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Abstract 

 
The present paper focuses on a new class of mesh filter for grayscale images, called grid 

smoothing filter. The framework presented considers an image as a sampling grid associated 

to a set of gray levels. Furthermore, the sampling grid is seen as mesh composed by vertices 

and edges, the number of vertices being equal to the number of pixels in the image.  

Embedding the mesh in a 2D Euclidian space, each vertex has two spatial coordinates and 

one attribute, the value of the gray level. Starting from the classical formulation of Laplacian 

mesh filtering, a novel objective function is introduced.  The minimization of the objective 

function leads to new spatial coordinates for the vertices in the mesh. A reconstruction 

mechanism is then applied to the non-uniform mesh to reconstruct a grayscale image. 

Whereas the Laplacian mesh filter aims at smoothing an image, the grid smoothing tends at 

sharpening the edges of the image. The grid smoothing framework is applied to image 

enhancement in this paper. 

 

Keywords: mesh filtering, grid smoothing, image enhancement. 

 
1. Introduction 
 
     Image enhancement techniques seek at improving the appearance of an image without 
referring to a specific model for the degradation process, while image restoration relies on the 
knowledge of a degradation model [1]. The framework presented in the paper belongs to the 
image enhancement domain. The two main forms of image quality degradation are blur (loss 
of sharpness) and noise. Methods have been developed and address both types of degradation, 
either in a pixel-representation of the image or a mesh-representation. The pixel-
representation considers an image to be a matrix of pixels. The edge enhancement methods 
modify the gray level of the pixels to improve the quality of the image. In a mesh 
representation, the image is represented by nodes (or vertices) and edges. Using the pixel-
representation of an image, adaptive bilateral filters and quadratic-weighted median filters 
were applied with success for edge enhancement [1], [2]. These methods are based on 
filtering and may induce overshooting of the edges. Moreover, the parameters of the filters, in 
the case of the adaptive bilateral filter, are tuned according to a training dataset, narrowing the 
scalability to various applications. In any case, the performance of these methods is bounded 
by the use of the pixel-representation of the image. In low resolution images, the shape of the 
object does not systematically match the matrix and may lead to severe distortion of the 
original shape. For example, a clear straight line whose orientation is 45 degrees is 
represented by a staircase-like line. Image enhancement techniques, such as super-resolution 
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[3], [4], [5] tackle the issue of the misrepresentation of an image by enhancing the resolution 
of the image. In the number of pixels is to stay the same, the paradigm image and matrix may 
be overcome by the use of a mesh or graph-based representation of an image. The mesh 
defined on the image may be feature-sensitive or insensitive. In the feature-insensitive mesh, 
the definition of the mesh does not take into account the gray levels. The edge enhancement 
relies on the filtering of the gray levels in the image [6] which may lead to the same issues as 
in the pixel-representation (overshooting,...). In the feature-sensitive mesh, the graph is 
defined according to the distribution of the gray levels in the image and the position of the 
mesh is adjusted to the objects present in the image to enhance the image [7]. The usual 
problems of this class of techniques are the computation cost (interpolation) and the large 
number of edges in the graph. Mesh creation techniques may be found in [8], [9] and [10]. 
The present paper presents a novel combination of feature-insensitive and feature-sensitive 
mesh approaches, which reduces the complexity of the definition of the mesh and improves 
the representation of the information in the image. 
   
In the presented framework, an image is represented by a graph in which the nodes represent 

the pixels and the edges reflect the connectivity. The original graph (or grid) is a uniform grid 
composed by squares or triangles, depending on the connectivity chosen. The grid smoothing 
process modifies the coordinates of the nodes in the ��, �� plane while keeping the gray scale 
levels associated to the node unchanged. The grid smoothing relies on the minimisation of a 
cost function leading to a compression of the grid in the regions with large gradient values 
and a relaxation in the other regions. As a consequence, the new grid fits the objects in the 
image. The grid smoothing enhances the edges in the original image and does not modify the 
number of nodes. Noise removal techniques may be applied before the grid smoothing, 
depending on the properties of the original images. A new type of mesh smoothing is being 
used [11]. The mesh smoothing approach in [11] modifies the gray levels of the image while 
preserving the ��, ��coordinates of the nodes. 
 

