
International Journal of Smart Home

Vol. 5, No. 4, October, 2011

27

Providing Direct3D Features over the Desktop OpenGL

Nakhoon Baek
1
 and Kwan-Hee Yoo

2,*

1
 Kyungpook National University, Daegu 702-701, Korea

oceancru@gmail.com

2
 Chungbuk National University, Cheongju Chungbuk 361-763, Korea

* corresponding author: khyoo@chungbuk.ac.kr

Abstract

In this paper, we aimed to provide Direct3D graphics features on Linux-based systems,

which are actively used for various portable game platforms and mobile phone devices.

Direct3D is used as one of the most important middle-wares for game and graphics

applications developed on Microsoft Windows operating systems. However, this graphics

library is not commonly available for other operating systems. We present a prototype library

to provide Direct3D functionalities on Linux-based systems, using the OpenGL graphics

library. In typical Linux-based systems, only the X window system and OpenGL graphics

library are available. There are lots of needs to port Direct3D-based applications on these

systems, and our Direct3D-on-OpenGL library would be a good starting point. Selecting a set

of widely-used Direct3D data structures and functions, we implemented selected Direct3D

functionalities and finally acquired a prototype implementation. Our implementation

currently covers 3D transformations, light and material processing, texture mapping, simple

animation features and more. We showed its feasibility through successfully executing a set of

Direct3D demonstration programs on our implementation.

Keywords: DirectX, OpenGL, Implementation, black-box testing.

1. Introduction

In this paper, we present a prototype implementation of Direct3D graphics functionalities

on Linux-based systems. Notice that the Linux-based systems are now used for various

portable game platforms and mobile phone devices[1,2,3]. In contrast, Currently, Direct3D is

used as one of the most important library for graphics output, mainly for applications

developed on Microsoft Windows operating systems[4]. In contrast, this graphics library is not

commonly available for other operating systems. Thus, we are hard to use it on other

operating systems, at least at this time.

As the first step to provide an easy way of porting Direct3D-based game applications to

other operating systems, we designed and implemented a graphics library which provides

Direct3D graphics API (application program interface) functions on Linux-based systems.

Since this library can be used to directly port the graphics and game applications originally

developed for PC desktops in a straight-forward manner, we expect it to be a cost-effective

way of porting these programs.

As shown in Figure 1, our final goal is to get the same graphics output for both of the

desktop Direct3D application programs and the new implementation of our Direct3D-on-

OpenGL architecture, which corresponds to the right side of the figure.

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

28

2. Related Works

Typical Linux-based systems, or especially for embedded Linux-based systems, they

usually provide OpenGL (or its equivalent) for 3D graphics output. OpenGL is one of the

most widely-used 3D graphics libraries, and continuously improved to reflect the current state

of the art[5].

As an example, OpenGL ES is newly released for handheld devices including mobile

phones[6]. OpenGL ES shows a good example of re-constructing a general purpose desktop

3D graphics library for small embedded systems[7]. We also take a similar way, to get a

selected set of original Direct3D functions.

In the case of Microsoft Windows operating systems, they provide DirectDraw or

Direct3D graphics libraries[4]. Recently, they are integrated into DirectX system, and widely

used in Microsoft Windows systems.

As the developing environment for Windows systems, the Visual Studio system

consistently provides supports for embedded systems, and currently Visual Studio for

Embedded System is also available. However, these all facilities are only available for

Microsoft Windows systems and thus, we need another way of providing Direct3D features

on other operating systems such as Linux.

3. Design and Implementation

At the design stage of our Direct3D-on-OpenGL library, we need to select the set of

supported functions among the original Direct3D features. Considering its technical and

marketing aspects, we selected Direct3D 9.0 as the major target. From the technical point of

 Direct3D-based

Application Program

Direct3D function calls

Direct3D

graphics library

(only for MS-Windows)

MS-Windows Operating System

Graphics Output on MS-Windows

Direct3D on OpenGL

wrapper library

(our implementation)

OpenGL graphics library

(on Linux O/S)

Linux Operating System

& X windows system

Graphics Output on X windows

Direct3D-based

Application Program

Direct3D function calls

Direct3D

graphics library

(only for MS-Windows)

MS-Windows Operating System

Graphics Output on MS-Windows

Direct3D on OpenGL

wrapper library

(our implementation)

OpenGL graphics library

(on Linux O/S)

Linux Operating System

& X windows system

Graphics Output on X windows

Figure 1. The Design Concept of Our System.

