
International Journal ofInternational Journal ofInternational Journal ofInternational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, October, 2010ober, 2010ober, 2010ober, 2010

27

A Software Architecture for Decision Support of

Building Sensor Data

Apkar Salatian

 School of Information Technology and Communications

American University of Nigeria, Yola Bypass, PMB 2250, Yola, Nigeria

Email: apkar.salatian@aun.edu.ng

Abstract

Building operators need to interpret the high volumes of noisy data generated from the

environmental sensors in their buildings. In this paper we propose a software architecture

which processes the building monitor data to provide enhanced decision support in the form

of assessments and accurate summaries to building operators in order to improve the quality

of building performance. Our architecture has been tested on over 8 days worth of continuous

data and the results are very encouraging.

Keywords: Software architecture, signal processing, building, temporal reasoning.

1. Introduction
Building operators are confronted with large volumes of continuous data from multiple

environmental sensors which require interpretation. This data presents two major challenges.

The first challenge is to distinguish between significant and insignificant events.

Insignificant events need to be processed for a number of reasons: retaining the data obtained

during insignificant events and including them in further processing will give an inaccurate

history of the building when, for example, requesting the mean temperature; and such data

must be filtered out (ignored) by the building operator.

The second challenge is to interpret the large amounts of continuous data - this is

emphasised when there are many environmental parameters being recorded simultaneously.

Environmental parameters are usually interpreted in the context of other environmental

parameters together with events that have happened in the past. It is far too time consuming

for building operators to look at all the data to make informed decisions. Summaries are

hence required. Building operators are interested in trends. Cross comparing between trends

of different sensor signals allows staff to identify events.

In this paper we describe the ABSTRACTOR [1] software architecture which has been

developed to provide enhanced decision support to building operators by removing

environmentally insignificant events and performing summarisation and building state

assessments. The software architecture was inspired by [2].

The structure of this paper is as follows. Section 2 describes ABSTRACTOR’s software

architecture to interpret high frequency noisy building data. Section 3 discusses the results of

ABSTRACTOR. Section 4 discusses related work and final conclusions are given in section 5

IntIntIntInternational Journal ofernational Journal ofernational Journal ofernational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010

28

2. Software Architecture

Figure 1 – Context Diagram of the ABSTRACTOR System

Figure 1 shows the Context Diagram of the ABSTRACTOR system. The ABSTRACTOR

system takes sensor data from the environmental monitors attached to the building and

presents to the Building operators a graphical summary of the sensor data in terms of trends to

allow qualitative reasoning and building state assessments for decision support.

Figure 2 – Data Flow Diagram of the ABSTRACTOR System

Figure 2 shows the data flow in the ABSTRACTOR system of figure 1. Data is initially

filtered to get rid of environmentally insignificant events; the resulting data stream is then

converted by a second process into temporal intervals (trends) to provide a graphical

summary of the data. These temporal intervals are interpreted by a third process which

generates a building state assessment by identifying environmental events.

International Journal ofInternational Journal ofInternational Journal ofInternational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, October, 2010ober, 2010ober, 2010ober, 2010

29

Figure 3: Overall Software Architecture of the ABSTRACTOR System

We, therefore, derive the overall software architecture of the ABSTRACTOR System in

form of a Structure Chart as shown in Figure 3. Our software architecture defines the overall

structure, the main modules and their connections of our system. By separating the system

into 3 distinct independent modules we believe that ABSTRACTOR has low coupling and is

highly cohesive. We shall describe each module in turn.

2.1. Filter Data Module

1. copy the first k values of the sensor data to be the first k values of the cleaned sensor data

2. for n = (k+1) to (number of points in the sensor data– k) do

3. create a window of points from (n-k) to (n+k).

4. take the average all the values in this window

5. set the nth value of the cleaned sensor data to be

 the average value of the window

6. end for

7. copy the last k values of the sensor data to be the last k values of the cleaned sensor data

Figure 4: Algorithm for Filter Data Module

Initially data needs to be filtered to get rid of non-significant events in environmental

monitoring data e.g air temperature spikes which occur during a cold spell when someone

opens a window for a short period. If this happens infrequently then such events are

insignificant and should be treated as noise and removed.

ABSTRACTOR uses an average filter with k=10 because it removes all the very short

duration spikes from the outdoor temperature data whilst revealing the short duration trends

hidden in the raw data. This is because a median filter removes transient features lasting

shorter than half the width of the window hence events lasting more than half the width of the

window will not be removed, a low-pass filter attenuates noise (noise may have some low-

frequency components) and a high-pass filter eliminates low frequency variations and trends

leaving only the higher frequency components.