    Section 2 of this paper presents the graph-based representation of an image while section 3 
exposes the mathematical framework of the grid smoothing as well as the convergence 
properties. Section 4 focuses on the reconstruction mechanism and shows results of the grid 
smoothing on blurry images. When dealing with noisy images, smoothing of the image is 
required before the grid smoothing is applied. The complete image denoising chain is 
presented in section 5 as another application of grid smoothing. Conclusion and 
recommendations are underlined in section 6. 
 
2. Graph-based image representation 
 
   Our input data is a graph G=(V,E), embedded in the 3D Euclidian space. Each edge e in E is 
an ordered pair ��, �� of vertices, where s (resp. r) is the sending (resp. receiving) end vertex 
of e [11]. To each vertex v is associated a triplet of real coordinates�� , �� , 	�. 
Let 
�� be the node-edge incidence matrix of the graph G, defined as: 
 


�� �  1 if � is the sending end of edge � �1 if � is the receiving end of edge � 0 otherwise
" 

 
In the rest of the paper, the node-edge matrix 
�� is also denoted 
. 
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Table 1. Number of connections according to the connectivity 

 

Number of nodes Number of connections 
Connectivity 4 

Number of connections 
Connectivity 8 

2500 4900 9702 
10000 19800 39402 
90000 179400 358202 

 
 

Table 2. Computation time according to the connectivity (# � $. $$&) 
 

 Computation time (s) 
Connectivity 4 Connectivity 8 

Per edge Image Per edge Image 
2500 nodes 1.2 ( 10)* 5.9 ( 10)- 1.5 ( 10)* 1.5 ( 10). 
10000 nodes 1.6 ( 10)* 3.3 ( 10). 2.2 ( 10)* 8.9 ( 10). 
90000 nodes 2.8 ( 10)* 5.0 3.3 ( 10)* 1.2 ( 10. 

 
    Considering an image with M pixels, X, Y and Z respectively represent2�., … , �456, 2�., … , �456, and  2	., … , 	456.  X and Y are at first uniformly distributed (coordinates of the 
pixels in the plane), while Z represents the gray level of the pixels. Each pixel in the image is 
numbered according to its column and then its rows. We define L as the number of edges in 
the graph. C is consequently a matrix with L rows and M columns. 
 
    The number of edges depends on the choice of the connectivity for the pixel. If the 
connectivity is equal to four, each pixel is connected to its four closest pixels. The 
initial grid is then composed of squares. If the connectivity is equal to eight, each pixel 
is connected to its eight closest pixels. The initial grid is then composed of triangles. 
The choice of the connectivity is important as it increases the size of the matrix C and 
consequently the computation time required for the grid smoothing (Tab.1, 2). An 
evaluation of L may be derived using the dimensions of the image. If 78  and 79 
represent respectively the number of pixels along the x-axis and y-axis, we have : � 78 ( 79 . For a connectivity equals to 4, 7 � 2: � 78 � 79  and 7 � 4: � 378 �279 � 2  if the connectivity equals 8. Using the notation introduced before, it may be 
observed that the complexity of the algorithm is 7 ( log �7�   (Fig.1). It may be 
explained by the complexity of the conjugate gradient with a stopping criterion =  in 
which the maximal number of iteration is bounded by > ( log�7/=�, > being a constant. 
When using the high connectivity, the number of connections doubles as well as the 
computation time. The choice should be made according to the applications and the 
characteristics of the images. If an image includes thin lines which have to be 
preserved, the high connectivity should be used. For the other cases, the low 
connectivity gives satisfactory results. 
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Figure 1. Computation time per edge in seconds 

 
3. Optimization-based approach to grid smoothing 
 
    The present section introduces the framework for the grid smoothing. An extensive 
study of the convergence of the method as well as its application to satellite images 
may be found in [12], [14]. As depicted in Fig.2, the input of the grid smoothing (left) 
is a grayscale image and its output is a non-uniform mesh (right). Each vertex in the 
new mesh is associated with the same grayscale value as its corresponding pixel. 
 

