
International Journal of Smart Home

Vol. 2, No. 4, October, 2008

59

Flexible Real-time Embedded Architecture
for Advanced Service Robots

David Ramada, Carlos Domínguez, Houcine Hassan, Alfons Crespo
Department of Computer Engineering
Universidad Politécnica de Valencia

husein@disca.upv.es

Abstract
In most advanced real-time control applications such as service robots, the tasks have

different criticality, flexible timing constraints and variable execution time. For instance,
autonomous service robots perform their activities in dynamic environments, share resources
and have to cooperate to fulfill their objectives. These changing environmental conditions
produce a variability of the system load. Firstly, the computational requirements of
recognition tasks are variable and dependent on the number of objects perceived in scenes.
Secondly, the application processes are executed at different frequencies with varying periods
and deadlines that are dependent on robot speeds. To tackle these aspects a flexible real-time
architecture is implemented in rt-linux in this paper. Moreover, the architecture permits to
extract the slack time, enabled in the system due to load variability, and to invest it in
improving the communication performances of the robots. Experimental evaluations of the
architecture have been carried out with real autonomous robots.

1. Introduction

Service robots move in spaces (i.e. hospital, campus) and can interact with humans and
other robots. They manipulate objects and share resources. Their tasks consist of inform,
guide, care and accompany people, control of traffic, surveillance, transportation, etc. Most of
these tasks have variable computation characteristics. For instance, the service robots perform
their activities in dynamic environments, they share resources and have to cooperate to fulfill
the objectives. The conditions of the environment have influence on the variability of the
computation time of the vision system and the recognition tasks. These tasks are variable and
dependent on the number of objects that are perceived in the spaces. On the other hand, some
processes of the applications (i.e. sensory system) are executed at different frequencies, with
varying temporal requirements (periods and deadlines) depending on the speed that the
vehicle applies. To ensure the robot safety requirements, the periods and deadlines of real-
time tasks have to be gradually adjusted and proportionally to the actual robot speed [1].

This paper presents a real-time architecture that supports the computational variability of
service robotic applications. A feedback control scheduler (FCS) is designed to carry out the
execution of the variable hard-real time tasks that represent the critical processes of robots
(i.e. obstacle_avoidance).

On the other hand, the variability of the load enables sufficient slack time in the system
that could be used to improve the communication performances of the robotic system.
Enhanced communication processes can be scheduled as optional tasks during the slack time
periods. Therefore, a flexible server (FS) is implemented to cope with the optional
communication real-time tasks. Moreover, heuristic strategies are designed to permit the

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

60

distribution of the optional time extracted accordingly to the communication requirements of
the robotic applications, and hence improve the communication performances of the robots.

After the introduction, section 2 reviews previous work performed on variable computation
and QoS management. In section 3, the components of the real-time architecture are
described. The implementation of the architecture in rt-linux is presented in section 4.
Experimental evaluations of the different subsystems in real environments are carried in
section 5. Finally, conclusions are summarized in section 6.

2. Related work

In the literature, different techniques focusing in the adaptation of the characteristics of the
load to the environmental conditions and in improving the quality of service of real-time
applications have been emerged as major research issues. In [2, 3, 4] a feedback control
scheduler based on the feedback control theory is used with a proper QoS actuator for
adjusting the task QoS levels in order to minimize the deadline miss ratio, when task’s
execution time are not known. In [5, 6] periodic computations are modeled as springs with
given elastic coefficients and minimum lengths. The spring elastic coefficients are used to
change the rates of the periodic tasks under overload conditions or when variations in task
execution rates are requested. However, [7] proposes the use of concepts such as task values
and priorities rather than spring coefficients. Beccari [7] proposed a rate adaptation
scheduling framework for soft real-time periodic tasks characterized by a range of admissible
rates. When the rate of some task is required to change by the high-level control system, the
remaining soft real-time tasks can be adapted based on heuristic criteria. Abdelzaher [8] use
QoS contracts specifying degraded acceptable QoS levels to obtain a graceful degradation of
the communication subsystem. Under overload or under-utilisation conditions, a QoS
optimization process attempts at maximizing the aggregate reward, given rewards/penalties
information specified by QoS contracts. A method that integrates a reservation mechanism
with an application level QoS adaptation strategy is presented in [9]. The method controls the
CPU bandwidth reserved to a task and allows each task to change its QoS requirements
(enlarging the periods or skipping task instances) if the amount of reserved bandwidth is not
sufficient to accomplish its QoS. A scheduling algorithm maximizing the effective processor
utilization during overload, given a minimum slack factor for all tasks, is presented in [10].
The algorithm is based on EDF, hence it does not guarantee which tasks will not be affected
by overload. In [11] the skip approach assumes that certain tasks could abort some instance
during a periodic execution, especially for applications, such as process control architectures..

