
International Journal of Smart Home

Vol.3, No.2, April, 2009

39

Flexible Smart Home Architecture using Device Profile for
Web Services: a Peer-to-Peer Approach

Jorge Parra1, M. Anwar Hossain2, Aitor Uribarren1, Eduardo Jacob3, and
Abdulmotaleb El Saddik2

1IKERLAN-IK4 Technology Research Center, Spain
 2Multimedia Communications Research Laboratory, University of Ottawa, Canada

3DET, Faculty of Engineering, University of the Basque Country, Spain
JParra@ikerlan.es, anwar@mcrlab.uottawa.ca, AUribarren@ikerlan.es,

Eduardo.Jacob@ehu.es, abed@mcrlab.uottawa.ca

Abstract

In this paper we propose the design and development of a flexible smart home architecture

using a peer-to-peer (P2P) approach. We specifically focus on two distinct aspects of this
proposed architecture. First, we analyze how the different home devices and services can be
represented as individual peers in order to have a decentralized system, which is scalable by
nature and avoids the single point-of-failure usually attributed to a centralized server.
Second, we investigate the distribution of application workflow logic among the peers to
develop a flexible home architecture with autonomous behavior of the peers. We analyze the
suitability of Devices Profile for Web Services (DPWS) to realize the proposed P2P-like
architecture for the smart home. We further show how to distribute the application workflow
logic among the peers and yet achieving the same global behavior of the system. Our
experimental results show that DPWS provides tools and techniques, in particular its
discovery and eventing mechanism, which can be leveraged to provide flexibility and
autonomy in the overall architecture.

 Keywords: Flexible Smart Home, Device Profile, Web Service, Smart Home

1. Introduction

There is a growing demand in designing a flexible smart home architecture that aims to
interoperate among heterogeneous sensors, actuators and other services. The objective of
developing such architecture is to support the users in the pervasive home environment such
that they can access any service in a seamless fashion. A flexible architecture should
seamlessly incorporate newly evolved services and/or enable modifications to existing
services with minimal effort [1], [2], despite the fact that the new or existing services may be
tied to a different vendor with vendor-specific interface. In order to fulfill this goal, several
technologies have evolved such as OSGi [3], UPnP [4], Web Service [5], Jini [6], HAVi [7]
and so on. These technologies provide the option to interconnect heterogeneous devices and
services; however, not all of them can equally accommodate the others under the same hood.
One of the very promising technologies that can be used to address this issue is the Devices
Profile for Web Services (DPWS) [8], which can work with these technologies and provide
interoperability among the different devices and services in a smart home environment. In this
paper, we will investigate the suitability of DPWS in developing a flexible smart home
architecture.

International Journal of Smart Home

Vol.3, No.2, April, 2009

40

Besides interoperability, a smart home devices and services should act like peers in order to
achieve more flexibility and scalability, where the peers can act autonomously on their behalf
[9], [10]. This is also justified by the fact that more and more devices and sensors are
equipped with increased networking and computation power, thereby providing the options of
adopting a P2P-like infrastructure. However, how to develop a P2P-like infrastructure
composed of different devices and services is a challenging issue. In this paper, we explore
the suitability of DPWS for realizing a P2P-like infrastructure for smart home.

The possibility of having P2P like infrastructure for a smart home opens the door to
investigate the distribution of application workflow logic on different peers. It will not only
remove the burden of a centralized entity to maintain the complex application workflow to
realize different scenarios, but also simplify the application workflow at a peer level, as each
peer will be responsible to perform its own objective task depending on the environment
notifications. For example, a lamp service peer may only be responsible to switch-on or
switch-off the physical lamp device given the application logic it has. Moreover, having a true
P2P-like architecture will enable the addition or removal of a service without affecting the
overall operations. However, existing solutions are mostly geared towards a centralized
control mechanism where the central entity is solely responsible to command how the
individual device and service will react in response to various notifications from different
devices and services. We also investigate this issue of distributing the application workflow
logic to individual peers and show the flexibility it provides.

Existing research in the context of smart home has mostly focused on interoperability,
service discovery and service composition issues. We can roughly classify these works as a)
adopting OSGi framework [11-13], [1], b) adopting Web Services mechanism [10], [14 -18],
and c) adopting both OSGi and Web Services together [19]. In addition to interoperability,
some of these works stated the motivation of a P2P home infrastructure [10], [9]. However, a
clear description of the methodology and the distribution of application logic have hardly
been addressed in these works.

Our contributions in this paper are two-fold. First, we design and develop a flexible smart
home architecture and analyze the suitability of DPWS to interconnect smart home devices
and services in a seamless fashion, and show how adopting DPWS we can realize a P2P-like
architecture for the smart home. Second, we investigate the distribution of application
workflow logic into the distributed peers to achieve simplicity and avoid single of point of
failure of a traditional centralized control entity.