 
 

Figure 2. Synoptic of the grid smoothing 

 
 
3.1. General framework 

 

   A cost function is introduced to fit the content of the image with the grid. The main 
idea is that the regions where the variance is small (low gradient) require fewer points 
than the regions with a large variance (large gradient). The grid smoothing techniques 
will move the points of the grid from small variance regions to large variance regions. 
To achieve this goal, a cost function J is defined as follows: 
 @ � @A B @C 
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where 
 

@A � 12 2DE � EFG6HDE � EFG B I�E6JE�5 
 
and  
 

@C � 12 2DK � KFG6HDK � KFG B I�K6JK�5 
 
with J � 
6Ω
  and  EF  (resp. KF  ) represents the initial coordinates of X (resp. Y). Ω  is a 
diagonal matrix. The first term in the expression of the cost function is called the attachment 
as it penalises the value of the cost function if the coordinates are too far from the original 
values. It is introduced to avoid large movement in the grid [11]. I is a real number and acts 
as a weighing factor between the terms of the cost function.  
 
Using the notations introduced before, the diagonal elements of the matrix  Ω  are defined as 
follows: 
 Ω� � �	M � 	N�- 
 
    The matrix Ω represents the square of the difference in graylevels of each edge. We may 
remark that  Ω  and H  are square diagonal matrices which dimensions are respectively 7 ( 7 
and : ( :. If we consider the triangles defined in Fig.3, the minimization of @ leads to the 
reduction of the areas of the triangle formed by two connected nodes (filled circles) and the 
projection of one of the point on the Z-axis (empty circle). We have indeed: 
 

E6JE � O��M � �N�-�	M � 	N�- � O P8-Q-
R

ST.

R

ST.
 

 

 
Figure 3. Geometric interpretation of the grid smoothing 

 
    As it may be seen in Fig.4 where the arrows represents the effect of the grid smoothing, by 
minimizing the areas of the triangles, the edges in the image act as attractors for the points in 
the grid. As a consequence, the edges are better defined in terms of location and steepness in 
the smoothed grid.  
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Figure 4. Effect of the grid smoothing 

 
3.2. Convergence of the cost function with fixed points and attachment 

 

    The cost function with attachment results in a grid whose size might differ from the 
original grid size. A solution to conserve the original size is to fix the coordinates of the outer 
points of the grid.  
 
    Let the E  coordinates be partitioned into two parts, variable coordinates '� ' and fixed 
coordinates 'U' giving E � 2� U56 
 
Then the first order cost function without attachment is 
 

@8 � 12 V2�� � �W�6 05H X�� � �W�0 Y  B I2�6  U6  5 Z
86
[6\ Ω2
8 
[5 X�UY] 

 
Expanding the above equation gives 
 

@8 � 12 2�� � �W�6H8�� � �W� B I�6
86Ω
8� B 2I�6
86Ω
[U B IU6
[6Ω
[U5 
 
The gradient of @8  with respect to x is 
 ^8@8 � H8�� � �W� B I
86Ω
8� B I�6
86Ω
[U 
 
Setting the gradient to zero gives 
 � � �2H8 B I
86Ω
85).2H8�W � I
86Ω
[U5 
 
This gives the exact solution for the coordinates x. 
Let �_`. and �_ be x at  iterations  a B 1 and a  then 
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 �_`. � �_ � >_^8@8 
 
 The gradient of  @8   at the point �_`.  is equal to 
 ^8@8bcd � ^8@8b � >_H8^8@8b � >_
86Ω
8^8@8b 
 
 
The optimal step condition may by expressed by ^8@8b 6. ^8@8bcd � 0. It leads to: 
 

>_ � ^@6^@^@6�Qf B θ
86Ω
8�^@ 
 
The experience shows that the convergence is quicker using the conjugate gradient descent 
with optimal step. A quadratic function may be expressed by: 
 

@��� � 12 �6J� B h6� B i 

 
where A is a definite positive matrix [13]. 
At each iteration, �_`. � �_ � >_j_, where >_ is the step and j_, is the direction of descent. 
The direction and the step are calculated at each iteration. By assimilation with the cost 
function with fixed points and attachment, we have  J � H8 B I
86Ω
8   and h � �W6H8 �IU6
[6ΩCf. The step at the iteration n may be computed by: 
 

>_ � �h � H8�W�6�h � H8�W�
j_6 H8j_  

 
and the direction at iteration n+1 is equal to: 
 

j_`. � �_`. B �_`.6�_`.�_6�_ j_ 

 
where   �_`. � �_ � >_H8j_  and   �. � h � H8�W . 
 
