
International Journal of Smart Home

Vol. 3, No. 1, January, 2009

49

Software Vulnerability Design and Approaches for Securing SCADA

Control Systems

Giovanni A. Cagalaban, Jae-gu Song, Sungmo Jung, Seok soo Kim

Department of Multimedia Engineering, Hannam University

 gcagalaban@yahoo.com, bhas9@paran.com, sungmoj@gmail.com, sskim@hnu.ac.kr

Abstract

Despite growing awareness of security issues especially in SCADA networks, there exist

little or scarce information about SCADA vulnerabilities and attacks. Where security has been

a consideration, there has been no clear methodology to assess the security impacts brought

about by attacks. Worst, there have been no or very little security tools that have been released

publicly.

This research aims to addresses the issues regarding security and vulnerability testing.

Software program was created to simulate the vulnerability testing and carry out assessment

methodologies to test existing SCADA software design and implementation. This paper also

describes the application of a well know security testing approach known as the software

implemented fault injection as well as building the model for security vulnerabilities

identification and analysis. Impact analysis was also performed to provide a better

understanding of the attacks. Sufficient security measures are needed to block all possible

intrusion points into the SCADA system to significantly reduce the chances of a successful

attack.
Keywords: control systems, vulnerability model, fault injection, impact analysis

1. Introduction

Many infrastructures and industries use computer-based systems, commonly known as to

remotely control sensitive processes and physical functions previously controlled manually by

its operators. These systems, commonly known as Supervisory Control and Data Acquisition

(SCADA), allow a physical system such as water utility to collect data from sensors and control

equipment located at remote sites [1].

 However, SCADA networks were developed with little attention being paid to security. As a

result, many SCADA networks may be susceptible to attacks and misuses. Furthermore, studies

indicated that some water utilities may have spent little time and money securing their SCADA

systems.

There exist still little or scarce information about SCADA vulnerabilities and attacks, despite

the growing awareness of security issues in industrial networks. Regarding the case of

information technology security, most owners and operators are often unwilling to release

attack or incident data. Yet, these sensitive data are not public repositories of advisories and

vulnerabilities in industrial devices unlike information technology products and protocols. Even

though some vulnerability testing and research are being conducted in this area, very little has

been released publicly and no so-called SCADA security tools have been released to the public.

To address the limitations, this research aims to create a software vulnerability testing and

simulation program to perform vulnerability assessment methodologies to test the existing

SCADA software design and implementation. The program provides features to sniff network

mailto:gcagalaban@yahoo.com
mailto:bhas9@paran.com
mailto:sungmoj@gmail.com
mailto:sskim@hnu.ac.kr

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

50

packets and transmit them onto the network. Further, it will employ a well-known security

technique in the testing of vulnerability of a software system referred to as fault injection.

Specifically, this approach will be injecting faults based on software techniques is called

software implemented fault injection (SWIFI). This approach has been based on years of

researches and experiences in vulnerability analysis of software systems [2].

2. Related Study

To improve the security of the nation’s critical infrastructure, researches have been conducted

to identify and resolve vulnerabilities of SCADA systems to ensure reliability of its operations.

Ongoing research and assessment activities have revealed an effective methodology for

identifying vulnerabilities and developing assessment methods to secure SCADA systems.

Software tools used to determine known vulnerabilities in traditional IT systems have been

widely available. The market for these vulnerability scanners has been significant and products

such as Nessus, FoundScan and Internet Security Scanner (ISS) have been popular with IT

administrators trying to locate unpatched computers on their networks.

Several test tools that have had success in locating new vulnerabilities in network devices

based on grammar and fuzzy techniques are also been developed in academic researches.

Considerable work has been done by the PROTOS project group [3] and by Tal, Knight and

Dean [4]. Each considers the syntax-based generation of protocol data units that translates into

a single test packet to be sent to the device under test. Their methods have proven effective in

finding vulnerabilities [3][4] however, they only allow for the construction of simple single-

packet test cases.