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

29

view, the vertex shaders and pixel shaders, which are based on the hardware GPU’s, are

excluded from the first prototype implementation. They will be added in the next

implementations. In this way, we selected the FVF(flexible vertex flags)-based graphics

programs as our first target.

Thus, our implementation naturally supports the following Direct3D classes:

 IDirect3D9 – The starting point of Direct3D programming. It generates

IDirect3DDevice9 objects on demand.

 IDirect3DDevice9 – It handles core graphics primitives in Direct3D.

 IDirect3DTexture9 – Added to support texture mapping facilities.

 IDirect3DVertexBuffer9 – Providing coordinates and their related information for

graphics primitives.

 D3DXMATRIX – Added for matrix processing.

During Implementation of those classes, the following classes are additionally needed:

 _D3DCOLORVALUE – Providing color information as (R, G, B, A)-quadraples.

 _D3DVECTOR – Providing 3D vectors with (x, y, z).

 _D3DRECT, _RGNDATA, _RGNDATAHEADER – Specifying regions as

specific areas on the screen.

 _D3DLIGHT9 – Defining light sources for the light-and-material processing.

 _D3DMATERIAL9 – Defining material information for the light-and-material

processing.

 _D3DPRESENT_PARAMETERS – Providing some features related to the

overall screen updates.

To show the implementation details of these classes, the supported member functions of

the IDirect3D9 class is listed as follows:

 IDirect3D9 (void)

 ~IDirect3D9 (void)

 ULONG Release (void)

 HRESULT CreateDevice (UINT adaptor, D3DDEVTYPE deviceType, HWND

hFocusWindow, DWORD behaviorFlags, D3DPRESENT_PARAMETERS

*pPresentationParameters, IDirect3DDevice9 **ppReturnedDeviceInterface)

As the next one, our IDirect3DDevice9 class has the following member functions:

 IDirect3DDevice9 (DWORD behaviorFlags, D3DPRESENT_PARAMETERS

*pPresentationParameters)

 ~IDirect3DDevice9 (void)

 ULONG Release (void)

 HRESULT CreateVertexBuffer (UINT length, DWORD usage, DWORD fvf,

D3DPOOL pool, IDirect3DVertexBuffer9 **ppVertexBuffer, HANDLE

*pShareHandle)

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

30

 HRESULT BeginScene (void)

 HRESULT EndScene (void)

 HRESULT Clear (DWORD count, CONST D3DRECT *pRects, DWORD flags,

D3DCOLOR color, float z, DWORD stencil)

 HRESULT SetStreamSource (UINT streamNumber, IDirect3DVertexBuffer9

*pStreamData, UINT offsetInBytes, UINT stride)

 HRESULT SetFVF (DWORD fvf)

 HRESULT DrawPrimitive (D3DPRIMITIVETYPE primitiveType, UINT

startVertex, UINT primitiveCount)

 HRESULT Present (CONST RECT *pSourceRect, CONST RECT *pDestRect,

HWND hDestWindowOverride, CONST RGNDATA *pDirtyRegion)

 HRESULT SetTransform (D3DTRANSFORMSTATETYPE state, CONST

D3DMATRIX *pMatrix)

 HRESULT SetRenderState (D3DRENDERSTATETYPE state, DWORD value)

 HRESULT SetTexture (DWORD sampler, IDirect3DTexture9 *pTexture)

 HRESULT SetLight (DWORD index, CONST D3DLIGHT9 *pLight)

 HRESULT LightEnable (DWORD lightIndex, BOOL bEnable)

 HRESULT SetMaterial (CONST D3DMATERIAL9 *pMaterial)

 In the case of the IDirect3DTexture9 class, it mainly provides the texture mapping

features, and has the following member functions:

 IDirect3DTexture9 (void)

 ~IDirect3DTexture9 (void)

 void FromRGB (UINT width, UINT height, void *data)

 void FromBGR (UINT width, UINT height, void *data)

 void FromBGRA (UINT width, UINT height, void *data)

Some graphics primitives require the IDirect3DVertexBuffer9 class. We implemented

some selected member functions from that class, as follows:

 IDirect3DVertexBuffer9 (UINT length, DWORD usage)

 ~IDirect3DVertexBuffer9 (void)

 ULONG Release (void)

 HRESULT Lock (UINT offsetToLock, UINT sizeToLock, void **ppbData,

DWORD flags)

 HRESULT Unlock (void)

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

31

After carefully selecting the member functions to be supported, we finally implemented

all the selected classes and their selected member functions.