3.3. Stopping criterion 
      
      As mentioned earlier, for large scale problem, the minimisation uses a gradient descent 
algorithm as it is computationally expensive to inverse very large matrices. Three gradient 
methods are used for the simulation, namely the steepest descent gradient with fixed step, the 
steepest descent gradient with optimal step and the conjugate gradient with optimal step. The 
descent gradient methods are iterative process and require a stopping criterion = to stop the 
iterations. The chosen criterion is the simulation is the norm of the gradient ^@. The iterative 
process continues while ^@6^@ l =. When it is possible, the comparison between the exact 
coordinates given by the inversion of the matrix and the result of the gradient descent 
algorithm is small and is of the order of  =.  For example, if  = � 10)m, the difference between 
the exact coordinates (matrix inversion) and the coordinates obtained through the gradient 
descent is 10)m of the width of a pixel. The conjugate gradient descent is faster for any =.  
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a) Lena (details) b) Grid (I � 1) c) Grid (I � 0.05) 

 

Figure 5. Results of the grid smoothing according to # 
 
 
4. Image reconstruction 
 
4.1. General Framework 
 
     The output of the grid smoothing is a non-uniform mesh denoted  no in which the number 
of vertices is equal to the initial number of pixel in the image. The purpose of this section is to 
devise a mechanism to map the gray values associated to no into a set of gray values 
associated to a uniform grid nM . The reconstruction may be seen as an application p defined 
by: 
 p: D�, �, r��, ��G s Dt, u, r�t, u�G 
 
    Fig.5 represents  no in red and nM in blue for an image representing a white square (pixel 
5 to 15) over a black background. It may be seen that no and nM overlaps for most of the 
mesh. It is then straightforward to assign gray values in this case. However, at the edge 
proximity (rows/columns 5 and 15), the two grid does not overlap.  The image reconstruction 
mechanism uses two rules to assign gray value to these vertices.  
 

 
 

Figure 6. Output of the grid smoothing (red) and resampling grid (blue) 
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For each vertex v in nM it is possible to find the three spatially closest vertices denoted 
i, j, and k in no . From this point, two options are available: either we map the gray 
value of the closest node in no onto v or we map the average of the gray values. The 
first option is named Nearest neighbor mapping while the second option is called  Facet 

mapping. 

 
 

Figure 7. Detail of figure 6 (vw in red and vx in blue). 
 

Considering the example in Fig.6, a nearest neighbor mapping will allocate the gray level  r���to vertex v as 
 r��� � r�t� 
 
as node i is the closest vertex to node v. 
 

In the same example, the facet mapping will give  
 

r��� � 13 Dr�t� B r�u� B r�y�G 
 
 
4.2. Simulations 
 
   The simulations were performed using a standard laptop (1.87 GHz processor, 2GB RAM 
and Windows Vista SP1 as operating system) and Matlab R14 Service Pack 2. Fig.5.b and 5.c 
shows the results of the grid smoothing process on a detail of the original image (Fig.5.a 
Fig.5.b shows the results of the grid smoothing when I � 1 while Fig.5.c presents the result 
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when I � 0.005. The results were obtained with a conjugate gradient descent. The regions 
with high variations in the gray levels exposes more points than the other regions leading to a 
distortion of the original grid. The distortions present in the two grids are similar. However, a 
higher I leads to a greater fitting of the shapes, while being more sensitive to noise. 
 

Fig.8 presents the results of the edge enhancement, on a blurry image. The size of the 
original image (Fig.8.a is 256 ( 256 pixels. It may be observed that the level of noise is low 
but that the edges are not well defined (blurriness). The enhanced image (Fig.8.b exposes a 
good restoration on the edges while not compromising the quality of the image. The edges are 
smooth and continuous (the pixels which may be seen are due to the pdf compression of the 
image and are not present in the original simulation results). The texture of the bird is 
recovered while the dimensions are slightly altered. A closer look at the improvement may be 
found in the details presented in Fig.9. 
 