The remainder of this paper is organized as follows. In Section 2, we present a motivating
scenario in the context of smart home. We comment on some related literature in Section 3,
followed by a brief problem description in Section 4. The proposed approach is described in
Section 5. This is followed by the implementation details and test as stated in Section 6.
Finally, Section 7 concludes the paper with some possible directions for future work.

2. Motivating Scenarios

In this section, we state some motivating scenarios which could represent a usual system
behavior in a smart home environment. We assume there are different devices and services
such as motion sensors, cameras, pressure sensor in the couch and armchair, light control,
HVAC, TV, HiFi, and speakers all connected to a smart home network, as shown in Figure 1.
In such a setting, a system performs several tasks to support the user’s need. For example:

 When a user enters the room (detected by motion sensor and/or identified by camera),
the lights are turned on, and the HVAC is activated.

International Journal of Smart Home

Vol.3, No.2, April, 2009

41

 When a user sits on the couch in front of a TV, the TV is switched on, light level is
dimmed to low and the speakers are switched to TV to output the sound.

 If he/she sits on the armchair close to the window with a book, the lamp close to the
armchair is automatically turned on, the ambient music is selected and the speakers
are switched to HiFi system with a low volume setting.

 When the user leaves the room, all the devices are off (lamps, HVAC, TV, HiFi).
 At any moment, a GUI in user’s phone allows him/her to manually control any of the

artifacts in the room.

Figure 1. Several devices are connected to a typical smart home architecture

3. Related work

In this section, we comment on some related literature that justifies the use of Service
Oriented Architectures (SOA) such as OSGi, Web Service, DPWS and a combination of these
technologies. We also comment on some early work that serves as the motivation of
conceptualizing the P2P-like architecture for the smart home environment.

The Gator Tech Smart House [11] is an early demonstration of a smart environment, which
is based on OSGi framework. This provides a platform-centric approach such that the devices
and sensors are all connected to an OSGi gateway, where the application layer acts as a
centralized controller to invoke and/or compose different services for the user. However, the
P2P-like aspect is not analyzed in this study. Similarly, the works in [1] and [12] propose the
use of OSGi as a residential gateway, where the different devices are connected to a central
platform using OSGi as a middleware. Although, this approach provides a local solution to
expose the devices as services, it requires external mechanisms such as Web Service or UPnP

International Journal of Smart Home

Vol.3, No.2, April, 2009

42

to intercommunicate among the different OSGi platforms. The peer concept is not explored in
these works.

Another branch of work proposes the use of Web Services for developing scalable home
architectures [10], and more generic Ambient Intelligence based systems in [15]. Recently, in
[17], the authors proposed Web Services as the interoperability mechanism to mediate among
heterogeneous technologies, which was also studied in [14] for incorporating legacy home
devices into the smart home architecture. In these solutions, Web Services are used solely for
communication purpose (SOAP, WSDL and UDDI), without utilizing the facilities offered by
other WS family of technologies like WS-Discovery, WS-Eventing, and so on, that have
incorporated in the DPWS specification. On the other hand, authors in [16], [18] justify the
use of DPWS for service oriented communications to have dynamic Web Service
infrastructures, where the devices can be discovered, described, and subscribed using Web
Service based standard protocols.

The combination of different technologies like OSGi and DPWS has been adopted in [19].
In this work, the authors used DPWS to integrate external devices in the OSGi platform as
local objects and advertise the local objects as DPWS devices, which can be discovered and
used by clients external to the OSGi platform. Although the use of DPWS has been explored
in this work, the authors have not investigated the P2P-like architecture, where individual
peer can autonomously act to execute its logic. This is due to the fact that in this approach, a
centralized application composes several local services at the gateway platform.

Unlike the above works, which are based on some central control mechanism, [10] and
[20] give an initial motivation to view the smart home architecture as a P2P-like architecture.
The authors in [9] proposed a mobile agent-based P2P model for intelligent appliances at
home using multiple OSGi platforms, which are interconnected via Web Services. The mobile
agents are used to augment the interaction mechanisms among the distributed platform.

In our proposed work, we adopt a fully decentralized P2P model for representing the smart
home devices and distribute the application logic to the individual peer so that a peer can take
its own decision according to its own rules set by the user.

4. Problem Description

In this paper, we propose the design of a P2P-like smart home architecture and investigate
the options to distribute application logic to individual peers. In the following, we briefly
describe the problems associated with these issues.