4. Test and Results

To show the feasibility of our implementation, we used a lot of demonstration programs

and compare their results with those from desktop Direct3D applications. Our test was

basically a kind of black-box testing, since we did not reflect the internal structures of our

implementations. We will show each of our selected test programs and the corresponding

technical problems.

Figure 2 is the first test program to show that the original Windows-based Direct3D

programs can work on the Linux platforms. The sample program itself is so simple to output a

white triangle on the blue background.

From the technical point of view, these simple test demonstrates our consistent

window-system independent management technique, which works on both of the

Windows and Linux systems. Due to their distinguished management techniques, it was

not an easy work to implement our window-system independent management technique.

In this paper, we used a similar technique to the GLUT library[8], which also supports

both of Microsoft Windows and Linux X-window systems. Finally, our management

technique proved its feasibility through successfully executing the original Windows-

based source codes, without any source-level modifications.

Figure 3 is the sample program used for testing light-and-material processing. As shown

in Figure 2, there are no particular differences between the original Direct3D output (left side)

and that of our Direct3D-on-OpenGL implementation (right side).

In this sample program, we have solved the following technical problems:

 support for the 3DFVF_XYZRHW flag: This feature is not at all supported

by the OpenGL core. In the case of Direct3D, the coordinate values (x, y, z,

1/w) can be assigned to the device coordinates. In our implementation, all

the device coordinates are transformed to (x/w, y/w, z/w), and then, we

Figure 2. Testing a simple triangle on the different window systems.

(left: our implementation on the Linux platform, right: original Direct3D

output on the Windows platform)

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

32

modify the transformation matrix through using the glOrtho() function, to

perform the exactly same operations.

 color interpretations: In the case of Direct3D, D3DCOLOR and

D3DXCOLOR structures store the color values in the (B, G, R, A)-order. In

contrast, OpenGL requires (R, G, B, A)-order. Thus, we stored all the color

values in both of the (B, G, R, A) and (R, G, B, A)-order, for more

efficiency.

Figure 4 shows the multi-primitive test, which checks any problems with multiple output

of difference graphics primitives. As shown in Figure 4, we put a triangle with various colors

on the left side, while another single colored rectangle is located on the right side, to finally

test whether various output primitives are working on the same frame. In our implementation,

this program requires the complete and correct processing on the transformation matrix

handling.

Figure 5 shows our first program for animation output, while our previous tests only

check the static images. For this purpose, as shown in Figure 5, a quadrangular pyramid is

constructed and rotated in real time. Though we show a static image, the test program

performs a dynamic animation of rotating the quadrangular pyramid.

Figure 3. Color tests with various RGBA colors. (left: our

implementation on the Linux platform, right: original Direct3D output on

the Windows platform)

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

33

For the full-scale animations, we needed to solve some technical difficulties on the matrix

handling and rendering pipelines, as follows:

 different coordinate frames between Direct3D and OpenGL: OpenGL is based on

the right-handed coordinate system, while Direct3D uses the left-handed

coordinate system. Thus, we predicted there would be some problems in the

conversion of their coordinate systems. In real implementation, we uses transpose

matrices for the OpenGL pipeline, and negative rotation angles to correct

mismatches, and finally got the same transformation results.

 need to implement SetRenderState() function for the Direct3D: In the case of

Direct3D, most state variables are set by the SetRenderState() function, while

OpenGL uses a set of independent functions for controlling each state variable. A

considerable amount of efforts were required to support these features.

Figure 4. Various primitive tests. (left: our implementation on the Linux

platform, right: original Direct3D output on the Windows platform)

Figure 5. Animation test. (left: our implementation on the Linux platform,

right: original Direct3D output on the Windows platform)

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

34

Figure 6 shows the texture mapping techniques, which are essentially required for

advanced graphics programs. Texture mapping is a graphics technique to overlay a graphical

image on the object surface, rather than a single color, as shown in Figure 6. This technique

requires a large amount of modifications in the graphics rendering pipeline. The final results

are successful, as shown in the figure.

For this demonstration program, we should overcome various technical difficulties, since

the texture mapping is not a simple technique. Especially, we should notice that the texture

mapping techniques in the Direct3D and OpenGL are quite different.

In the case of Direct3D, the IDirect3DTexture9 class perform the core features of the

texture mapping. Thus, CreateTextureFromFile() function actually performs most of required

works, and SetTexture() function only performs the final binding of the textures. In contrast,

OpenGL's glTexImage() function requires many computing time, and thus, we should restrict

Figure 6. Animation with texture mapping. (left: our implementation on

the Linux platform, right: original Direct3D output on the Windows

platform)

Figure 7. Animation with both of lighting and texture processing. (left:

our implementation on the Linux platform, right: original Direct3D

output on the Windows platform)

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

35

the number of its execution. Thus, in our final implementation, we pre-construct the required

textures in CreateTexture() function, using gluBuild2DMipmaps() function. Then,

SetTexture() function uses glBindTexture() function to bind the already constructed texture,

to minimize the required resources.