Despite efforts to improve and provide guidance to help ensure program activities address

real control system security issues, still there are very little security tools that have been

released publicly.

3. System Methodology

In this research, a simple SCADA device test bed was set up for vulnerability testing and

assessment. A prototypical SCADA master and slave programs were used to simulate the serial

communication between a SCADA master station and Remote terminal Units (RTUs) or slaves.

This will allow assessment of vulnerabilities and security configurations of SCADA software

used in industries.

The testbed consists of one MTU that communicates with several RTUs. The system used

SCADA software for process monitoring and control. RTUs are running a Modbus

communication driver to communicate and exchange data with the MTU. Attacks were

simulated using direct access to the infrastructure. Figure 1 shows the prototypical SCADA

testbed.

Many types of vulnerabilities exist, and computer security researchers have created

taxonomies of them [5]. Security vulnerabilities in software systems range from local

implementation errors to much higher design-level mistakes. Vulnerabilities typically fall into

two categories. They may be bugs at the implementation level and flaws at the design level [6].

Design-level vulnerabilities are the hardest defect category to handle, but they’re also the most

prevalent and critical issues to deal with.

A SCADA system uses Modbus communication as represented by RS232, RS422 and

RS485 communication standard. In this research, Modbus protocol was used since it lack

inherent security that any moderately skilled hacker would be able to carry out a large variety

of attacks if system access can be achieved.

http://www.wurldtech.com/resources/industrial_control_systems_security13.php#note4
http://www.wurldtech.com/resources/industrial_control_systems_security13.php#note5
http://www.wurldtech.com/resources/industrial_control_systems_security13.php#note4
http://www.wurldtech.com/resources/industrial_control_systems_security13.php#note4
http://www.wurldtech.com/resources/industrial_control_systems_security13.php#note4

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

51

Figure 1. Prototypical SCADA Testbed

This research uses RS485 and RS232 standards to establish and examine the communication

between SCADA Master and RTUs. In Modbus communication, there are two options possible:

the installation of interface devices (PCI or PCMCIA type) and use of an RS485

communication converter [7] connected with an RS232 standard interface connected to a

computer.

RS232 communication device was used as a medium for serial transmission of data between

SCADA master and slave. A man-in-the-middle physical configuration is shown in Figure 2

wherein the SCADA master and slave is connected with an intruder that eavesdrops on the

network traffic. The man-in-the-middle computer serves as an intruder to perform sniffing and

fault injection through the use of a developed program. The goal of this attack was to analyze

the communication link between the SCADA communication port and the RTU and develop a

means to send software-injected faults to change state in the either the master or slave

operation.

Figure 2. Sniffing attack

In this approach, sniffing activities include faults that are injected by a program into the

system thereby changing its current status. Changing the status of the system environment

during testing would provide assessment on how it responds and whether there will be security

vulnerabilities that can be detected. If not, then the whole system is considered secure and

reliable.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

52

The use of software implemented fault injection technique has several advantages. One

advantage is that it is hard to detect and analyze certain vulnerabilities and the ability to detect

them depends on the personnel’s knowledge of the system. Fault injection using software

techniques provides a way of emulating the system vulnerability without having to be

concerned with how they could occur in actual simulation.

Another advantage is that unlike other approaches where they are considerably difficult to

implement and quantify results, software implemented fault injection technique provides a

capability of implementing and automating the testing procedure.

3.1 Vulnerability Model

In order to determine the security vulnerabilities, it is necessary to inject faults through

software that manifest themselves as security defects in systems at the application software

level. One thing to note is that those faults should emulate the real system faults appropriately.

The elements to be considered are internal elements and external elements. Internal elements

refer to those elements that are part of the program’s code and data such as variables and stack.

While external elements are elements that are external to a program’s code and data such as

file, media, other party, and network.

One factor to consider in making and implementing a secure system is the nature of having

shared elements. A program is not alone in accessing and changing these internal and external

elements. Other factors, such as other users, may access and change the whole elements as well.

To provide high confidence in the validity of the security vulnerabilities caused by faults to

be injected, the approach described here models the software system at a high level. Software

implemented fault injection at this level emulate what a “real” attack scenarios are being done.