 Essentially home network devices should act like peers [10, 9]. Current SOA-based
technology is oriented towards client-server based solutions. For example, UPnP
essentially enforces a centralized architecture. It specifies two roles—one is the
control point (client) and the other is the UPnP device (which is a service). The
control point can discover the individual UPnP devices, subscribe to their events and
control them in a pure client-server mode. In this fashion, all the application logic
(workflow) resides on the control point thereby jeopardizing the reliability due to the
option of single point of failure. Also the central control mechanism can suffer from
scalability issue because the number of connected devices directly affects the
workload of the control point [20]. Therefore, a P2P-like architecture would make
more sense as it provides scalability and extendibility. However designing a P2P-like
architecture for the home poses some challenge such as, the definition of roles of the
individual peer, management of distributed deployment of the peers and so on.

International Journal of Smart Home

Vol.3, No.2, April, 2009

43

 Even a P2P-like architecture, from the deployment point of view, may adopt a
centralized approach to execute its application logic such that one of the peers can be
responsible for orchestrating the actions for rest of the peers. This orchestrator will
receive all the message/notifications from the distributed peers and decide based on
the application logic what to perform. This approach also suffers from the same
problems encountered in a centralized solution.

Our objective is to investigate how to build a P2P-like smart home architecture and how to
distribute the application workflow logic to the different peers.

5. Proposed approach

In Section 5.1, we first state the requirements of a flexible smart home architecture and
highlight some aspects of DPWS as a technology of choice for our proposed architecture.
Next, in Section 5.2., we elaborate the design of the proposed P2P-like smart home
architecture, and in Section 5.3 we describe our approach of distributing the application
workflow logic among the distributed peers.

5.1. Requirements and DPWS overview

A smart home environment should be an active space where new devices can be
incorporated without requiring complex installation or update process (ideally, full plug &
play solutions). The desired situation could be described as follows: get a new device, plug it
in the home network, and immediately work together with existing devices, performing new
individual and collaborative tasks, enhancing the overall functionality, but without a complex
setup process.

The requirements that arise from this view can be summarized as follows:
 Mutual discovery of devices and services: existing devices/services should be able to

discover the new device, and new device should be able to discover existing
infrastructure.

 Mutual interaction: existing devices should be able to benefit from new device
functionalities (actions and events), and similarly, the new device should be able to
benefit from existing devices/services (actions and events).

 Mutual notification: each device should be able to generate events based on internal
trigger conditions and to notify other devices interested in its events, by means of
publish-subscribe mechanism.

 Autonomous behavior: every device (existing and new) should know its capabilities
and functionalities and should react to external messages received from other devices
(direct action invocations or shared events). This could be achieved having some rule
based mechanism in the devices. We propose the use of ECA (Event, Condition, and
Action) rules for distributed behavior. The application of ECA rules for the smart
home has been studied from a different point of view [23], [24]. Thus, any device
could respond to external events and according to some conditions should perform
some internal actions.

In this work we propose to use DPWS [8] (a set of WS-* protocols) as a solution for

fulfilling these requirements. Although the service orientation of DPWS has been thoroughly
described in [18], we will briefly introduce some of the features proposed by DPWS
specification that are related in our context.

International Journal of Smart Home

Vol.3, No.2, April, 2009

44

DPWS enables a service architecture built on top of a set of Web Service specifications
with two well-defined roles: clients (controlling devices) and services (controlled devices).
WS-Discovery, WS-Eventing and WS-MetadataExchange are on top of the protocol stack,
allowing the clients to discover, subscribe to events and get descriptions form services using
well-known, standard and open protocols as shown in the Figure 2.

Next we briefly describe the WS-Discovery [21] and WS-Eventing [22] protocols as basic
elements for the proposed P2P-like architecture.

Figure 2. Protocol Stack defined for Devices Profile for Web Services

Table 1. Set of messages defined in WS-Discovery protocol

Message Type Sender Description

Probe Client Multicast message sent to search Target Services by type or
within a scope

ProbeMatch Service Unicast response to the sending client when the Target Service
matches a Probe message

Resolve Client Multicast message sent to search Target Services by name
ResolveMatch Service Unicast response to the sending client when the Target Service

matches a Resolve message
Hello Service Multicast message sent when joining the network containing

descriptive information
Bye Service Multicast message sent when leaving the network

5.1.1 Web Services Dynamic Discovery (WS-Discovery): This is a multicast discovery
protocol defined with the purpose of allowing dynamic discovery and advertisement of Target
Services (endpoints that can be discovered) in a network using service scopes and types.
Clients (endpoints that search for Target Services) willing to find a specific service can query
the network using multicast search messages, and services satisfying the query should reply.
These queries can use service name, types or scopes. In order to avoid a polling mechanism in
the clients to detect new service availabilities, Target Services also send multicast
announcements when joining or leaving the network. In this protocol, no central directory is
needed, however to scale to a large number of endpoints, the protocol defines the multicast

International Journal of Smart Home

Vol.3, No.2, April, 2009

45

suppression behavior subject to the availability of a discovery proxy in the network. It’s not
intended to internet-scale discovery, but appropriate for home environments, where the
number of services is not supposed to be extremely high, and thus, scalability is not a real
issue [22]. Table 1 shows the different messages interchanged between a Client and a Target
Service in the peer discovery process.