3. Real-time architecture
3.1 Service robots

The services that the robots have to perform can be appreciated in the Figure 1.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

61

Figure.1. Robot services.
The robots move in the space of the schools and can interact with humans and other robots.

They manipulate objects and share resources with the former agents. Some of the tasks that
the robots have to perform are to inform and guide people, to care about persons and to
accompany them if they are lost. They can work in the control of traffic when it is heavy and
they perform the surveillance of the spaces of the campus and objects and their transportation.
Robots can perform diagnosis of systems and proceed to the reparation of failures.

The communication protocol is established between two agents. An agent can be either a
robot or a human. An agent i asks the closest agent j for some service. The agent j assumes
the requirement of agent i. Then, agent j evaluates the situation, and it can solve it or it looks
for cooperation of other agents. The cooperation consists of Agent-i delegates/exchange a
goal and agent-j assumes/refuses the goal.

Figure 2 shows the organisation of the tasks in the system. The periodic tasks support the
execution of the reactive processes of the robot. The optional tasks are used to improve the
communication quality of the periodic tasks. The communication tasks are executed in the
slack periods as optional tasks to improve the collaboration between the agents.

Figure.2. System scheduling.
3.2 Task model

In order to cope with the process temporal and computational requirements identified
in Figure 2, a task model, according to the hardness of the timing constraints of these
processes is proposed. Three task sets define the task model:

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

62

ovf TTTT ∪∪=

Where: fT is the fixed periodic task set, vT the variable periodic task set and oT the
optional task set.

The requirements of processes related to low-level reactions (i.e. detecting and
avoiding obstacles) must be strictly guaranteed. Since these temporal requirements can
be either fixed or variable they are mapped to either fixed or variable periodic tasks.

The fixed periodic task set, fT , represents the periodic processes that don’t depend
on any application parameter. A fixed periodic task, f

iT , is characterized by the
temporal parameters of the definition (1).

{ }iiiiii
f

i mDPCT ,,Pr,,, φ= (1)

Where, Ci is the worst case execution time, Pi is the period, Di is the deadline, Pri is
the priority, φi is the offset and mi is the motivation of the i task.

The variable periodic task set, vT , supports the execution of processes that are
dependent on the environment and/or on application parameters. The characteristics of
variable periodic task, v

iT , are expressed with the temporal parameters of the definition
(2).

{ }iiiiii
v

i mkDkPkCT ,,Pr),(),(,)(221 φ= (2)

In this case, the computational time, Ci is variable and depends on the application
parameter 1k (i.e. number of obstacles in the scene). Pi and Di attributes are also
variables and depend on the parameter 2k (i.e. robot speed). These variable temporal
parameters should accomplish the conditions of the definition (3).

max

1
min)(iii CkCC ≤≤

max
2

min)(iii PkPP ≤≤

max
2

min)(iii DkDD ≤≤

 (3)

min
iC and max

iC are the minimum and maximum computational time corresponding
respectively to an under-loaded and overloaded environment. min

iP and min
iD are the

minimum task periods and deadlines respectively, these are applied for the maximum
robot speed. When the speed is minimum, the maximum temporal requirements max

iP
and max

iD are applied.

