especially the elements of the table above shows a case where the

third host had acted maliciously. In fact, its second mean fragment time of execution is

much bigger than the mean time of the referential host second fragment of time. This is

a case where the protocol detects the weak suspicious character of the third hos t. The

image of the third host reflects a situation of abnormal winning because the state of the

mobile agent had been modified (requiring more time) to make third host price best

offer.

Let‘s now explain and perform the statistical process of validation. Our test involves

formulating and testing hypotheses, assertions that are falsifiable using a test of

observed data. The null hypothesis typically proposes a general or default position,

such as that there is no relationship between two measured phenomena. It is typically

paired with a second hypothesis, the alternative hypothesis which asserts a particular

relationship between the phenomena. Recall that our suspicious character protocol starts

by asserting the veracity of the referential host .i.e., model of execution. Thereafter, it

will analyze its difference with respect to other journey hosts.

 Data collected during the experiment standing for a series with the same size of

samples show an equal standard deviation of the measured times of execution.

Manifestly, we suggest that two relevant measured times of executions would tie

whenever their corresponding distance .i.e., absolute difference is less than the unique

standard deviation. Hence, the appropriate statistical hypothesis test is the Hypothesis

Test for the Difference between Two Means called two-sample t-test. This approach

consists of four steps: (1) state the hypotheses, (2) formulate an analysis plan, (3)

analyze sample data, and (4) interpret results.

Every hypothesis test requires the analyst to state a null hypothesis and an alternative

hypothesis. The hypotheses are stated in such a way that they are mutually exclusive.

That is, if one is true, the other must be false; and vice versa. The table below shows

three sets of null and alternative hypotheses. Each set makes a statement about the

distance d between the mean of one population μ1 and the mean of another population

μ2.

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

62

Table 2: Set of Null and Alternative Hypotheses

Set
Null

hypothesis
Alternative hypothesis Number of tails

 d μ1 - μ2 ≠ d 2 = ׀ μ1 - μ2 ׀ 1

2 μ1 - μ2 > d μ1 - μ2 < d 1

3 μ1 - μ2 < d μ1 - μ2 > d 1

The first set of hypotheses (Set 1) is an example of a two-tailed test, since an

extreme value on either side of the sampling distribution would cause a researcher to

reject the null hypothesis. The other two sets of hypotheses (Sets 2 and 3) are one-

tailed tests, since an extreme value on only one side of the sampling distribution would

cause a researcher to reject the null hypothesis.

The analysis plan describes how to use sample data to accept or reject the null

hypothesis. It should specify the following elements:

1. Choosing the significance level.

2. Using the two-sample t-test to determine whether the difference between means

found in the sample is significantly different from the hypothesized difference

between means.

The analyzing of sample data finds the standard error, degrees of freedom, test

statistic, and the P-value associated with the test statistic.

1. Computing the standard error (SE) of the sampling distribution by: SE =

sqrt[(s1
2/n1) + (s2

2/n2)] where s1 is the standard deviation of sample1, s2 is the

standard deviation of sample 2, n1 is the size of sample 1, and n2 is the size of

sample 2.

2. Calculating the degrees of freedom (DF) is:

 DF = (s1
2/n1 + s2

2/n2)
2 / {[(s1

2 / n1)
2 / (n1 - 1)] + [(s2

2 / n2)
2 / (n2 - 1)]}

3. Defining the test statistic as t-score (t) defined by the following equation: t = [׀

(x1 - x2) ׀- d] / SE where x1 is the mean of sample 1, x2 is the mean of sample 2,

d is the hypothesized difference between population means, and SE is the

standard error.

4. Establishing by calculator the P-value which is the probability of observing a

sample statistic as extreme as the test statistic. Since the test statistic is a t -

score, use the t Distribution Calculator to assess the probability associated with

the t-score, having the degrees of freedom computed above.

The results interpreting would see if the sample findings are unlikely, given the null

hypothesis, we reject the null hypothesis. Typically, this involves comparing the P-

value to the significance level, and rejecting the null hypothesis when the P-value is

less than the significance level.