5.1.2. Web Services Eventing (WS-Eventing): It is a Web Service protocol that
describes how a client (Subscriber) can register to some events (Subscriptions) of a web
service (Event Source). Thus, changes in the service can be notified to any client without
requiring standard polling mechanism. The event delivery is accomplished using simple
asynchronous messaging. In a typical client-server relation, interactions are always from
client to server (e.g. invocation of a service method is accomplished by a message always
initiated and sent by a client). Servers are typically passive, and are waiting to serve client
requests. On the contrary, the eventing mechanism allows servers to notify clients, and
become active. When a change in the server occurs, the server initiates a new communication
by sending a message to the clients (Subscribers). To improve robustness, a leasing
mechanism is defined so that when an event source accepts a request to create a subscription,
it typically does so for a given amount of time. In Table 2, we summarize the messages that
are involved in a subscription and notification process.

Table 2. Set of messages defined in WS-Eventing protocol

Message Type Sender Description

Subscribe Subscriber Sent to an Event Source to create a Subscription
SubscriptionResponse Event

Source
Reply to a Subscribe message sent if the subscription is
accepted, stating the expiration date and time of the
subscription.

Renew Subscriber Sent to an Event Source in order to update the
expiration time of a subscription

RenewResponse Event
Source

Reply to a Renew message sent if the subscription
renewal is accepted, with the new expiration date and
time

GetStatus Subscriber Sent to Event Source to request the expiration time of a
subscription

GetStatusResponse Event
Source

Reply to a GetStatus message, with the current
expiration time of a subscription

Unsubscribe Subscriber Sent to an Event Source with the purpose of cancelling
a subscription and stop receiving notifications

UnsubscribeResponse Event
Source

Reply to a Unsubscribe message, confirming the
subscription cancellation

SubscriptionEnd Event
Source

Sent by an event source when no longer can send
notifications to subscribers

Notification Event
Source

Message sent to subscribers with event data

5.2. P2P-like architecture using DPWS

International Journal of Smart Home

Vol.3, No.2, April, 2009

46

 DPWS is based on SOA paradigm and with clearly stated and differentiated client and
server roles. However, both roles can simultaneously be implemented in the same component,
thus enabling P2P-like architectures [8].

Figure 3 depicts the internal structure of a proposed peer component. We denote PDevice to
represent the peer component; SDevice to represent a port implementing the DPWS Service role
in the component; and CDevice to represent a port implementing the DPWS Client role. Any
device in the home environment can be represented using this model. The business logic uses
a device specific API to communicate with the actual physical device (sensors, actuators,
artifacts, external services, etc.) and some rules (ECA rules) define its own behavior.

Figure 3. Structure of a peer component

The discovery information, events, description and functional actions of the peer are

exposed to the other peers using SDevice, leveraging WS-Discovery, WS-Eventing and WS-
MetadataExchange, while external inputs needed by the peer can be discovered and
subscribed by the peer using CDevice. A peer can dynamically connect to as many other peers
as necessary, thereby forming a P2P infrastructure as shown in Figure 4, where we depict
some of the possible interconnections that could take place in order to realize the proposed
scenario. We must also emphasize that any component implementing only one of the
described roles could also take part in the network as pure client or pure service peers.

There are different options for a peer to discover other peers in the network. For example,
considering that PTV in Figure 4 is interested in locating a specific couch device in the
network like PCouch, CTV could send a Probe message with type “Couch” that should be replied
by SCouch. In addition, PTV could also discover PCouch, because SCouch advertises its presence
when entering the network sending a Hello message that would be received by CTV.

Once PCouch is located, PTV could subscribe to PCouch events. CTV could send a Subscribe
message to SCouch, which should reply with a SubscribeResponse message. Then whenever a
user sits on the couch, an event will be launched and CTV should receive the corresponding
notification message.

5.3. Application logic distribution

In order to explain the proposed application logic distribution approach, we will refer to the

smart home scenarios described in Section 2. We will first show how they could be realized
using a classical centralized logic approach, where all the behavior rules are centralized in an
application component and then explain our proposed logic distribution approach, where the
behavior rules are distributed among the peer components. Figure 5 represents the exposed set

International Journal of Smart Home

Vol.3, No.2, April, 2009

47

of methods and events of the peer components deployed in the P2P based architecture. We
will use the same notation described earlier and thus, use PCouch, PHeater, PTV, PArmchair,
PPresenceDetector, PSpeakers, PHiFi and PLightControl to denote the different peer components. So, the
actions and events described in Figure 5 will be exposed by Service role ports of the peers
like SCouch, SHeater, STV, SArmchair, SPresenceDetector, SSpeakers, SHiFi and SLightControl, and could be
accessed by Client role ports of the peers such as CCouch, CHeater, CTV, CArmchair, CPresenceDetector,
CSpeakers, CHiFi and CLightControl.

