
International Journal of Smart Home

Vol.4, No.3, July, 2010

1

A Three Phase Semantic Web Matchmaker

Golsa Heidary

Young Researchers Club,
Islamic Azad University,

Najafabad Branch,
Isfahan, Iran.

golsa_heidary@sco.iaun.ac.ir

Kamran Zamanifar1,
Naser nematbakhsh2

Dept. of Computer Science,
Islamic Azad University,

Najafabad Branch, Isfahan, Iran.
{1zamanifar,2nemat}@eng.ui.ac.ir

Abstract
Since using environments that are made according to the service oriented architecture, we

have more effective and dynamic applications. Semantic matchmaking process is finding
valuable service candidates for substitution. It is a very important aspect of using semantic
Web Services.

Our proposed matchmaker algorithm performs semantic matching of Web Services on the
basis of input and output descriptions of semantic Web Services matching. This technique
takes advantages from a graph structure and flow networks. Our novel approach is assigning
matchmaking scores to semantics of the inputs and outputs parameters and their types. It
makes a flow network in which the weights of the edges are these scores, using Ford-
Fulkerson algorithm, we find matching rate of two web services. So, all services should be
described in the same Ontology Web Language. Among these candidates, best one is chosen
for substitution in the case of an execution failure. Our approach uses the algorithm that has
the least running time among all others that can be used for bipartite matching.

The importance of problem is that in real systems, many fundamental problems will occur
by late answering. So system`s service should always be on and if one of them crashes, it
would be replaced fast. Semantic web matchmaker eases this process.

Keywords: matchmaker, matching algorithm, semantic web, web discovery, flow networks,
OWL.

1. Introduction

Semantic web service matchmaking is the process of finding an existing Web services
based on the description of their functional and nonfunctional semantics [6]. Matchmaking
scenarios typically occur when one is trying to reuse an existing piece of functionality
(represented as a Web service) in building new or enhanced business processes. Central to the
majority of contemporary approaches to Semantic Web service selection is that the
functionality of Web services is logically defined in, for example, the standard first-order
description logic-based ontology language OWL [16] or a rule language like SWRL, or a
logic programming language like F-Logic. In any case, intelligent agents can exploit standard
means of logic reasoning to automatically understand the Web service semantics, in particular
to determine the degree to which the service is semantically relevant to a given service
request.

International Journal of Smart Home

Vol.4, No.3, July, 2010

2

Nowadays, academic as well as industrial communities focus one part of their researches
on Web services technology like Web services matching. The basic architecture of Web
services implements a Service Oriented Architecture (SOA), which allows their integration to
internal or external applications. Service oriented architectures are becoming popular since
they provide more effective and dynamic applications [31]. A Web service is a software
system designed for interacting interoperable machines via the internet. They are based on
eXtensible Markup language (XML) which constitutes the basic technology of Web services.
Web services are, usually syntactically, described with standards like UDDI, SOAP and
WSDL. Using semantic Web Services in service oriented architectures improves
interoperability and scalability. A transaction with a service requires at least two parts: the
service requester seeking a service to complete its work, and the service provider providing a
service sought by the user. Semantic matchmaking is the process of finding suitable Web
Services that satisfies the request. As the number of available Web Services on the Internet
increases, finding a suitable Web service satisfying the needs becomes more difficult.

Universal Description, Discovery and Integration (UDDI) is a virtual registry that exposes
information about Web services [10].

Simple Object Access Protocol (SOAP) is a protocol to exchange structured information in
distributed environments [32]. It uses XML to define an extensible framework of messages
which provides a constructed message that can be exchanged through a variety of underlying
protocols. The protocol SOAP is independent from any particular programming model and
from any specific semantics of an implementation [2].