 
 

Figure 8. Test image bird z&{ ( z&{ pixels (left) and the enhanced image using 
grid smoothing (right) 

 

 
 
Figure 9. Details of the test image bird (top row) and the enhanced image using 

grid smoothing (bottom row). 
 



International Journal ofInternational Journal ofInternational Journal ofInternational Journal of    Smart Home Smart Home Smart Home Smart Home     

Vol. 5, No. Vol. 5, No. Vol. 5, No. Vol. 5, No. 2222, , , , AprilAprilAprilApril, 2011, 2011, 2011, 2011    

    

    

11 

 
5. Application: Edge enhancement of natural scene smoothed image 
 
5.1. Image smoothing 

 

  Smoothing is often used to reduce noise within an image and most smoothing methods are 
based on low pass filters. The objective of these techniques is to separate the useful 
information from the noise. The range of image smoothing techniques may be divided into 
linear and non-linear methods. The linear methods are based on the convolution of a box of 
coefficient with the image and are usually named box filter. The coefficients are chosen in a 
way that a low pass filtering of the image is achieved. The average filter and the weighted (or 
binomial) average filter fall into this class. These types of filter are computationally 
inexpensive and easy to implement. They are however seldom used because they induce blur 
in the image and do not conserve the crispness of it. Much better performances may be 
obtained using non-linear smoothing filters. This class of smoothing filters includes the very 
well-known median filter as well as bilateral filters and Wiener filter.  
 
5.2. Graph-based image smoothing 

 
  The graph-based technique used in this paper is a generalization of the Laplacian mesh 
smoothing.  In the mesh smoothing framework, the image is represented using the matrix 
�� 
introduced in second section [11]The mesh smoothing techniques rely on the minimisation of 
a cost function  @| , }  being the gray levels of the vertices. The result is a new vector }~�6containing the filtered gray levels of the image. The general form of the cost function is: 
 

@ � 12 XD} � }�G6HD} � }�G B I�}6} B I.}6J�} B I-}6J�-}Y 
 
where 

• Q is a symmetric positive definite weighting matrix, 
• I�, I., and I- are weighting scalars,  
• J� � 
6Ω
, and Ω is a diagonal matrix of weights associated to each edge, 
• 
 is the node-edge matrix of the image,  
• } and }�  are respectively the value of the pixels and their initial value.  

 
It may be shown that the previous cost function is of quadratic form and accept an unique 
solution.  
 
Various techniques may be devised from this general framework. The following list 
summarizes the ones used in this report: 
 

• First-order grid smoothing (FOWA) 
Cost function:   

@ � 12 XD} � }�G6D} � }�G B I}6J}Y 
where � 
6
 . 
 
Solution:  
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}~�6 � �r B IJ�).}� 
 

• Second-order grid smoothing (SOWA) 
Cost function:   

@ � 12 XD} � }�G6D} � }�G B I}6J-}Y 
 

Solution:  }~�6 � �r B IJ-�).}� 
 

• Contextual first-order grid smoothing (CFOWA) 
Cost function:   

@ � 12 XD} � }�G6HD} � }�G B I}6J}Y 
 
where  H is a diagonal matrix chosen equal to  
 H � jtU���., … , �4� 
 ��, being the local standard deviation evaluated around the node i. 
 
 
Solution:  }~�6 � �H B IJ�).}� 

 
• Contextual second-order grid smoothing (CSOWA) 

Cost function:   
@ � 12 XD} � }�G6HD} � }�G B I}6J-}Y 

 
Solution:  }~�6 � �H B IJ-�).}� 
 

5.3. Simulations 

 
    Tab.3, 4, 5 and 6 presents the results of the mesh smoothing applied to a series of test 
images (extracted from the Waterloo database). In these tables, various smoothing techniques 
(Median filter, Wiener filter and bilateral filter) are used to benchmark the mesh smoothing.  
 