Figure 4. DPWS based P2P connections

Figure 5. Peers involved in the scenarios with actions and events

International Journal of Smart Home

Vol.3, No.2, April, 2009

48

By revisiting the overall scenario stated in Section 2, we summarize the following desired

system behavior based on which we explain how the application logic can be distributed.

5.3.1. Classical approach: using a centralized application logic approach, a client

application would be responsible for providing the users with the required system behavior. A
pure DPWS client implemented in the application (CApplication) would be in charge of the
different required tasks such as discovering the required services, subscribing to the required
events and invoking the required actions of the peers. Figure 6 shows a sequence diagram of
one of the described behaviors.

Figure 6 clarifies that when the user initializes the application, CApplication sends a Probe
message searching for a “Couch” service, which is received by SCouch, which send a
ProbeMatch reply to CApplication. The same process is done with the “TV”, “Speakers”, and
“LightControl” services, which will use STV, SSpeakers and SLightControl respectively to reply with
the corresponding ProbeMatch messages. Once all the services have been located, they can be
bound to a global application logic workflow that combines all of them in order to perform as
expected. As the application must detect the presence or absence of user on the couch,
CApplication will send a Subscribe message to SCouch in order to receive notifications whenever a
user sits on or gets off the couch. When a pressure sensor in the couch detects that a user is sit
on it, SCouch sends a notification to CApplication that will invoke the SwitchOn and SetChannel
methods of STV, the ConnectTo(TV) method of SSpeakers, and the SetLevel(LOW) method of
SLightControl.

In this approach, all the logic resides in the application that orchestrates the actions in the
devices, while these are completely passive. If the application fails, all the system behavior is
tampered as well.

User entering the room:

 Switch on the light

 Switch on the HVAC

User leaving the room:

 Switch off the lights

 Switch off the HVAC

 If TV or music is on, switch them all

User sitting on the couch:

 Reduce the light level

 If the music is on, switch it off

 Switch on TV

User sitting on the armchair:

 Increase light level

 If the TV is on, switch it off

 Switch on the HiFi

International Journal of Smart Home

Vol.3, No.2, April, 2009

49

Figure 6. Sequence diagram of a classical centralized logic approach

5.3.2. Proposed decentralized approach: We propose an application logic distribution

where devices incorporate a set of rules that can govern their own behavior, following simple
ECA rules (as simple as necessary/possible) and thus become reactive: they listen to external
messages (notifications coming from other services) and, according to some conditions
defined in these rules, they decide to perform their own actions. No centralized application
(containing the expected shared behavior) is needed. Each peer is responsible for deciding if
its actions are executed or not, according to the defined rules. Figure 7 shows the application
logic distribution among peers. The behavior of a peer is described by three well-
differentiated sections: Initialization, Event Handling and Operations. In the Initialization
Section, each peer subscribes to the events of its interest, while in the Event Handling section,
each peer has a set of defined ECA rules that are shown as a programming source code style,
but could be implemented using other rule management system. In the Operations section, the
peer defines the set of operations that a peer offers.

All the peers are only aware of the events they are interested on, and react
autonomously according to the established rules. We must remark that in the
collaborative mode, the only messages among peers are event notifications. No action
invocation is required, thus reducing the coupling among components. As per Figure 4
and Figure 7, let us consider the peer PCouch, which exposes and allows subscription to
the SitOn and GetUp events by means of the service SCouch. Its behavior is extremely
simple: whenever the internal pressure sensor detects a user, SCouch sends a notification

International Journal of Smart Home

Vol.3, No.2, April, 2009

50

message to its subscribers. If we consider peer PTV, we observe that it only listens to the
events coming from PCouch and hence during its initialization phase, it will use CTV to
send a Subscribe message to SCouch in order to receive SitOn and GetUp notifications.

Figure 7. Application logic distribution among peers

When a SitOn notification arrives from SCouch, PTV will check its own status (own action),

will switch itself on (own action) and will set the TV channel (own action) reacting to the
presence of a user in the couch as expected in the scenario. Further, as a consequence of the
invocation of its SwitchOn action, it will launch an event announcing that its status has
changed to ON. Thus, any peer interested in this status change will be able to react according
to its own behavior. In the proposed scenario, both PLightControl and PSpeakers are interested in this
event, so both of them will subscribe to it during their initialization phase and PLightControl will
react switching itself on (own action) and dimming the light level (own action) and launching
an event announcing its new state; and PSpeakers will be able to react setting its source to TV
(own action). Therefore, the expected system behavior has been achieved distributing the
application logic among all the peers, reducing the inter-peer coupling because only event
messages are shared.