3.2 Building the Vulnerability Model

A faults can be injected using software techniques can affect an application in two different

approaches. One scenario is when an application receives inputs from its external elements

which then inherited by the medium of internal elements of the program. Figure 3 shows an

indirect way in which the faults being injected are not handled by the program. Solid lines

represent input from the external elements to the program while dashed lines refer to the fault

via internal elements.

Figure 3. Indirect way of fault injection

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

53

Another scenario is shown in Figure 4. This shows a direct way in which the faults injected

are not handled by the program. Security vulnerability occurs when faults are the direct cause

of security vulnerability and the medium for the faults are the internal element directly.

Figure 4. Direct way of fault injection

3. 3 Software implemented fault injection

To implement fault injection, the software approach created can be outlined in the following

steps. The program was written in C language, a language which supports serial interface and

communication. The steps are shown in order below:

1. Set counter and size to 0.

2. For each test case, do step 3 to 9.

3. For each interaction point in the execution trace, decide if the program asks for an input. If

there is no input, only inject direct environment faults; if there is an input; inject both direct

and indirect way of injecting faults.

4. Decide the object where faults will be injected.

5. For each fault in the list, inject it before the interaction point for the direct environment

faults; inject each fault after the interaction point for the indirect environment faults since in

this case, we want to change the value the internal entity receives from the input.

6. Increase size by 1.

7. Detect if security policy is violated. If violated, increase counter by 1.

8. Calculate interaction coverage. If the test adequacy criterion for interaction is satisfied then

stop else repeat steps 3-9 until the adequacy criteria for interaction coverage is achieved.

9. Divide counter by size yielding to obtain the vulnerability assessment score for the

application program.

To illustrate the steps, consider a portion of software implemented fault injection. A

refinement of code mutation is shown below which adds code, rather than modifies existing

code. This is usually done through the use of functions which are simple functions which take

an existing value and change it via some logic into another value,

int funcFault(int value) {

 return value + 26;

 }

 int main(int argc, char * argv[]) {

 int a = funcFault(aFunction(atoi(argv[1])));

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

54

 if (a > 26) {

 change the value

 } else {

 call function B

 }

 }

In this case funcFault is the function and it is applied to the return value of the

function that has been called introducing a fault into the system.

4. Impact Analysis

To assess the possible security vulnerabilities, some method of assessing and rating the risk

of any vulnerability is needed. The impact in this case is an expression of the likelihood that a

defined threat will exploit a specific set of vulnerability of a particular attractive target to cause

a given set of consequences. Sniffing activities which include software injected faults seems to

only have little cost or apprehension concerns.

The purpose of the of the analysis is to determine the values associated with the goal of attack

to give a better understanding which also reflect the classification of the faults to compromise

the whole system. These also indicate where security recommendations are required. Figure 5

shows the results of the assessment of effects of sniffing activities and compromising the

SCADA system.

Figure 5. Assessment results

Impact analysis of the sniffing activities including fault injection indicates that the avenues of

attack depend on the ability of the attacker to gain SCADA access and identify the existing

protocol. If sufficient security measures are put in place to block all possible intrusion points

into the SCADA system, then the chances of a successful attack are greatly reduced.

Unfortunately, in this research the predominant security effort in most SCADA facilities tends

focus on attacks via the Internet or through the business network. This leaves open attacks from

other intrusion points such as remote field stations, the SCADA transmission infrastructure, or

wireless control network connections.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

55

5. Conclusion

Based on the impact analysis, sniffing attacks including software implemented fault

injection are dependent on the ability of the attacker to gain network access and locate existing

protocol devices. If sufficient security measures are in place to block every possible intrusion

point, then the chance of successful attack is extremely low. Since there is virtually no security

inherent in a protocol such as Modbus-based SCADA or industrial control systems, any

moderately skilled hacker would be able to carry out a large variety of attacks if system access

can be achieved.