    Tab.3 presents the results in terms of Peak Signal to Noise Ratio (PSNR) of the smoothing 
of the image when corrupted by AWGN of mean equals to 0 and variance to 0.01. For each 
image, the corruption of the image and its smoothing were applied 15 times to each image 
and the mean PSNR are displayed in the table. It may be observed that the mesh smoothing 
filters are very competitive compared to other techniques and outperform them in most cases.  
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   Tab.4 highlights the effect of the characteristic of the image in the image denoising process.  
Good results are achieved when the image include simple shapes and a low level of details 
(bird, lena), while results on complex images like bridge are usually poor. 

 
Table 3. Performance analysis of the smoothing on various test images 

 
 Initial Median Wiener Bilateral FOWA SOWA CFOWA CSOWA 

Bird 21.02 27.83 28.39 26.28 30.10 30.98 30.37 31.07 

Bridge 21.11 23.84 25.24 24.16 25.45 25.64 25.67 25.81 

Camera 21.38 24.62 26.95 25.90 25.68 25.95 26.67 26.65 
Goldhill 21.02 24.94 26.33 24.88 26.68 26.70 26.98 26.84 
Lena 21.20 26.23 27.43 25.35 26.95 27.35 27.47 27.77 

 
Table 4.  Global PSNR improvement over the dataset 

 
 FOWA SOWA CFOWA CSOWA 

Bird 8.16 8.97 8.65 9.30 

Bridge 3.6 3.78 3.91 3.99 

Camera 3.6 3.90 4.84 4.84 

Goldhill 4.72 4.74 5.11 4.99 
Lena 4.93 5.35 5.68 5.91 

Average 5.00 5.35 5.64 5.81 

 
 
 

Table 5.  PSNR improvement according to the power of the noise 
 �- FOWA SOWA CFOWA CSOWA 

0.002 3.23 3.57 4.19 4.29 

0.004 4.43 4.78 5.17 5.31 

0.006 5.25 5.57 5.84 6.03 

0.008 5.83 6.18 6.30 6.50 

0.01 6.28 6.61 6.69 6.91 

 
    Tab.5 shows a comparison between the mesh smoothing techniques. The images were 
corrupted by 5 levels of noise ranging from 0.002 to 0.01 in variance.  It appears that the 
CSOWA performs globally better over the dataset that the other techniques.  However, the 
computational cost of CSOWA is greater than FOWA for example. From a general point of 
view, the second order techniques give better results than the first order ones. 
 
   Finally, Tab.6 presents the optimal value of I for the mesh smoothing. The larger the power 
of the noise is, the greater I should be. It may be explained by the fact that the image requires 
greater smoothing in this case.  When working with contextual mesh smoothing, the value of I increases by a factor 10 to 20. The reason is that, as the local standard deviation values  
ranges from 0 to 100 in our dataset, the attachment term is strengthen. As a consequence, I 
should be increased to achieve similar smoothing as the one obtained in non-contextual 
smoothing.  
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Table 6. Optimal # according to the power of the noise 
 �- FOWA SOWA CFOWA CSOWA 

0.002 0.32 0.15 6.10 2.90 
0.004 0.50 0.29 11.40 6.68 
0.006 0.66 0.43 16.60 10.80 
0.008 0.80 0.58 22.00 16.24 
0.1 0.93 0.72 27.20 19.90 

 
Fig. 10 exposes the results of the mesh smoothing when the power of the AWGN is 0.008. 

Under the image, the PSNR, VIF and MSSIM index are mentioned. By opposition to the 
PSNR which is an absolute value of the error, the VIF (visual information factor [15]) and 
MSSIM (multi-scale structure similarity index [16]) index oriented to the perception by the 
human eye of the quality of an image. The VIF and MSSIM are numbers between 0 and 1. A 
index close to 1 means that the test image and reference image are very close in quality. It 
may be seen that the mesh smoothing methods outperforms the other ones for the bird test 
image. However, the denoised image becomes blurry.  
 
Fig.11 shows the results of the grid smoothing on the test images. The corrupted images are 

fist smoothed using the mesh smoothing approach (FOWA) and then enhanced using the grid 
smoothing filter.  The reconstruction of the image uses the nearest neighbour mapping. It may 
be clearly observed that the edges in the enhanced image are sharper and of better visual 
quality. 
 