Web Service Description Language (WSDL) provides a model and an XML format for
describing the Web services. It separates the description of the abstract functionality, offered
by a service, from the concrete details of a service description such as “how” and “where” [6].
WSDL describes only the syntactic interface of Web services. Hence, the pure WSDL cannot
be used for automatic Web services matchmaking: Semantics are required in order to make
information accessible to agents. The purpose of this work is to present, in one hand, a model
of semantic Web service matchmaking. Also the publication of a service in UDDI doesn`t
allows the semantic matching of Web services. Then to go beyond these limits, we propose a
manner of Web services storage in which all the existing services are in OWL-S [13], which
provides a high level description of the services capabilities. OWL-S provides service profile
class which includes IO (input, output) capabilities of the services. During the matchmaking
process, requests and advertisements (service offers) described as OWL-S documents are
matched according to IO capabilities and the best advertisement is selected or a list of
matching results is generated to make the choice manually. The difficulty in the matchmaking
process occurs when there is no exact match for the request. Partial matches must be
evaluated in these situations. So, a matchmaker needs to determine both exact and partial
matches in a comparable fashion. IO attributes describe syntactically which inputs are
required by a service to function, and which outputs are returned [24].

The obtained algorithm of matchmaking draws its advantages from a flow network and
also from a semantic annotations and similarity measures between parameters. The
introduction of semantics in the description of web resources reflects new achievements in
web services technologies, through extensive specifications, automation of services selection,
composition and translation of message content, self-describing service monitoring and
recovery from failure [21]. Semantic web services assure more machine-oriented expressive
power and usage of services, completely transforming the web information access from the

International Journal of Smart Home

Vol.4, No.3, July, 2010

3

usual content-based retrieval to semantic annotated functionalities, exposed by the web
services.

 The goal is to improve the mediation activity among service providers through proactive
integration for providing automated semantic interoperability. The approach exploits the
agent paradigm for achieving matchmaking.

The paper is organized as follows: Section 2 is devoted to the related work concerning
semantic annotations and the synthesis of matchmaking. In Section 3, we present the
proposed approach, its implementation and its algorithms and explane the three phases of our
work completely. Section 4 summarizes the algorithm's complexity and the advantages of our
approach compared to the other approaches. And finally in Section 5, we end with concluding
remarks and future works.

2. Related work

The computation methods for the similarity between Web services are studied and applied
in many aspects. Woogle, the Web service search engine, supports similarity search for Web
services. Keyword search paradigm is insufficient for Web service search in that the
underlying semantics cannot be captured. Motivated by the above fact, the technique to
support similarity search for Web services was proposed by [6]. In this approach, similar
operations are determined mainly by using the association-rule-mining approach and a
hierarchical clustering algorithm for parameter names of Web services. However, the
association rules are not very effective when the associations among services are complex,
and it is difficult to fully represent the causal relationships implied among them. Further, the
reasoning, critical for automatic matchmaking and discovery of Web services, can`t be done
straightforwardly. Similarities between Web services are applied to obtaining Web services
communities. [23] Proposes the nearest-neighbor approach to obtain the classes for the given
services. The similarity measure just considers whether two services are similar, but does not
explore how similar they are.

The ontology based modeling gives semantic models as conceptual frameworks for the
semantic description of Web services, in which the ontologies were regarded as the semantic
annotations [17].

In many applications, the strictly numeric representations will always have to sacrifice
efficiency due to the inappropriate preciseness, such as the Web service search in which
requesters always want to locate the desired ones as soon as possible [7].

Ontologies are used in order to incorporate semantics in web service descriptions. An
Ontology models domain knowledge in terms of Concepts and Relationships between them.
OWL [15] has evolved as a standard for representation of ontologies on the Web. OWL-S
[16], formerly called DAML-S [12], defines ontology for semantic web services. OWL-S
describes a service in terms of its Service Profile, Process Model and Grounding. The Service
Profile models the Inputs, Outputs, Pre-conditions and Effects (IOPE) of the service [1]. The
Inputs and Outputs in the Service Profile refer to concepts in ontologies published on the web.
Service advertisements and search queries are both expressed in terms of OWL-S
descriptions. An ontology reasoner is an important component in the process of semantic
matchmaking. A reasoner can infer additional information which has not been explicitly
stated in ontology. Subsumption, concept satisfaction, equivalence and disjointedness are
some examples of reasoning operations. Many of these operations are used in the semantic
matchmaking process.

International Journal of Smart Home

Vol.4, No.3, July, 2010

4

The Service Profile contains enough information for a matchmaker to determine if a
service satisfies the requirements of a client. In fact, several matchmaking algorithms rely
only on the matching of Inputs and Outputs of the Service Profiles [19].