The high-level deliberative processes of the application do not require strict
guarantees (i.e. collaboration info task (see Fig. 2)) and their execution is not
mandatory. The mandatory communication (i.e Agent info Sharing task of Fig 2) is
executed as periodic tasks. To deepen in the collaboration, optional tasks are scheduled.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

63

Consequently, the enhancing communication processes are modelled with optional soft
aperiodic tasks (Liu 1991). Each optional task, o

iT , is composed of different quality
levels. The first level generates a minimum communication quality response of the task.
By increasing the level, the quality of the result is improved. The characterisation of an
optional task, o

iT , is given in (4).

)Im,(i, ji
o

i LT = (4)

Where Li,j is the estimated computational time of the jth level of the ith task. Imi is
the importance of the optional task.

3.3 Feedback control scheduler

The execution of the fixed and variable periodic tasks is supported by the feedback
control scheduler (FCS) of the Figure 3. The FCS regulates two control loops. In the
first loop the FCS has to adapt the periods and deadlines of tasks accordingly to the
requested robot speed. And in the second loop, the utilisation of the reactive processes
is maintained between predefined utilisation limits (i.e. minU =40% and maxU =70%).

Fixed Periodic Tasks

Variable Periodic Tasks
Load

Monitor

Execution Statistics ..),,(etcUU vf

Fixed
load

Variable
load

Fixed objective
load

Variable objective
load

Load
Controller

vΔ
reqv

v
realU

S
c
h
e
d
u
l
e
r

Execution Statistics

realv

+

-

Figure 3. Feedbak control scheduler.
The FCS is composed of a monitor, a controller and a fixed priority-based pre-

emptive scheduler (rate-monotonic scheduler [13]. The monitor performs the
monitoring of the actual load of the system, it updates the actual variable utilisation and
the actual speed and sends them to the controller. The controller receives, in addition,
speed requests from the application and is responsible for the regulation of the system
to satisfy the requested speed and to preserve the utilization limits.

The regulation of the system takes place when the actual utilisation doesn’t respect
the utilisation limits, and/or a robot speed change is required. Hence, if the actual
utilisation doesn’t respect the limits and no robot speed change is required, the
controller analyses the causes of the load rejection −because of the system saturation or
laxity. If the system is overloaded, the controller performs a load relaxation by
increasing the periods. Otherwise, the load is increased by reducing the variable task
periods. Instead, if the actual utilisation respects the limits and the agent requires a
speed change, the controller should analyse whether the utilisation generated by the
required speed is accepted or not. If it is accepted then it is executed by adjusting the

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

64

periods, accordingly to that speed. Otherwise, the rejection causes are analysed and the
regulation is solved as has been done previously. Finally, when the two control loops
are not fulfilled, the controller will perform the regulation of the speed. Once the
controller has decided that a regulation of the system should be performed, it would
calculate the new periods of the tasks.

3.4 Flexible server

The flexible server (FS) schedules the optional tasks in the slack time of the system.
To extract this time, the FS incorporates a slack time controller which has been adapted
to cope with the variable periodic tasks. To improve the performances of the
communication, heuristic strategies are implemented to distribute the extracted idle
time among optional tasks, accordingly to the application requirements.

3.4.1. Slack time controller. The slack time is calculated with a variation of the
dynamic approximate slack stealing algorithm [12]. This algorithm has been extended
to take into account the variable temporal and computational characteristics of the
system load. The actual available slack time, realS , is calculated by means of the
equation (5).

{ }
0)(min

)(

≥=
∪∈∀

tSS j
iilpj

real

 (5)

where lp(i) is a task set whose priorities are lower than task i priority level and to
cope also with the variable characteristics of the load, the calculation of)(tSi is
extended as can be seen in the equation (6).