IntIntIntInternational Journal ofernational Journal ofernational Journal ofernational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010

30

2.2. Interval Identification Module

1. Apply the inferences in ∆H2 which derive only increasing or decreasing trends by trying to combine

the first two intervals; if this succeeds try to combine this new interval with the next and so on. If

combination fails, then we take the interval which failed to be combined, and use it as a new starting

point.

2. Apply inferences in ∆H2 which derive only steady trends.

3. Set flag still-to-do to true.

4. while still-to-do do

5. Set previous to the number of intervals generated so far.

6. Apply the inferences in ∆H3

7. Apply the inferences in ∆H2

8. Set still-to-do to previous = current number of intervals.

9. endwhile

Figure 5: Algorithm for Interval Identification Module

Given continuous data it is computationally expensive to reason with each data value on a

point to point basis. Interval Identification is the classification of filtered data generated by

the filtering process into temporal intervals (trends) in which data is steady, increasing and

decreasing. One is also interested in the rate of change e.g rapidly increasing, slowly

decreasing etc. One must decide the beginning and end of an interval.

Our algorithm for identifying trends involves following two consecutive sub-processes

called temporal interpolation and temporal inferencing. Temporal interpolation takes the

cleaned data and generates simple intervals between consecutive data point. Temporal

inferencing takes these simple intervals and tries to generate trends – this is achieved using 4

variables: diff which is the variance allowed to derive steady trends, g1 and g2 which are

gradient values used to derive increasing and decreasing trends and dur which is used to

merge 3 intervals based on the duration of the middle interval. Temporal Inferencing rules to

merge 2 meeting intervals (∆H2) and 3 meeting intervals (∆H3) use the 4 variables to try to

merge intervals into larger intervals until no more merging can take place. The algorithm for

interval identification is summarised in figure 5. For further discussion of the algorithm the

reader is advised to read [3].

2.3. Interpretation Module

Figure 6: Example of rules to apply to global segments

Given overlapping temporal intervals it is proposed, in the spirit of [4] they are split into

global segments. A change in the direction of change (slope) of one (or more) channels or a

change in the rate of change of one (or more) channels contributes to a split in the temporal

International Journal ofInternational Journal ofInternational Journal ofInternational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, October, 2010ober, 2010ober, 2010ober, 2010

31

intervals creating a global segment. A global segment can be considered as being a set of

intervals - one for each channel.

The algorithm for interpretation involves applying rules to the global segments to identify

particular building events. If rules are true over adjacent global segments then one can

determine when the environmental event started and ended. Examples of rules are shown in

figure 6.

3. Results

Figure 7: ABSTRACTOR applied to environmental data

ABSTRACTOR has been tested on over 8 days (12179 minutes) worth of continuous data (see

figure 7a). The data was the heat-flux into a wall and the difference in internal and external

temperature (ti-t0) measurements; the sampling frequency of the signals is one data item every 15

minutes. No prior knowledge of events that occurred within this data set was known to the expert or

the tester. The application of the average filter (k=10 filter provides a running five and a quarter hour

running average) is shown in the middle graph (b) and the intervals generated are shown in the bottom

graph (c). 15 minutes. No prior knowledge of events that occurred within this data set was known to

the expert or the tester. The application of the average filter (k=10 filter provides a running five and a

quarter hour running average) is shown in the middle graph (b) and the intervals generated are shown

in the bottom graph (c).

(a)

(b)

(c)

IntIntIntInternational Journal ofernational Journal ofernational Journal ofernational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010

32

Overall, ABSTRACTOR has a sensitivity of 56%, specificity of 64%, predictive value of 43%, a

false positive rate of 57% and a false negative rate of 24%. These results mean that when a fault is

present ABSTRACTOR is detecting it only 56% of the time but when there is no fault it will correctly

identify this 64% of the time. Whilst it would seem that ABSTRACTOR is only slightly better than

tossing a coin to decide the presence or absence of a fault it needs to be remembered that the actual

fault conditions were derived from an expert’s manual abstraction of the raw data which is dependent

on the expert’s attitude and experience. A direct comparison with the raw data is meaningless because

the data is at intervals much shorter than the trends. If ABSTRACTOR were incorporated in its present

state into a control system it would generate a high number of false alarms (57%) but would fail to

detect a fault only 24% of the time. These results are indicating that ABSTRACTOR is a more liberal

system than a random system [5].

4. Related Work
A potential architecture for managing building monitor data is the blackboard. A

blackboard system consists of a set of independent modules, called Knowledge Sources (KSs)

that contain the domain-specific knowledge in the system, and a blackboard which is a shared

data structure to which all the KSs have access. When a KS is activated it examines the

current contents of the blackboard and applies its knowledge either to create a new hypothesis

and write it on the blackboard, or to modify an existing one [6].The blackboard is not suitable

for our application because it is a way for the different modules to contribute to the

blackboard to solve a particular problem – in our case our architecture has been developed to

be a sequence of processes where the output of one process is the input to another.