Generally, it is important to develop a semantic model to describe the inherent causal
relationships among the given Web services. To obtain the semantics implied by the services
themselves, mining the historical invocations and behaviors is doomed. To facilitate
automatic matchmaking, developing an efficient measure for semantic associations among
multiple Web services is indispensable.

3. Finding matching rate of two web services

Our matchmaker works in three phases.
In the first phase, it compares two web services` input/output parameters, semantically.

Since all advertised services are described in the same Ontology Web Language (OWL), so
we can easily compare the capability and functionality of them. The result of this phase is
PARSIM.

In the second phase, we compare the type of parameters of input/output of two web
services. The result of this phase is PARTYPE.

In the third phase, with both PARSIM and PARTYPE we compute the matching rate of
two semantic web services.

3.1. First phase

The first phase is computing the similarity rate of parameters of two services` input/output.
We want to compare two web services` functionalities. So we should compare inputs and
outputs with each other, individually. The comparing process for both inputs/outputs is the
same. So we explain the output comparing.

Assume that we want to compute the matching rate of services A and B. Each service`s
input is shown by Ain and Bin, respectively and the outputs are shown by Aout and Bout. So we
compare Ain with Bin and Aout with Bout. In the OWL, we have many classes of words. When
we compare two words with each other, they may be in one class, in different classes or one is
in the super class of the other one. According to these situations, we give scores to them.
Therefore, four results will be achieved. Algorithm 1 by the name of CASE, shows the
scoring method. The inputs of this algorithm are output parameters of two web services that
are matching. If the algorithm returns 10, it means that these two parameters can be replaced
with each other. If it returns 0, the matching is failed and these parameters can`t be used
instead of each other. Score 7 shows that the parameters to some extent match. So the
decision making will be after type matchmaking. Score 3 is not good and the substitution of a
service will depend on other parameters matching rate and type.

An Equivalent algorithm also is used for inputs.

Algorithm 1 : Case (Aout, Bout):

1 : If (Aout and Bout are in the same class) then
2 : return 10;
3 : If (Aout is subclass of Bout) then

International Journal of Smart Home

Vol.4, No.3, July, 2010

5

4 : return 10;
5 : If (Bout subsumes Aout) then
6 : return 7;
7 : If (Aout subsumes Bout) then
8 : return 3;
9 : Otherwise
10 : return 0;

3.1.1. Steps of matchmaking: We do the matching by the help of bipartite graph. So in the

first step of phase one, we make a bipartite graph. A Bipartite Graph is a graph G = (V, E) in
which the vertices set can be partitioned into two disjoint sets, V = V0 + V1, such that every
edge e in E has one vertex in V0 and another in V1. The matching is complete if and only if,
all vertices in V0 are matched. It means that all vertices in V0, as well as V1, should have an
edge.

Let Aout and Bout be the set of output concepts in A and B respectively. These constitute the
two vertex sets of our bipartite graph. Construct graph G= (V0 + V1, E), where, V0 = Aout and
V1 = Bout. Consider two concepts a in Aout and b in Bout .It means that a is one of the output
parameters of A and b is one of the output parameters of B. Let R be the result of CASE (in
our algorithm, which can be 10, 7, 3, 0) between concepts a and d. We define an edge (a, d) in
the graph and label this edge as R. Therefore if matching is complete (all vertices have at least
one edge), now we compute the whole matching rate for these two services.

In “figure. 1” we have an example of a bipartite graph which has the complete matching.

“Figure 1. An example of bipartite graph of output concepts”

In the second step, we must use an algorithm for computing matching rate. It will be done
by the help of flow networks. Therefore at first, we will explaine flow networks, in brief.

What is flow network? To make a flow network, we can use a directed graph and use it to

answer questions about flows of materials. Assume that a material coursing through a system
from the source to the sink. In a source, the material is producing and in a sink it is consumed.
The source produces the material at some steady rate, and the sink consumes the material at
the same rate. Each directed edge in a flow network can be thought of as the similarity rate.
Each edge has a definite capacity which is given as a maximum rate. Vertices (in our usage)

International Journal of Smart Home

Vol.4, No.3, July, 2010

6

are the input or output parameters of two web services which are comparing with each other
than the source and sink. It means that we should add the source and sink vertices to our
bipartite matching graph. In the maximum-flow problem, we will to compute the greatest rate
at which material ships from the source to the sink without violating any capacity constraints.