6. Implementation and test

6.1. Implementation

International Journal of Smart Home

Vol.3, No.2, April, 2009

51

In order to evaluate the proposed approach we implemented a proof-of–concept prototype
architecture based on a set of peer devices with internal ECA rules defined to fulfill the
proposed scenario.

Figure 8 shows the implementation environment and how the different devices are
connected. We installed Phidget [26] pressure sensors in a couch and in an armchair and
connected them using OSGi running in a laptop. We used X10 lamp modules and a PC
interface for lighting control connected to the same laptop. We simulated a TV, HiFi system
and Speakers services using VLC [27], a media player for various formats with a HTTP
interface that allowed us to wrap a DPWS device around it. A GUI in a SmartPhone allowed
us to send user actions to the devices.

Figure 8. Implementation environment

We used .NET Deployment Framework and OSGi Deployment Framework tools

developed in the IST Amigo Project [28] to implement the WS-Discovery and WS-Eventing
protocols supporting peers, and distributed them as shown in Figure 8. We remark that some
of the peers were implemented using OSGi (PCouch and PArmchair), while the others were
implemented using .NET Framework. Thus, we demonstrate the interoperability capabilities
of a Web Service based solution like DPWS. For this first prototype implementation we
hardcoded the ECA rules for individual peers. Figure 9 shows the code snippet for an
example LightControl peer. We plan in the future to use an external rule definition
representation and a rule parser in the peers in order to allow dynamic update of behavior of
the peers, instead of hard coding the rules.

6.2. Test

Our objective was to build a flexible P2P-like home architecture with distributed behavior,
so we conducted some test cases in order to demonstrate it.

First, we analyzed the case of incorporating a new device in the environment. To do that,
we defined a new scenario to be added to the current ones consisting on automatic TV or HiFi
volume decreasing when a phone call is received. In order to realize this scenario, and still
support all the others, we incorporate a new peer in the smart phone PPhone, which launches an
event whenever a phone call is received. This is all the required behavior for the new peer.
We only need to add a new behavior to PSpeakers, stating that now it should also subscribe to
phone events, and define the corresponding event handling actions: when receiving
Phone.Call event, set the volume to low level (own action). Thus a simple update in one of
the peers supports the newly added scenario.

International Journal of Smart Home

Vol.3, No.2, April, 2009

52

Second, we tested the case of direct user actions in the environment. We implemented a
GUI application in the user’s smart phone, which is able to discover and locate all the peer
services using a DPWS client (CGUI). Thus, if user wanted to watch TV without sitting on the
couch, he/she could use the phone to invoke the SwitchOn action exposed by STV. This
invocation would directly switch the TV on, and launch the corresponding TV.On event that
would be received by CLightControl and CSpeakers, and these two peers would act according to the
defined behavior. The light level should be reduced and the Speakers source should be set to
play the TV sound in this case.

Finally, we analyzed the system behavior by intentionally removing PCouch from the
environment. This change will only affect the PTV peer (see Figure 7). By means of the
SubscriptionEnd message (according to WS-Eventing protocol) and Bye message (according
to WS-Discovery protocol) sent by SCouch, the unavailability of PCouch was notified to PTV.
Furthermore, as a clear benefit of the behavior distribution, user could manually switch TV
on, and as showed in previous test case, lights and speakers would still work as expected.

Public Class LightControl
 Public Event Light_On()
 Public Event Light_Off()
 Private TV As DPWS

 #Region "Initialization"
 Sub Initialize()
 AddHandler TVService.On, AddressOf TVOn_Eventhandler
 End Sub
 #End Region

 #Region "EventHandlers"
 Private Sub TVOn_Eventhandler()
 Me.SwitchOn()
 Me.SetLevel("LOW")
 End Sub
 #End Region

 #Region "Operations"
 Public Sub SwitchOn()
 X10Lib.SwitchOnLampModule("A3")
 RaiseEvent Light_On()
 End Sub

 Public Sub SwitchOff()
 X10Lib.SwitchOffLampModule("A3")
 RaiseEvent Light_Off()
 End Sub

 Public Sub SetLevel(ByVal level As String)
 ...
 X10Lib.DimLampModule(“A3”)
 ...
 End Sub
 #End Region
End Class

 Figure 9. Code snippet showing the behavior of PLightControl

7. Conclusions and future work

We have proposed a P2P-like scheme for a flexible smart home architecture and analyzed
the possibility of distributing the required application workflow logic to individual peers. In
this approach, each device or service represents a peer and acts autonomously based on the
application logic it has for its own interaction. We observed that the tools and techniques
provided by DPWS, more specifically its discovery and eventing mechanisms, are suitable to
realize such a proposed architecture. The proposed approach not only provides the flexibility
of adding or removing new or existing devices to/from the home network, it also ensures
scalability and removes the burden from the central entity usually encountered in a traditional
server or gateway based solutions.