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−= ∑∑
∈

∪∈
∈

∪∈
vf Tk

iihpk

v
k

Tj
iihpj

f
ji etIetIetS

)()(

),(),()(

 (6)

Being hp(i) the tasks with higher priority levels than i task,),(etI f
j the interference

produced by the j fixed periodic task and),(etI v
j the interference produced by the j

variable periodic task obtained with the equation (7).

))),()((,min(),(),(0

maxmaxmax etSTtxeCCetfcetI jjjj
v
jj

v
j −−+⋅+= (7)

Where max
jC is the maximum computational time of the j variable task.),(etf v

j is the
number of complete invocations of the j variable task in []ett +, .),(etST j is the total sum
of the variable periods of the j variable task in []ett +, . The calculation of),(etf v

j and
),(etST j is performed with a specific algorithm, taking into account that the variation of

the actual period real
jP during the transition phase is performed at jtΔ rate; real

jP is
updated in each activation such as j

real
j tP Δ+ . The overhead introduced by the new

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

65

dynamic approximate slack stealing algorithm is O(n), n is the number of tasks. This
complexity is increased to O(mxn), when the system is in a transition phase. Where m is
the number of activations of a j variable task within [t, t+e].

3.4.2. Heuristics. Different heuristic strategies permit to improve the performances
of the communication by executing the optional tasks depending on different profiles of
the application: most-important strategy, importance-rotation strategy, balance
strategy. By means of the heuristic strategies it can be distributed differently the slack
time among the different optional tasks. The strategy applied depends on the missions
that service robots have to carry out in each situation. For instance, when the robot is
exploring the environment and is looking for a specific material, or place, then the
robot will require more attention and hence the most-important strategy that grants the
biggest part of the optional time for the communication, is applied.

3.5. Schedulability analysis

The FCS guarantees the execution of the fixed and the variable periodic tasks while
the FS guarantees the execution of the optional tasks without jeopardizing the execution
of the periodic tasks. Before run-time, fixed priorities are assigned to the periodic tasks.
The priorities of the mandatory and the action parts of periodic tasks should be the
same. During the system execution these tasks keep their priority fixed. To guarantee
the execution of these tasks, the Rate Monotonic Scheduler is used and schedulability
analysis for such algorithm is applied [13]. Although variable periodic tasks introduce
changes in the run-time workload, this should not exceed the maximum system
utilization that is guaranteed before run-time by the RMS, and therefore, the variable
run-time workload is always guaranteed. In the FS, the adapted dynamic approximate
slack stealing algorithm is responsible of obtaining the available idle time in the
system, while the shedulability of the periodic tasks is preserved. The gained time is
invested in scheduling optional tasks at the priority of the FS, which is in turn executed
at the priority of the periodic task that previously invoked it. Therefore, the optional
tasks don’t interfere in the system schedulability guarantee because they are scheduled
in the slack time provided by the FS.

4 Architecture Implementation

The architecture has been embedded in the real-time linux kernel [14] as can be seen
in the Figure 4. Service robotic applications (agent.conf) are specified with the lex and
yacc tools. A specific parser (agent.ini) transforms the application entities to real-time
linux data structures and tasks. After the initialization, the components of the emotional
agent can be changed or updated with a linux process (agent.mod). Likewise,
monitoring tools (log_event and log_app) have been developed in the space of the
Linux O.S to monitor the state of the objects and task requirements of the robot during
the execution performed in the rt-linux space. The communication between Linux and
rt-linux is performed through fifo channels.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

66

Agent.init Agent.mod log.event log.app

Agent.conf LINUX

Attention
System

Init_struct Agent
Data

Th2 Th3 Thn
Th1

RT-LINUX

HARDWARE

fifo_4fifo_3fifo_2fifo_1

Figure 4. Architecture implementation.

Taking into account the computational requirements of the entities of the service robot,
the task model composed of fixed and variable periodic tasks has been incorporated to
the rt-linux kernel. The attention system embeds the rate-monotonic scheduling
algorithm to guarantee the execution of fixed and variable periodic tasks, and it self
performs the schedulability analysis based on fixed priority pre-emptive theory. The
slack server is executed as a real-time Linux task. When it starts the execution it
calculates the available slack time by executing the algorithm of equation (6). This time
is sent to the heuristics executed as rt-Linux tasks. The selected heuristic shall plan the
execution of the optional communication tasks in the rt-Linux space.