This problem can be solved by efficient algorithms. There are two general methods for
solving the maximum-flow problem which are Ford-Fulkerson and Edmonds-Karp, and some
others which are push-relabel, relabel-to-front, Hopcroft-Karp bipartite matching algorithms.
For finding the matching rate of two semantic web services, we use the first method that we
will describe it in the following.

Max flow in a Flow network: A flow network G = (V, E) is a directed graph in which

each edge (u, v) ∈ E has a nonnegative capacity c (u, v) ≥ 0, unless we assume that c(u, v)=
0. We have two vertices in a flow network: a source s and a sink t. For convenience, we
assume that every vertex lies on some path from the source to the sink. That is, for every
vertex v ∈V, there is a path s; v; t. So the graph is connected and |E| ≥ |V| − 1.

Each flow network has three properties:
- Capacity constraint: For all u, v א V, we require f (u, v) ≤ c(u, v).
- Skew symmetry: For all u, v א V, we require f (u, v) = − f (v, u).
- Flow conservation: For all u א V − {s, t}, we require

Residual networks: Given a flow network and a flow, the residual network consists of

edges that can admit more flow.
Suppose that we have a flow network G = (V, E) with source s and sink t. Let f be a flow

in G, and consider a pair of vertices u, v א V. The amount of additional flow we can push
from u to v before exceeding the capacity c (u, v) is the residual capacity of (u, v), given by

cf (u, v) = c(u, v) − f (u, v) (1)
Ef = {(u, v) א V × V : c f (u, v) > 0} (2)

That is, as promised above, each edge of the residual network, or residual edge, can admit

a flow that is greater than 0. The edges in Ef are either edges in E or their reversals.
If f (u, v) < c (u, v) for an edge (u, v) א E, then cf(u, v) = c(u, v) − f(u, v) >0 and (u, v)א Ef.

If f (u, v) > 0 for an edge (u, v) א E, then f (v, u) < 0. In this case, cf(v, u) = c(v, u)−f(v, u) >0,
and so (v, u) א Ef. If neither (u, v) nor (v, u) appears in the original network, then:

c (u, v) = c (v, u) = 0, f (u, v) = f (v, u) = 0 and cf (u, v) = cf (v, u) = 0.
We conclude that an edge (u, v) can appear in a residual network only if at least one of

(u,v) and (v, u) appears in the original network.
The residual network Gf is itself a flow network with capacities given by cf.

Augmenting Paths: In a flow network G = (V, E) and a flow f, an augmenting path p is a

simple path from s to t in the residual network Gf. By the definition of the residual network,
each edge (u, v) on an augmenting path admits some additional positive flow from u to v
without violating the capacity constraint on the edge.

 We call the maximum amount by which we can increase the flow on each edge in an
augmenting path p, the residual capacity of p, given by cf(p) :

cf (p) = min {cf (u, v) : (u, v) is on p} (3)

International Journal of Smart Home

Vol.4, No.3, July, 2010

7

Cuts of Flow Networks: The Ford-Fulkerson method repeatedly augments the flow along

augmenting paths until a maximum flow has been found. The max-flow min-cut theorem,
tells us that a flow is maximum if and only if its residual network contains no augmenting
path.

The Ford-Fulkerson Method: The Ford-Fulkerson method is iterative. We start with

f (u, v) = 0 for all u, v א V, giving an initial flow of value 0. Each iteration, we increase the
flow value by finding an augmenting path, which we can think of simply as a path from the
source s to the sink t along which we can send more flow, and then augmenting the flow
along this path. We repeat this process until no augmenting path can be found. The max-flow
theorem shows that upon termination, this process gives a maximum flow.

Each iteration of the Ford-Fulkerson method, we find some augmenting path p and
increase the flow f on each edge of p by the residual capacity cf(p). The following
implementation of the method computes the maximum flow in a graph G = (V, E) by
updating the flow f [u, v] between each pair u, v of vertices that are connected by an edge. If
u and v are not connected by an edge in either direction, we assume implicitly that f [u, v] =0.
The capacities c (u, v) are assumed to be given along with the graph, and c (u, v) = 0 if (u, v)
is not in E. The residual capacity cf (u, v) is computed in accordance with the formula (1).
The expression cf (p) in the code is actually just a temporary variable that stores the residual
capacity of the path p.