There are scopes for further work in this direction. For example, a) it would be interesting
to utilize a rule description language for ECA-rule deployment in different peers, b) the

International Journal of Smart Home

Vol.3, No.2, April, 2009

53

integration of sophisticated context management framework [25] into the smart home
architecture would be a good extension of the current work, and c) to provide users with
flexible GUI in order to easily construct the distributed application logic for the individual
peers and to perform an extensive usability study.

References

[1] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and C. Marin, “A Dynamic-SOA Home Control Gateway”,
IEEE International Conference on Services Computing (SCC '06), 2006, pp. 463-470.

[2] Y. Tajika, T. Saito, K. Teramoto, N. Oosaka, and M. Isshiki, “Networked home appliance system using
Bluetooth technology integrating appliance control/monitoring with Internet service”, IEEE Transactions on
Consumer Electronics, vol. 49, no. 4, Nov. 2003, pp. 1043-1048.

[3] OSGi – The Dynamic Module System for java, http://www.osgi.org

[4] UPnP, http://www.upnp.org

[5] Web Service, http://www.w3.org/2002/ws

[6] Jini, http://www.jini.org

[7] HAVi, http://www.havi.org

[8] Devices Profile for Web Services, http://schemas.xmlsoap.org/ws/2006/02/devprof/

[9] C-L. Wu, C-F. Liao, L-C. Fu, “Service-Oriented Smart-Home Architecture Based on OSGi and Mobile-Agent
Technology”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37,
no. 2, March 2007, pp.193-205.

[10] M.Aiello, “The Role of Web Services at Home”, Proceedings of the Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applications and Services (AICT/ICIW
2006), Guadeloupe, 2006.

[11] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen, “The Gator Tech Smart House: A
Programmable Pervasive Space”, IEEE Computer, vol. 38, no. 3, Mar. 2005, pp. 50-60.

[12] D. Valtchev and I. Frankov, “Service gateway architecture for a smart home”, IEEE Communications
Magazine, vol. 40, no. 4, Apr. 2002, pp. 126-132.

[13] A. Bottaro, A. Gerodolle, P. Lalanda, “Pervasive Service Composition in the Home Network”, 21st
International Conference on Advanced Information Networking and Applications (AINA’07), May 2007, pp. 596-
603.

[14] M.Nakamura, A.Tanaka, H.Igaki, H.Tamada and K.Matsumoto, “Adapting Legacy Home Appliances to
Home Network Systems Using Web Services”, IEEE International Conference on Web Services (ICWS'06), Salt
Lake City, 2006.

[15]V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chibout, N. Levy, and A. Talamona, “Developing
Ambient Intelligence Systems: A Solution based on Web Services”, Automated Software Engineering, Springer
Netherlands, vol. 12, no. 1, Jan. 2005, pp. 101-137.

[16] E. Zeeb, A. Bobek, H. Bonn, F. Golatowski, “Lessons learned from implementing the Devices Profile for
Web Services”, Digital EcoSystems and Technologies Conference (DEST '07), Inaugural IEEE-IES, Feb. 2007,
pp. 229-232.

[17] T. Perumal, A.R. Ramli, C. Y. Leong, S. Mansor, and K. Samsudin, “Interoperability for Smart Home
Environment Using Web Services”, International Journal of Smart Home, vol. 2, no. 4, Oct. 2008, pp. 1-16.

[18] F. Jammes, A. Mensch, H. Smit, “Service-Oriented Device Communications Using the Devices Profile for
Web services”, 21st International Conference on Advanced Information Networking and Applications Workshops
(AINAW '07), vol. 1, no. 1, 2007, pp. 947-955.

[19] A. Bottaro, E. Simon, S. Seyvoz, and A. Gerodolle, “Dynamic Web Services on a Home Service Platform”,
22nd International Conference on Advanced Information Networking and Applications (AINA ‘08), Mar. 2008, pp.
378-385.

[20] M. Nakamura, H. Igaki, H. Tamada, and K. Matsumoto, “Implementing integrated services of networked
home appliances using service oriented architecture”, In Proceedings of the 2nd international Conference on
Service Oriented Computing (ICSOC '04), New York, USA, Nov. 2004, pp. 269-278.
[21] Web Services Dynamic Discovery, http://specs.xmlsoap.org/ws/2005/04/discovery/
[22] Web Services Eventing, http://www.w3.org/Submission/WS-Eventing/

International Journal of Smart Home

Vol.3, No.2, April, 2009

54

[23] J.C.Augusto and C.D.Nugent, “The Use of Temporal Reasoning and Management of Complex events in
Smart Homes”, Proceedings of European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain,
August 2004. IOS Press, 2004, pp. 778-782.

[24] Y.Qiao, K.Zhong, H.Wang, X.Li, “Developing event-condition-action rules in real-time active
database”, In Proceedings of the 2007 ACM Symposium on Applied Computing (SAC ‘07), Seoul, Korea, March
2007, pp. 511-516.