The study indicated that the use of these vulnerability models in SCADA communications

can significantly reduce the vulnerability of these critical systems to malicious cyber attacks,

potentially avoiding the serious consequences of such attacks. The results of the study also indicate

that the software implemented fault injection can be a very useful tool for modeling threats and

vulnerabilities in a wide variety of systems especially SCADA control systems. However, the

approach is not without its limitations. Lightweight approaches to threat modeling are useful

for protocol designers, vendors, and users in an area that needs more exploration.

Future studies are needed to have more formal approaches that better aggregate subordinate

values and dynamically reflect specific parameters in carrying out sniffing attacks to the

SCADA system [8].

References

[1] Technical Information Bulletin 04-1, Supervisory Control and Data Acquisition (SCADA) Systems, NCS TIB

04-1, Oct. 2004

[2]. Krsul, I., Software Vulnerability Analysis. PhD thesis, Purdue University, Department of Computer Sciences,

West Lafayette, Indiana, 2000.

[3] Kaksonen, R., Laasko M., and Takanen A., "Vulnerability analysis of software through syntax testing,"

University of Oulu, Finland, Tech. Rep. (2000).

[4]. Tal, O., Knight S., and Dean T., "Syntax-based vulnerability testing of frame-based network protocols,"

Privacy, Security and Trust (2004).

[5]. Byres, E.J., Hoffman, D., & Kube, N. (2006). On Shaky Ground – A Study of Security Vulnerabilities in Control

Protocols. Proceedings of the 5th American Nuclear Society International Topical Meeting on Nuclear Plant

Implementation, Controls, and Human Machine Interface Technology, American Nuclear Society, Albuquerque,

NM, November, 2006.

[6]. James R. Davidson. Vendor System Vulnerability Testing Test Plan, January 2005

http://www.inl.gov/technicalpublications/Documents/3484441.pdf

[7] LCS-485 Converter (USB to Serial 2p RS432/485), http://kunhocom21.co.kr/product/productView.php?

nProdCode=61019&service_id=pcdn

[8] Franz. M; “Flexible Threat Modeling.” www.io.com/~mdfranz/papers/unpub-may04-flexible-threatmodeling.pdf

http://www.wurldtech.com/resources/industrial_control_systems_security3.php#back4
http://www.inl.gov/technicalpublications/Documents/3484441.pdf
http://www.io.com/~mdfranz/papers/unpub-may04-flexible-threatmodeling.pdf

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

56

Authors

Giovanni Cagalaban received a B.S degree in Computer Science from

University of the Phillippines in the Visayas Miag-ao, Philippines, 2000 and

M.S. degree in Computer Science from Western Visayas College of Science

and Technology, Philippines, 2007. And currently, on the Integrate course in

Multimedia Engineering from Hannam University. His research

interests include Multimedia system, SCADA security, sensor network.

Jae-gu Song received a B.S. degree in Multimedia from Hannam University,

Korea, 2006 and M.S. degree in Multimedia from Hannam University, Korea,

2008. And currently, on the Ph.D. course in Multimedia Engineering from

Hannam University. His research interests include multimedia network

system, ubiquitous system, medical information system, network security.

Sungmo Jung received the B.S. degree in Department of Multimedia from

Hannam University, Daejeon, Korea in 2008. Now, he is working on the

Master’s degree in Multimedia Engineering from Hannam University. His

research interests include Software Engineering, Embedded database systems

and Sensor network.

Seoksoo Kim received a B.S. degree in computer engineering from

Kyungnam University, Korea, 1989, and M.S. degree in Information

engineering from Sungkyun-kwan University, Korea, 1991 and Ph D. degree

in Information engineering from Sungkyun-kwan University, Korea, 2002. In

2003 he joined the faculty of Hannam University, Korea where he is currently

a professor in Department of Multimedia Engineering. His research interests

include Multimedia Communication systems, Distance learning, Multimedia

Authoring, Telemedicine, Multimedia Programming, Computer Networking.

Information Security. He is a Member of KCA, KICS, KIMICS, KIPS, KMS, and DCS.