 

 
7. Conclusion 
 
    In conclusion, a new framework to enhanced images without a model for the degradation is 
presented in the paper. The method relies on the smoothing of the coordinates of the pixels in 
the image. The results of the image enhancement are promising. Combined with the mesh 
smoothing approach, the method performs well on noisy images. The output of the process is 
not a pixel-representation of the image. It leads to the main drawback of the technique which 
is the computational cost of the display of the facets. To overcome these limitations, further 
studies will involve redefinition of the connections in the grid to limit the number of facets. 
Another direction for future research will be to combine the mesh and the grid smoothing in a 
single operation, the objective being to define a single cost function performing the same 
operations. 
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Figure 10.  Performance evaluation on the bird image with AWGN of �z � $. $$� 

(PSNR, VIF-MSSIM). 
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Figure 11. Image denoising results (Noisy images in the left column, smoothed 

image in the middle column and enhanced image in the right column). 

 

 

 

 

 
 



International Journal ofInternational Journal ofInternational Journal ofInternational Journal of    Smart Home Smart Home Smart Home Smart Home     

Vol. 5, No. Vol. 5, No. Vol. 5, No. Vol. 5, No. 2222, , , , AprilAprilAprilApril, 2011, 2011, 2011, 2011    

    

    

17 

 
References 
 
[1] Zhang B. and Allebach J.P., “Adaptive bilateral filter for sharpness enhancement and noise 

removal”, IEEE Trans. on Image Processing, vol.17, no.5, pp.664-678, May 2008. 
[2] Aysal T.C. and Barner K.E., “Quadratic weighted median filters for edge enhancement of noisy 

images”, IEEE Trans. on Image Processing, Vol. 13, No. 5, pp.825-938, Sep./Oct. 2007. 
[3] Liyakathunisa Kumar C.N.R. and Ananthashayana V.K., “Super Resolution Reconstruction of 

Compressed Low Resolution Images Using Wavelet Lifting Schemes”, Computer and Electrical 
Engineering, 2009. ICCEE '09. Second International Conference on,Volume 2 pp629 -633, 2009. 

[4] Caramelo F.J., Almeida G., Mendes L., and Ferreira N.C., “Study of an iterative super-resolution 
algorithm and its feasibility in high-resolution animal imaging with low-resolution SPECT 
cameras”, Nuclear Science Symposium Conference Record, 2007. NSS '07. IEEE , vol.6, no., 
pp.4452-4456, Oct. 26 2007-Nov. 3 2007. 

[5] Toyran M. and Kayran A.H. “Super resolution image reconstruction from low resolution aliased 
images”, Signal Processing, Communication and Applications Conference, 2008. SIU 2008. IEEE 
16th , vol., no., pp.1-5, 20-22 April 2008. 

[6] Wang C.C.L., “Bilateral recovering of sharp edges on feature-insensitive sampled meshes”, IEEE 
Trans. on Visualization and Computer Graphics, vol.12, no. 4, pp.629-639, Jul./Aug. 2006. 

[7] Xu D. and Adams M.D.:, “An improved normal-meshed-based image coder”, Can. J. Elect. 
Comput. Eng., Vol. 33, No. 1, Winter 2008. 

[8] Feijun J. and Shi B.E., “The memristive grid outperforms the resistive grid for edge preserving 
smoothing”, Circuit Theory and Design, 2009. ECCTD 2009.181 -184. 

[9] Shuhui B., Shiina T., Yamakawa M., and Takizawa H., “Adaptive dynamic grid interpolation: A 
robust, high-performance displacement smoothing filter for myocardial strain imaging”, 
Ultrasonics Symposium, 2008. IUS 2008. IEEE , vol., no., pp.753-756, 2-5 Nov. 2008. 

[10]Huang C.L.and Chao-Yuen Hsu C.Y.:, “A new motion compensation method for image sequence 
coding using hierarchical grid interpolation”, Circuits and Systems for Video Technology, IEEE 
Transactions on , vol.4, no.1, pp.42-52, Feb 1994. 