[25] T. Gu, H. K. Pung, and D. Zhang, “Towards an OSGi-Based Infrastructure for Context-Aware Applications in
Smart Homes”, IEEE Pervasive Computing, vol. 3, no. 4, 2004, pp. 66-74.

[26] Phidgets – products for USB sensing and control, http://www.phidgets.com

[27] VLC media player, http://www.videolan.org/vlc

[28] IST Amigo project, http://www.hitech-projects.com/euprojects/amigo/

Authors

Jorge Parra received his BS and MS degrees in Electrical Engineering in
1998 from the University of the Basque Country (UPV/EHU), Spain,
where currently he is also pursuing his Ph.D. degree in the Department of
Electronics and Telecommunications. He has been working in Ikerlan-IK4
Technological Research Centre since 1999 as a full-time researcher in the
Software Technologies Area, where he has taken part in a number of
projects related to home systems. His current research interests include
distributed systems, service oriented architectures and service technologies

for Ambient Intelligence systems.

 M. Anwar Hossain received the B.Eng. degree in Computer Science
and Engineering from Khulna Universty, Bangladesh, and the M.C.S.
degree in Computer Science from the University of Ottawa, Ottawa, ON,
Canada, in 2005. He is currently working toward the Ph.D. degree with the
Multimedia Communications Research Laboratory (MCRLab), School of
Information Technology and Engineering, University of Ottawa. He
worked for a few years in industry before he completed the M.C.S. degree.

His research interests include human-computer and human-environment interaction,
information visualization, multi-sensor systems, context-awareness and ambient intelligence.
He has authored and co-authored more than 25 publications including refereed journals,
conference papers, and book chapters.

Aitor Uribarren received his BS degree in 1998 at Department of
Computer and Communication Systems Engineering, Mondragon
Unibertsitatea. He completed his MS degree in Distributed Systems and
currently pursuing Ph.D. in Smart Home Ambient Personalization at
Universidad de Deusto. Since 2000, he’s a full-time researcher at Ikerlan-
IK4 Research Centre in the department of Software technologies. His main
interests are smart home systems, middleware technologies,

reconfiguration and embedded system design.

International Journal of Smart Home

Vol.3, No.2, April, 2009

55

Eduardo Jacob works as assistant professor in the University of the
Basque Country (Spain) where he received his BS and MS degrees in
Electrical Engineering, in 1987 and Ph.D. degree from the same
University in 2001. His work takes place in the Department of
Electronics and Telecommunications at Faculty of Engineering of Bilbao
where he teaches Operating Systems Laboratory, Mobile Services and
Networks and Doctorate Courses on Advanced Networks and Security in
Wireless Networks. He has directed several R&D publicly funded
projects in security and distributed systems. He is co-founder of the I2T

(Research and Engineering in Telematics) Research Group of my University that is currently
involved in several projects related security in distributed systems and next generation
networks. He is member of the advisory committee in Information Systems of the University
of the Basque Country and has been appointed as Technical Expert at the advisory Council of
the Basque Agency for Data Protection.

 Abdulmotaleb El Saddik (F’IEEE-09) is University Research Chair
and Professor, SITE, University of Ottawa and recipient of the
Professional of the Year Award (2008), the Friedrich Wilhelm-Bessel
Research Award from Germany's Alexander von Humboldt Foundation
(2007) the Premier’s Research Excellence Award (PREA 2004), and the
National Capital Institute of Telecommunications (NCIT) New
Professorship Incentive Award (2004). He is the director of the

Multimedia Communications Research Laboratory (MCRLab). He is a Theme co-Leader in
the LORNET NSERC Research Network. He is Associate Editor of the ACM Transactions on
Multimedia Computing, Communications and Applications (ACM TOMCCAP) and IEEE
Transactions on Computational Intelligence and AI in Games (IEEE TCIAIG) and Guest
Editor for several IEEE Transactions and Journals. Dr. El Saddik has been serving on several
technical program committees of numerous IEEE and ACM events. He has been the General
Chair and/or Technical Program Chair of more than 20 international conferences, symposia
and workshops on collaborative hapto-audio-visual environments, multimedia
communications and instrumentation and measurement. He was the general co-chair of ACM
MM 2008. He is leading researcher in haptics, service-oriented architectures, collaborative
environments and ambient interactive media and communications. He has authored and co-
authored two books and more than 200 publications. He has received research grants and
contracts totaling more than $10 million and has supervised more than 90 researchers. His
research has been selected for the BEST Paper Award three times. Dr. El Saddik is an IEEE
Distinguished Lecturer, Senior Member of the ACM, and Fellow of the IEEE.

International Journal of Smart Home

Vol.3, No.2, April, 2009

56