Maximum Bipartite Matching: The problem of finding a maximum matching in a

bipartite graph can be reused to maximum flow problem. It means that if we can solve the
maximum flow problem, we have solved the maximum matching problem.

Therefore, if the Ford-Fulkerson can solve the maximum flow problem, it can solve the
problem of maximum matching in a bipartite graph, too.

ALGORITHM 2 : Ford-Fulkerson-Method (G, s, t)

1 : initialize flow f to 0
2 : while there exists an augmenting path p
3 : do augment flow f along p
4 : return f

ALGORITHM 3 : Ford-Fulkerson (G, s, t)

1 : for each edge (u, v) א E[G]
2 : do f [u, v] ← 0
3 : f [v, u] ← 0
4 : while there exists a path p from s to t in the residual network Gf
5 : do cf (p) ← min {cf (u, v) : (u, v) is in p}
6 : for each edge (u, v) in p

International Journal of Smart Home

Vol.4, No.3, July, 2010

8

7 : do f [u, v] ← f [u, v] + cf (p)
8 : f [v, u] ← − f [u, v]

The Maximum Bipartite-Matching Problem: Given an undirected graph G = (V, E), a

matching is a subset of edges M ك E such that for all vertices v א V, at most one edge of M
is incident on v. We say that a vertex v א V is matched by matching M if some edge in M is
incident on v; otherwise, v is unmatched. A maximum matching is a matching of maximum
cardinality, that is, a matching M such that for any matching M′, we have |M| ≥ |M′|.

We assume that the vertex set can be partitioned into V = L R, where L and R are
disjoint and all edges in E go between L and R. We further assume that every vertex in V has
at least one incident edge. We have shown a bipartite graph in “figure 2”.

Finding A Maximum Bipartite Matching: We can use the Ford-Fulkerson method to find

a maximum matching in an undirected bipartite graph G = (V, E) in time polynomial in |V|
and |E|. The trick is to construct a flow network in which flows correspond to matching, we
define the corresponding flow network G′ = (V′, E′) for the bipartite graph G as follows. We
let the source s and sink t be new vertices not in V, and we let V′ = V {s, t}. If the vertex
partition of G is V = L R, the directed edges of G′ are the edges of E, directed from L to R,
along with V new edges:

E′ ={(s, u) : u א L}{(u, v) : u א L, v א R, and (u,v) א E}{(v,t):v א R} (4)

To complete the construction, we assign unit capacity to each edge in E′.
In “figure 3”, we have shown a bipartite graph which is made up of output parameters of

requested (A) and advertised (B) web services and augmenting path is shown by dark lines.
By applying Ford Fulkerson algorithm on this bipartite graph, we can compute the

matching rate between two web services, A and B. we should make such a graph for these
two services` inputs (Ain, Bin). We consider the average of input similarity rate and output
similarity rate for two web services similarity rate.

“Figure 2. A bipartite graph”

International Journal of Smart Home

Vol.4, No.3, July, 2010

9

“Figure 3. Bipartite matching”

3.1.2. Our matching algorithm: If the result of matching two services` output parameters
is OUTSIM and the result of matching two services` input parameters is INSIM, the whole
result of matching two services is PARSIM that obtains by the following algorithm. The input
of our algorithm is B which is the matched service. The output of our algorithm is PARSIM.
It has a sharp result because we always choose the lowest matching rate. So if we had 10 as
the result, it means that two services match completely.

Algorithm 4: Parameter Match (B, PARSIM);

1 : for all output parameters of A do
2 : Case (Aout, Bout) ;
3 : Gout= make a bipartite graph for outputs;
4 : OUTSIM = Ford-Fulkerson (Gout);
5 : for all input parameters of A do
6 : Case (Ain, Bin);
7 : Gin= make a bipartite graph for inputs;
8 : INSIM= Ford-Fulkerson (Gin);
9 : PARSIM = 10 ;
10 : if (OUTSIM=0 or INSIM=0) then
11 : PARSIM = 0
12 : else if (OUTSIM=3 or INSIM=3) then
13 : PARSIM = 3
14 : else if (OUTSIM=7 or INSIM=7) then
15 : PARSIM = 7 ;

International Journal of Smart Home

Vol.4, No.3, July, 2010

10

3.2. Second phase

In this phase we compare the type of parameters of input and output. At first we should
apply the rules and then we should make a bipartite graph for both input and output
parameters. The vertices are the input/output parameters. The weights of edges are according
to the “table 1”. After making a weighted bipartite graph, by the help of Ford-Fulkerson
algorithm, compute the type matching rate. The output of this part is TYPESIM.