In Figure 7, we demonstrated the lighting and material features, which are always

required for advanced graphics techniques. The lighting features are essential to implement

the real-world light sources, while the material features are also required to show the real-

world reflections on the object surfaces. Our problem was that the light and material features

(a) our implementation on the Linux platform

(b) (b) original Direct3D output on the Windows platform

Figure 8. A game

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

36

in Direct3D and OpenGL are so different, while we finally achieved the same graphics output

on both platforms.

Using all of these demonstration programs in a step-by-step manner, we finally showed

that the original Direct3D programs implemented on Windows platforms can be executed on

the Linux platforms, without any source-level modifications. In other words, the Direct3D

features are available on the Linux systems. Since our implementation supports light-and-

material processing, perspective transformation, animation loop and texture mapping, we can

integrate all these features into a single program. Figure 8 is an example of those kinds of

programs and shows an animation sequence of a game character. All these programs show

that our implementation works well at least with these sample programs.

We applied much more test cases. Furthermore, these cases are applied in a step-by-step

manner. After implementing a set of functions, then a set of test-cases are applied to test the

feasibility and correctness of our partial implementation. We repeated these steps to get the

currently finalized prototype implementation.

5. Conclusion

In this paper, we aimed at implementing a Direct3D-on-OpenGL library to acquire the

same graphics output on the typical Linux-based systems with OpenGL library, with respect

to the desktop Direct3D library. Based on our design strategies, we implemented a Direct3D-

on-OpenGL emulation library and we showed that a set of demonstration programs produce

the same result with respect to the original Direct3D-based outputs. A sample program even

shows an animation sequence of a game character, to finally show the feasibility of our

implementation.

Actually, all these sample programs are used to perform a kind of black-box testing on

our implementation. We perform these tests in a step-by-step manner, according to the

implementation schedules.

In near future, we plan to release a prototype system with more improved functionalities.

We are also implementing a set of related libraries including OpenGL ES and EGL from

Khronos group, which are already commercially available. Our Direct3D-on-OpenGL

implementation will be also available in near future.

Acknowledgement

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and

Technology (Grants 2011-0014886).

This research was also supported by Basic Science Research Program through the

National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science

and Technology (Grants 2011-0025849).

References

[1] K. Pulli, T. Aarnio, K. Roimela, and J. Vaarala, "Designing graphics programming interfaces for mobile
devices," IEEE CG&A, vol.25, no.6, pp.66-75, (2005)

[2] http://code.google.com/android/what-is-android.html

[3] http://developer.apple.com/iphone/

[4] Yahya H. Mirza and Henry da Costa, "Introducing the New Managed Direct3D Graphics API in the .NET
Framework," MSDN magazine, (Jul 2003)

[5] Mark Segal and Kurt Akeley, The OpenGL Graphics System: A Specification, version 3.1, (2009).

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

37

[6] A. Munshi and J. Leech, OpenGL ES Common/Common-Lite Profile Specification, version 1.1.12 (Full
Specification), Khronos Group, (2008).

[7] K. Pulli, T. Aarnio, V. Miettinen, K. Roimela, and J. Vaarala, Mobile 3D Graphics: with OpenGL ES and
M3G, Morgan Kaufman,(2007).

[8] M. J. Kilgard, The OpenGL Utility Toolkit (GLUT) Programming Interface, version 3, Silicon Graphics Inc.,
(1996).

Authors

Nakhoon Baek is currently an associate professor in the School of

Computer Science and Engineering at Kyungpook National

University(KNU), Korea. He received his BA, MS, and Ph.D degree in

Computer Science from the Korea Advanced Institute of Science and

Technology(KAIST) in 1990, 1992, and 1997, respectively. His research

interests include real-time and mobile graphics systems.

Kwan-Hee Yoo is a professor in the Department of Computer

Education and in the Department of Information and Industrial

Engineering at Chungbuk National University, Korea. He received his

BA in Computer Science from Chonbuk National University in 1985, and

his MS and PhD in Computer Science from KAIST (Korea Advanced

Institute of Science and Technology) in 1988 and 1995, respectively. His

research interests include computer graphics, 3D characters animation,

and dental/medical applications.

International Journal of Smart Home

Vol. 5, No. 4, October, 2011

38