Back to our real test, we remark that SE and DF are the same since the standard

deviation of our samples is the same i.e. 508. They have been calculated just once, and

their values are respectively 71.842049 and 198. The following table states the

hypothesis for referential host veracity checking:

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

63

Table 3: Working Example Null Hypothesis

HostToHost Before_Black_Statement After_Black_Statement

Referential_Host

To

Safe_Host

508500? - SafelReferentia 

 tieare that theymeaning

508500? - SafelReferentia 

 tieare that theymeaning

Referential_Host

To

Malicious_Host

508 500? - lReferentia Malicious

 tieare that theymeaning

508 500? - lReferentia Malicious

 tieare that theymeaning

When applying values, the corresponding resulting t-scores and P-values are

summarized below:

Table 4: Null Hypothesis t-scores and P-Value

ReferentialHost

To

aHost

Before_Black_Staement

 t-score P-Value

After_Black_Statement

 t-score P-Value
Referential_Host

To

Safe_Host

 0 1 0 1

Referential_Host

To

Malicious_Host

 0 1 1043.9569 0

Except the null hypothesis of the ―After_Black_Statement‘‘ where the P-value is

equal to zero, the referential host can be assured certainly of a partial minimal

execution time (probability equal to one speaks for certainty). If we can prove that

 Malicious –  Referential > 508 let say 509, we can state formally that the referential host is

truly a referential model of execution and that malicious host has acted truly

maliciously. It is a one tailed test where t-score is ((75500 - 509) /71.842049) =

1043.8316. The calculator tells us that: P(t < 1043.8316)=0.0. Thus, the P-value is:

P(t > 1043.8316)= 1 - P(t < 1043.8316) = 1.

The fact that simulation has been carried on the same computer de facto overrides the

need to carry out the required fragments of real times calculation. Hence, our former

conclusion .i.e., third host has acted maliciously is still valid. Finally, we should notice

that the presented example reflecting malicious acting is not specific, Rather, it

exemplifies any situation were malicious acts are performed. Therefore, we could

conclude that simulation has comforted the protocol on its ongoing goal, and the

protocol robustness has effectively been proved.

6. Conclusion

This paper has designed a protocol which proceeds incrementally to determine whether or

not a host is malicious. The paper has motivated, explored, and expressed solutions based on

a new research direction with respect to the malicious hosts‘ problem. To our protocol‘s

International Journal of Smart Home

Vol. 6, No. 1, January, 2012

64

proposal, we have joined a section to answer related practical questions. The experiment

made has proved the effectiveness of the decisions we have made. The valuable weaker hints,

which are easily collected, have made the suspicious character of any host verification rather

an easy task. Very soon, we will experiment the truth enforcement process, and we hope that

it will determine unambiguously the malicious character of a host as we are expecting.

References

[1] S. Dobrev and Al. ‗‘Mobile Search for a Black Hole in an Anonymous Ring‘‘. Proceeding of the 15th

International Conference on Distributed Computing (2001) London, UK.

[2] Robert S. Gray, David Kotz, and Ronald A. Peterson, jr. ‗‘Mobile-Agents Versus Client/Server Performance :

Scalability in Information-Retrieval Task. Technical Report TR 2001-386 (2001) January 30, Darmouth

College Computer Science.

[3] A. Barak and Y. Kornatzky. ‗‘Design Principles of Operating Systems for large Scale Multicomputers‘‘. IBM

Research Division, T.J. Watson Research Center. New York. RC13220(#59114) (1987)

[4] T. Sander and Christian F.T Tshudan. ‗‘On Software Protection via Function Hiding‘‘, submitted to the 2

International Workshop on Information Hiding.

[5] T. Sander and Christian F.T Tshudan. ‗‘Towards Mobile Cryptography‘‘. IEEE Symposium on Security and

Privacy (1988) May.

[6] Fritz. Hohl. ‗‘Time Limited Black Box Security: Protecting Mobile Agents from Malicious Hosts‘‘. Springer

Verlag (1998) Citseer.IST. Scientific Literature Digital Library.

[7] Lora L. Kassab and Jeffry Voas. ‗‘Agents Trustworthiness‘‘. Ecoop Workshop, 1998:300 (1998)

[8] Giovanni Vigna. ‗‘Protecting Mobile Agents Through Tracing‘‘. In Proceeding of the 3rd Ecoop Workshop on

Mobile Objects Systems, Jyvalskyla, Finland (1997)

[9] Uwe G. Wilhem, Sebastian M. Staamann, and Levente Buttyan. ‗‘ A Pessimistic Approach to Trust in Mobile

Agent Platforms‘‘. IEEE Internet Computing September-October 2000. http://computer.org/internet/ (2000)

[10] O. Esparza, M. Soriano, J.L. Munoz, and J. Forné. ‗‘A Protocol for Detecting Malicious Hosts Based on

Limiting the Execution Time of Mobile Agents‘‘. In IEEE Symposuim on Computers and Communications-

ISCC‘2003 (2003)

[11] Carles Garrigues Olivella. P.H.D. Thesis, ‗‘Contribution To Mobile Agent Protection from Malicious Hosts‘‘,

Universitate Autonoma de Barcelona (2008) June.

[12] M. Chihoub ‗‘Malicious Hosts Detection Through Truth Powered Approach‘‘, In Proceeding of Third

International annual Workshop on Digital Forensics and Incident Analysis, IEEE Computer Society, Malaga,

Spain (2008) October 9.