“Table 1. Rules of comparing two parameters of two web services”

 B Parameter

 Data
Type Integer Real String Date Boolean

A
 P

ar
am

et
er

 Integer 10 5 3 1 1
Real 10 10 1 0 1
String 7 7 10 8 3
Date 1 0 1 10 0
Boolean 1 0 1 0 10

3.3. Third phase

Now we have the results of first two phases, PARSIM and TYPESIM. It is obvious that
semantics of the parameters have the main role of matchmaking and semantic meaning of a
parameter is more important than its type. So we compute the final result according to
algorithm 5:

Algorithm 5: Final;

1 : If PARSIM=0 then
2 : result = 0
3 : else
4 : result=[2/3(PARSIM) + 1/3(TYPESIM)]*100

4. Evaluation of work

One of the best ways for evaluating a solution is computing the running time of the
method. Our matchmaking is composed of three phases. The time order of two first phases is
the same because their solutions are the same. The time for making a bipartite graph and put
the weights on the edges, according to the rules, is done in polynomial time. But the bipartite
matching time which is done by the Ford-Fulkerson algorithm, should be computed.

The running time of Ford-Fulkerson depends on how the augmenting path p in line 4 of
algorithm 2 is determined. If the augmenting path is chosen by using a breadth-first search,
the algorithm runs in polynomial time. Augmenting path is chosen arbitrarily and all
capacities are integers which are in our usage, between 0 and 10. A straightforward
implementation of Ford-Fulkerson runs in time O (E | fmax|), where fmax is the maximum flow
found by the algorithm. The analysis is as follows.

International Journal of Smart Home

Vol.4, No.3, July, 2010

11

Lines 1–3 take time 2(E). The while loop of lines 4–8 is executed at most | fmax| times,
since the flow value increases by at least one unit in each iteration. The work done within the
while loop can be made efficient if we efficiently manage the data structure used to
implement the network G = (V, E). Let us assume that we keep a data structure corresponding
to a directed graph G′ = (V, E′), where E′= {(u, v): (u, v) א E or (v, u) ∈ E}. Edges in the
network G are also edges in G′, and it is therefore a simple matter to maintain capacities and
flows in this data structure. Given a flow f on G, the edges in the residual network Gf consist
of all edges (u, v) of G′ such that c (u, v) − f [u, v] ≠ 0. The time to find a path in a residual
network is therefore O (V + E′) = O (E) if we use either depth-first search or breadth-first
search. Each iteration of the while loop thus takes O(E) time, making the total running time of
Ford-Fulkerson O(E | fmax|).

As you see in “table 2” all other algorithms that compute the bipartite matching have more
running time than Ford-Fulkerson.

“Table 2. Comparision of different algorithms` running time”

Algorithm `s name Running time
Ford-Fulkerson O(E | fmax|)
Edmonds-Karp O(V.E2)

Relabel-To-Front O(V3)
Push-Relabel O(V2E)

The advantages of our proposed approach compared to the other approaches can be

categorized as following:
- We have laid the foundation of our approach on the top of semantic Web standards:
using the semantic matching and the Semantic annotations for Web services and Request
description, comparing to the syntactic methods;
- The exploration in a single pass (according to the Ford-Fulkerson algorithm) over the
flow network reduces again the time response comparing to the other methods [17,18];
- Our technique aims to reduce firstly, the complexity of the matchmaking and secondly,
the time needed to response the requester by selecting the best, similarity measure and exec-
time ,at run time automatically, comparing to this approach [22] and others;
- In our approach, we are not obliged to know the behavior of a Web service compared to
the methods [5], the behavior is a complex feature in matchmaking task;
- Our prototype was tested on existing services comparing to most approaches which do
not give any details of implementation.