5. Experimental evaluation

Different properties of the real-time architecture are evaluated in this section. Firstly,
the FCS flexibility under different environmental conditions of the robots are shown.
Secondly, the idle time extraction capacity of the slack time controller when robot
speed variations take place, is evaluated. Finally, the heuristic strategies have been
assessed to show how they distribute the optional load according to the robot profiles.

5.1. FCS: a flexible real-time scheduler

The FCS has been evaluated to show how it adjusts the periods and deadlines to
preserve the laxity and saturation utilization limits [30%, 70%] when the computation
time of the tasks varies due to the obstacles and other robots found in the environment.
For this experiment, real autonomous vehicle processes of the Table 1 have been used.

Table 1. Temporal characteristics of vehicle processes

Reactive Tasks []max

,
min
, , mimi CC aiC , []maxmin , ii DD []maxmin , ii PP iα

Obstacle_avoidance [10,20] 1 [250, 2500] [250, 2500] 0.25
Go_objective 2 0 [200, 2000] [200, 2000] 0.2

Odometry 1 0 [100, 1000] [100, 1000] 0.1
Local_map [70,120] 0 [225, 2250] [225, 2250] 0.225
Trajectory 1 0 [285, 2850] [285, 2850] 0.285

Speed 1 0 [275, 2750] [275, 2750] 0.275
Mission_planner [5,15] 0 [300, 3000] [300, 3000] 0.3

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

67

The computation variations have arisen in the time instants of the Table 2.

Table 2. Load variation instants

Time (ms))()(1 mstC)()(4 mstC)()(7 mstC

t=0 10 70 5
t=2025 10 90 5
t=2100 10 90 10
t=2250 15 90 10
t=4050 15 100 10
t=4200 15 100 15
t=4275 15 130 15

t=11940 15 90 15
t=11966 15 90 10
t=12089 10 90 10
t=14520 10 70 10
t=14540 10 70 5
t=14571 5 70 5

The first column shows the time instants where the computation of the variable tasks
(1, 4 and 7) are changed, due to environmental conditions. The three other columns
represent the actual task computation.

The results of the adaptation of the system utilisation to the workload computational
variations of the Table 2 can be appreciated in the Figure 5.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000

"Speed"

Transition Transition

Execution time (ms)

S
ys

te
m

 S
ta

te
 V

ar
ia

bl
es

"Utilisation"
"Load"

sU

lU

Figure 5. System adjustment (T=2s).

Initially, the environment contains obstacles and the load is about 55.48%. The speed
is maximum (1m/s) and hence the utilisation is 39.89%. The environment becomes
crowded in t=2100 ms, the load increases to 78.4% and the utilisation to 55.64%. In
t=4395ms the vehicle is in a zone where the number of objects is maximum. The task
computations is 100% and the utilisation increases to 70.64% - exceeding the saturation

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

68

utilisation limit. To allow the correct recognition of this zone, the speed is required to
be reduced from 1m/s to 0.7 m/s and therefore the system is being regulated by
reducing the utilisation (because of the increase of the periods and deadlines). The
transition phase, due to agent dynamics (to fulfil security requirements), is considered
to be 2s. It can be seen how the speed and the utilisation take 2s to reach their steady
state -from 4700ms to 6700ms. After, in t=12112ms the vehicle detects that the
environment is becoming under-loaded. When the load is 54.81% (speed=0.71 m/s) the
utilisation drops to 28.1% -under the laxity utilization limit. Consequently, the
controller performs an increase of the vehicle speed to 0.9 m/s which will cause a
growth of the utilization.

The FCS maintains adequately the real utilization of the system between the laxity
and saturation pre-established system limits and, the utilization adjustment is performed
accordingly to the required dynamics of the vehicle.