Another potential approach is the Service Oriented Architecture (SOA). SOA defines how

to integrate vastly disparate applications for a web-based environment and uses multiple

implementation platforms. SOA allows interoperability between different systems and

programming languages and provides the basis for integration between applications on

different platforms through a communication protocol. SOA is achieved by using middleware

which is computer software that connects the different software components and allows them

to interact [7]. The SOA is too complex for our application – for our system we only need a

single platform and though the modules could be written in different languages, the output of

one process would be the input to the next so a simple communication protocol would be

required.

Another approach to managing large volumes of data could be a distributed architecture.

A distributed architecture consists of multiple autonomous processes that communicate

through a computer network. The processes interact with each other in order to achieve a

common goal. Distributed architecture eliminates the costs of middleware by allowing

individual systems to participate in shared processes without needing to host matching

middleware and without having to go through a centralized server. Like the SOA, a

distributed architecture is too complex for our application – the only interaction between

processes required to obtain the goal of our system is for the output of one process would be

the input to the next. Moreover, our architecture can run on a single processor and does not

require a network.

Another potential approach to interpreting building monitor data is to use the 3-tier

architecture. The 3-tier architecture is similar to ABSTRACTOR - however, topologically

they are different. The 3-tier architecture is a client-server architecture which consists of 3

tiers: a presentation tier which is the user interface for a client; a logic tier which controls the

application’s functionality by performing related processing; and a data tier which consists of

database servers to store and maintain the data. A general rule in 3-tier architectures is the

presentation (client) tier never communicates directly with the data tier - all communication

International Journal ofInternational Journal ofInternational Journal ofInternational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, OctVol.4, No.4, October, 2010ober, 2010ober, 2010ober, 2010

33

must pass through the logic tier. Like ABSTRACTOR, the 3-tier architecture is linear. In a 3-

tiered system, it is expected to have different hardware for each tier whereas with

ABSTRACTOR everything will be on one system – therefore, with the ABSTRACTOR

architecture we save costs making it an inexpensive system.

5. Summary and Conclusions
The interpretation of building data is non-trivial. There is a need for insignificant event

removal to give accurate summaries to building staff. Due to the vast amounts of data there is

a need to derive trends in the data and reason qualitatively. A software architecture is required

to capture these design decisions.

The ABSTRACTOR software architecture is designed in such a way to allow the

interpretation of building data and the results of ABSTRACTOR are encouraging. The

software architecture is simply a data flow system where the structure of the design is

determined by the orderly linear motion of data from component to component.

In summary, ABSTRACTOR reasons with multiple signals in an intuitive way. Although

it is not perfect, it is a step forward in the development of systems for the interpretation of

building data.

.

References

[1] Salatian, A., & Taylor, B. (2008) ‘ABSTRACTOR: An Agglomerative Approach to Interpreting

Building Monitoring Data’, Journal of Information Technology in Construction, Vol. 13, pages 193-

211, ISSN 1874-4753, May 2008.

[2] Salatian, A., & Oriogun, P. (2011) ‘A Software Architecture for Summarising and Interpreting ICU

Monitor Data’, International Journal of Software Engineering, ISSN: 1687-6954 (print version), ISSN:

2090-1801 (electronic version). In Press.

[3] Salatian, A., & Taylor, B. (2004) 'An Agglomerative Approach to Creating Models of Building

Monitoring Data', Proceedings of the eighth IASTED International Conference on Artificial

Intelligence and Soft Computing, pages 167-172, ISBN 0-88986-458-6, ISSN 1482-7913, Marbella,

Spain, 2004.

[4] D.DeCoste. Dynamic Across-Time Measurement Interpretation, Artificial Intelligence 51, pages

273-341, 1991.

[5] T. Fawcett, ROC Graphs: Notes and Practical Considerations for Data Mining Researchers,

Intelligent enterprise Technologies Laboratory, HP Labs Palo Alto, HPL-2003-4, Jan 7 2003.

[6] E. Rich, Artificial Intelligence, page 278, McGraw-Hill International editions, 1988.

[7] Huhns, M.N., Singh, M.P., Service-oriented computing: key concepts and principles, Internet

Computing, IEEE, Volume 9, Issue 1, pages 75 – 81, ISSN: 1089-7801, 2005

IntIntIntInternational Journal ofernational Journal ofernational Journal ofernational Journal of Smart Home Smart Home Smart Home Smart Home

Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010Vol.4, No.4, October, 2010

34