5. Conclusion and future work

Web services should be described in a way that end user can use it simply. The first choice
that comes into mind is Web Service Description Language (WSDL). In theory, semantic
information in WSDL files was supposed to solve this problem, because WSDL is a way to
know what a service does and how. But in practice, is not enough, because currently WSDL
files don’t have enough semantic information to decide substitutability or ability of compose.
There is a need for automatic techniques to obtain more semantic information. One of the best

International Journal of Smart Home

Vol.4, No.3, July, 2010

12

ways to come over this problem is using an Ontology Web Language, which has the meaning
of different parameters of a service.

In this paper we present a novel approach for semantic web matching. Our matchmaker
system has two phases for semantic web matching and in both phases, it uses bipartite graph
for computing the matching rate. The innovation of this work is using flow networks for
computing matching rate. We also presented a scoring rule to be used as the weights of the
bipartite graph. By the help of Ford-Fulkerson algorithm, that is the best algorithm among the
ones who are used for bipartite matching. another part of this work`s innovation is
matchmaking both semantic and type of the parameters. We described our services all in the
same Ontology Web Language. So our comparison of web services was in a standard way.

The ideas given in this paper also leave open some other interesting research issues of Web
Services from the practical point of view. Other than precise search and automatic
composition of Web services, our methods can be extend to many related real applications of
domain-specified services management, such as decision-making, prediction, trend analysis,
and so on.

In addition with input and output parameters, precondition and event are two another
factors for comparing semantic web matching.

By considering QoS factors like response time, we can give a better answer to our service
requesters. So our future work focuses on comparing preconditions and events of two web
services and considering agent requests and QoS.

6. References
[1] G. Fenza, V. Loia, S. Senatore, “A hybrid approach to semantic web services matchmaking”, International

Journal of Approximate Reasoning, 2008, vol.48, pp.808–828.
[2] J. Yu, S. Guo, H. Su, H. Zhang, K. Xu, “A Kernel based Structure Matching for Web Services Search”,

Banff, Alberta, Canada, May 8–12, 2007.
[3] C. Okutan a, N. K. Cicekli b, “A monolithic approach to automated composition of semantic web services

with the Event Calculus”, knowledge-based systems journal, 2010, vol. 23, pp. 440–454.
[4] K.Zamanifar, G.Heidary, N.Nemat bakhsh, “A new approach for semantic web matching”, IEEE, the First

International Conference on Security-enriched Urban Computing and Smart Grid, Korea, September 2010,
pp. 77-85.

[5] T. Dong, Q. Li, K. Zhang, L. Cui,” An Extended Matching Method for Semantic Web Service in
Collaboration Environment”, Proceedings of the 11th International Conference on Computer Supported
Cooperative Work in Design, IEEE, 2007

[6] W. Abramowicz, K. Haniewicz, M. Kaczmarek, and D. Zyskowski, “Architecture for web services filtering
and clustering”, IEEE, second international conference on internet and web applications and services, 2007.

[7] D. Ielik, A. Eli, “A semantic search agent approach:finding appropriate semantic web services based on user
request term(s)”, Computer Engineering Department, Eastern Mediterranean University, Magusa,.Mersin-
10, Turkey, 2006.

[8] A.Segev, “Circular context-based semantic matching to identify web service composition”, CSSSIA,
Beijing, China, April 2008.

[9] M. Ernst, R. Lencevicius, J. Perkins, “Detection of web service substitutability and composability”,
International Workshop on Web Services Modeling and Testing (WS-MaTe), 2006.

[10] K. Yue a, W. Liu a, X. Wangb, A. Zhou., and J. Li, “Discovering semantic associations among web services
based on the qualitative probabilistic network” ,expert systems with applications journal, 2009, vol.36 ,
pp.9082–9094

[11] U. Bellur, R. Kulkarni, “Improved matchmaking algorithm for semantic web services based on bipartite
graph matching”, IEEE, 2006.

[12] H. Ivan, R. Akkiraju, and R. Goodwin, “Learning ontologies to improve the quality of automatic web service
matching”, IEEE, international conference on web services, 2007.

[13] A.Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to map between ontologies on the semantic
web”, Honolulu, Hawaii, USA, May 2002.

International Journal of Smart Home

Vol.4, No.3, July, 2010

13

[14] A. Zohali, K. Zamanifar, “Matching model for semantic web services discovery”, journal of Theoretical and
Applied Information Technology, 2005 – 2009.