5.2. Slack time controller: Extracting idle capacity

This section evaluates the performance of the system regarding the extraction of idle
time when the vehicle speed changes. The load model is composed of variable periodic
tasks sets of 80%, 70%, 60% and 50% utilisation levels. Each set is composed of 10
tasks. The periods are comprised in the range of 10 and 1000 t.u. The maximum
hyperperiod considered is 20000 t.u. A synthetic load generator has been used. For each
utilization level, the experiments have been repeated 10 times. The OPT task executes
the extracted idle time. The capacity that cannot be extracted is consumed by the idle
task. In each experiment Ei, the system is submitted to the speed changes of the Table 3
during time intervals of 5000 t.u.

Table 3. System speed variations.

1E 2E 3E

Time intervals (ms))/(smvreq)/(smvreq)/(smvreq

[]500001 −=I 1 1 1
[]1000050012 −=I 0.9 0.8 0.75
[]15000100013 −=I 0.8 0.6 0.5
[]20000150014 −=I 0.7 0.4 0.25

The changes are performed in the instants: t=5001, 10001 and 15001. Three
experiments have been carried out: 1E , 2E and 3E . The experiments have been executed
for different transition phases T=2000 t.u., 3000 t.u. and 4000 t.u. The results of
extracting the idle time for the generated utilisations of 80%, 70%, 60% y 50% can be
appreciated in the Figure 6.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

69

0

500

1000
1500

2000

2500

3000
3500

4000

4500

OPT Idle OPT Idle OPT Idle OPT Idle

Execution Intervals of experiments

Ex
ec

ut
ed

 C
P

U
Ti

m
e

(t.
u.

)

dv=-0,1
dv=-0,2
dv=-0,25

I1 I2 I3 I4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

OPT Idle OPT Idle OPT Idle OPT Idle

Execution Intervals of experiments

Ex
ec

ut
ed

 C
P

U
Ti

m
e

(t.
u.

)

dv=-0,1
dv=-0,2
dv=-0,25

I1 I2 I3 I4

a) 80% utilisation b) 70% utilisation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

OPT Idle OPT Idle OPT Idle OPT Idle

Execution Intervals of experiments

E
xe

cu
te

d
C

PU
 T

im
e

(t.
u.

)

dv=-0,1
dv=-0,2
dv=-0,25

I1 I2 I3 I4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

OPT Idle OPT Idle OPT Idle OPT Idle

Execution Intervals of experiments

E
xe

cu
te

d
CP

U
Ti

m
e

(t.
u.

)

dv=-0,1
dv=-0,2
dv=-0,25

I1 I2 I3 I4

c) 60% utilisation d) 50% utilisation

Figure 6. Idle time extraction.

The different simulations show that the extracted idle time increases progressively
for each of the time intervals because the temporal requirements of the tasks increase as
the system speed is being reduced. For all the experiments, the OPT task consumes all
the available idle time in the system, while the idle task doesn’t execute any time. For
example, in the first interval, OPT consumes 1017.5 t.u. what corresponds to all the idle
time of the interval [0, 5000], since the mean utilization is 79.65% (3982.5 t.u.). It can
be concluded that all the available idle time has been extracted when the system
performs speed changes.

5.3 Heuristic scheduling strategies

In this experiment the heuristic strategies have been evaluated to show how they
distribute the idle time among the optional communication tasks according to different
robotic application profiles. For the experiment, the periodic load has been obtained for
utilization levels of 40%, 50%, 60% and 70%. The hyperperiods are 25000 t.u.
maximum. The 10 sets of tasks are composed of 10 tasks each. Regarding the optional
tasks, it has been considered 5 refinement levels per task. The computation time of each
level has been randomly generated between the wcet of the periodic task plus one and
its deadline minus its total computation.