[11] Hamam Y. and Couprie M., “An Optimisation-Based Approach to Mesh Smoothing: 
Reformulation and Extension”, Lecture Notes in Computer Science, Springer, Volume 5534-2009 
pp31-41, 2009.  

[12]Noel G., Djouani, K., and Hamam,.Y, “Optimisation-based Image Grid Smoothing for Sea Surface 
Temperature Images”, Advanced Concepts for Intelligent Vision Systems, ACIVS 2010, Sydney, 
Australia.  

[13] Fletcher, R., and Reeves, CM., “Function Minimization by Conjugate Gradient”, The Computer 
Journal, British Computer Society, 1964. 

[14 ]Noel G., Djouani, K., and Hamam,.Y, “Grid Smoothing: A graph-based Approach”, 15th 
Iberoamerican Congress on Pattern Recognition, CIARP 2010, Sao Paulo, Brasil. 

[15]Sheikh, H.R. and Bovik, A.C.,” Image information and visual quality”, Image processing, IEEE 
Transactions on, vol.15, no.2, pp. 430-444, Feb. 2006. 

[16] Z. Wang, E. P. Simoncelli and A. C. Bovik, "Multi-scale structural similarity for image quality 
assessment," IEEE Asilomar Conference Signals, Systems and Computers, Nov. 2003.  

 
 

 

 

 

 

 

 



International Journal ofInternational Journal ofInternational Journal ofInternational Journal of    Smart HSmart HSmart HSmart Home ome ome ome     

Vol. 5, No. Vol. 5, No. Vol. 5, No. Vol. 5, No. 2222, , , , AprilAprilAprilApril, 2011, 2011, 2011, 2011    

    

    

18 

 

 

 

Authors 

 
Guillaume Noel received his MSc degree in information and 
communication technologies from the Ecole Telecom ParisTech ENST 
of Paris, France  in 2003. Since April 2008 he is seconded by the French 
Ministry of Foreign Affairs to the French South African Institute of 
Technology (FŚATI) at Tshwane University of Technology (TUT), 
Pretoria, South Africa. He is currently working towards the doctorate of 
technology in electrical engineering.  His research interests are focused 
on image analysis and processing,  computer vision, machine 

intelligence, and  wireless cellular networks.  
 

Karim Djouani is professor, scientist and technical group supervisor of 
soft computing, complex systems and optimization. Since July 2008 he 
is seconded by the French Ministry of Higher Education to the French 
South African Institute of Technology (FŚATI) at Tshwane University 
of Technology (TUT), Pretoria, South Africa. He is also with the SCTIC 
team of the LISSI lab, University Paris Est. He was also national and 
European projects manager at the LISSI Lab.  His current works focus 
on the development of novel and highly efficient algorithms for 

reasoning systems with uncertainty as well as optimization, for distributed systems, 
networked control systems, wireless ad-hoc network, wireless and mobile communication, 
and wireless sensors networks as well as Robotics. He has authored/co-authored over 100 
articles in archival journals and conference proceedings as well as five chapters in edited 
books. Prof. Djouani is a Member of IEEE ComSoc and CS societies and several National 
Research task Group (GDR-MACS, GDR-ISIS, etc.).  
 

Prof. Yskandar HAMAM graduated as a Bachelor of Electrical 
Engineering from the American University of Beirut (AUB) in 1966. He 
then obtained his M.Sc. in 1970 and Ph.D. in 1972 from the University 
of Manchester Institute of Science and Technology. He also obtained his 
“Diplôme d'Habilitation à Diriger des Recherches” (equivalent to D.Sc.) 
from the « Université des Sciences et Technologies de Lille » in 1998. 
He conducted research activities and lectured in England, Brazil, 
Lebanon, Belgium and France. He was the head of the Control 

department and dean of faculty at ESIEE, France. He was an active member in modeling and 
simulation societies and was the president of EUROSIM. He is presently the Scientific 
Director of the French South African Institute of Technology (F’SATI) at the Tshwane 
University of Technology in South Africa. He is presently Emeritus Professor at ESIEE and is 
a member of the Informatics Centre of ESIEE-Paris and a member of the LISV laboratory of 
the “Université de Versailles Saint Quentin en Yvelines”. He is senior member of the IEEE. 

 
 
 