[15] “Ontology matching approaches in semantic web: a survey” department of computing science, University of
Alberta, Cdmonton, Canada.

[16] M. Klusch, B. Fries, K. Sycara, “OWLS-MX: A hybrid Semantic Web service matchmaker for OWL-S
services”, journal of Web Semantics: Science, Services and Agents on the World Wide Web, 2009, vol. 7,
pp.12-133.

[17] H.Nacer Talantikite, D. Aissani, and N. Boudjlida, “Semantic annotations for web services discovery and
composition”, computer standards & interfaces journal, 2009, vol.31, pp.1108–1117.

[18] J. Fan, “Semantics-based web service matching model”, IEEE, international conference on industrial
informatics, 2006, pp.323-328.

[19] M. Paolucci, T. Kawamura, T. Payne, K. Sycara.”Semantic matching of web service capabilities”, IEEE,
2003.

[20] K. Verma, R. Akkiraju,and R. Goodwin, “Semantic matching of web service policies” .IEEE, 2007.
[21] A. Bener, V. Ozadali, E. Savas Ilhan, “Semantic matchmaker with precondition and effect matching using

SWRL”, Expert Systems with Applications journal, 2009, vol. 36, pp.9371-9377.
[22] S.Chan Oh, J.Woon Yoo, H. Kil, D. Lee, and S. R. T. Kumara ,“Semantic web-service discovery and

composition using flexible parameter matching”, IEEE ,the 9th international conference on e-commerce
technology and the 4th international conference on enterprise computing, e-commerce and e-services,2007.

[23] X. Gao, J Young, M.Papazoglou, “The capability matching of web services”, IEEE, 2002.
[24] S. Ben Mokhtar, A. Kaul, N.Georgantas and V. Issarny, “Towards efficient matching of semantic web

service capabilities”, international workshop on web services modeling and testing, 2006, pp.137-152.
[25] P. Plebani, B. Pernici, “URBE: Web Service Retrieval Based on Similarity Evaluation”, IEEE transactions

on knowledge and data engineering journal, November 2009, vol. 21, no. 11, pp.1629-1642.
[26] http://www.w3.org/
[27] http://semanticweb.org/wiki/Main_Page
[28] http://en.wikipedia.org/wiki/Bipartite_graph
[29] http://en.wikipedia.org/wiki/Maximum_flow_problem
[30] T. Cormen, C. Leiserson, R. Rivest, C. Stein, “Introduction to algorithm”, 3rd edition.
[31] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and Design”, 2nd edition, 2006.
[32] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice, 2nd edition, 2006.
[33] T. Berners lee,”The fractal nature of the semantic web: An article from: AI Magazine”, 3rd edition, 2007.

Authors

Golsa Heidary is a researcher and a member of Young
Researchers Club, Department of Computer, Islamic Azad
University of Najafabad. She received her BSc degree from Univ. of
Isfahan, M.Sc. in software engineering from the Faculty of Computer,
Islamic Azad University of Najafabad, Isfahan, Iran (2010). Her main
interests include distributed systems and web service technology. She
has published some conferences papers.

Kamran Zamanifar is Assistant Professor at the University of

Isfahan since 1996. He received his M.Sc. in electrical and electronic
engineering from the Faculty of Engineering, University of Tehran,
Iran. He also received his Ph.D. in computer science (parallel and
distributed systems) from the School of Computer Studies, University
of Leeds, England (1992-1996). He is a member of various scientific
committees such as Management Board of Computer Society of Iran,

Iranian Association of Electrical and Electronic Engineers and Annual International CSI

International Journal of Smart Home

Vol.4, No.3, July, 2010

14

Computer Conferences. He is also reviewer of many scientific journals. His main interests
include parallel and distributed systems, concurrent systems and high performance
computing. He has published two books and some journals and conferences papers.

Naser Nematbakhsh received his BSc degree from Univ. of Isfahan
1973, MS degree from Worcwstechnic Inst., USA in 1978 and PhD
from Bradford Univ. UK in 1989. He is now assistant professor in
computer engineering dept. at University of Isfahan. His main
research interest include Modeling, Perfeormance evaluation,
Reliability and software engineering.