Figure 7a shows the results of scheduling the optional tasks when the most important
strategy is selected. It can be observed that the idle time is granted to the more
important tasks: OPT1 to OPT5. This heuristic can be interesting when a master robot
needs to communicate with slave robots.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

70

0

1000

2000

3000

4000

5000

6000

7000

8000

OPT1
OPT2

OPT3
OPT4

OPT5
OPT6

OPT7
OPT8

OPT9

OPT10
ID

LE

Optional tasks

O
pt

io
na

l l
oa

d
di

st
rib

ut
io

n
(m

s)
C=70%
C=60%
C=50%
C=40%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

OPT1
OPT2

OPT3
OPT4

OPT5
OPT6

OPT7
OPT8

OPT9

OPT10
ID

LE

Optional Tasks

O
pt

io
na

l l
oa

d
di

st
rib

ut
io

n
(m

s)

C=70%
C=60%
C=50%
C=40%

0

500

1000

1500

2000

2500

OPT1
OPT2

OPT3
OPT4

OPT5
OPT6

OPT7
OPT8

OPT9

OPT10
ID

LE

Optional Tasks

O
pt

io
na

l l
oa

d
di

st
rib

ut
io

n
(m

s)

C=70%
C=60%
C=50%
C=40%

Figure 7. Heuristics: a) Most important and b) Importance_rotation c) Balance
To solve the greediness of the previous heuristic the importance-rotation heuristic

has been implemented (Fig. 7b). It can be noted that the more frequent tasks have
smaller optional levels and vice-versa. This situation is due to the fact that when the
system is overloaded the less frequent tasks have big optional parts that cannot fit in the
small available slack times, however the optional part of the more frequent tasks are
smaller and fit better. On the other hand, when the system is relaxed, the less frequent
tasks can execute their maximum optional times, consequently, the more frequent tasks
have less slack time to execute their optional levels. Although the importance-rotation
heuristic distributes better the idle time among the different tasks than the most
important, the load is not yet totally balanced. This strategy can be interesting to
prioritise the communication of the more critical tasks under overloaded conditions.

To balance the consumption of the idle time among the optional tasks, the balance
heuristic is designed. This strategy gives more importance to the optional task that
consumes less idle time. The results obtained by this strategy are plotted in the Figure
7c. It can be observed that in each of the experiments, the execution of the idle time is
more suitably balanced among all the optional tasks. This strategy is useful when it is
convenient that all the robots transmit information.

5.3.1 Strategy comparison. The heuristic criteria should schedule high amount of
optional tasks to be useful for the improvement of the robot performances. Figure 8
shows, for each heuristic, the utilization of the optional load related to the periodic
utilization.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

71

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

C=70%

C=60%

C=50%

C=40%

Pe
rio

di
c

lo
ad

Optional utilisation

H_rota
H_balance
H_mor_imp

Figure 8. Optional load

The heuristics take very well advantage of the available idle time as can be seen in
Figure 8. The most-important heuristic consumes a mean of 99.5% of the available idle
time left by the periodic tasks, the balance heuristic is the second one that profits better
the idle time since it uses a 98,5%, and finally the importance-rotation heuristic
consumes a mean ratio of 98.2% of the available idle time. In fact, the consumed idle
time is very significant for the three evaluated heuristics. The most-important heuristic
dedicates greater idle time for the optional tasks because it allocates the time to the
most important tasks that have smaller refinement levels.

6 Conclusions

The analysis of the temporal, computational and communication requirements of the
processes executed in advanced real-time robotic applications and the identification of
their dependency on the changing environmental conditions has been performed. To
cope with the computational variability of the real-time vehicle applications a flexible
real-time architecture has been developed. To schedule the variable hard-real time tasks
that represent the reactive load, a feedback control scheduler that permits the adaptation
of the task periods and deadlines, has been designed. A flexible server, responsible of
the execution of soft real-time tasks representing the communication processes, has
been implemented. To improve the performances of the communication system of the
robots, accordingly to application profiles, a set of heuristic strategies have been
defined. The implementation of the architecture has been performed in Linux and rt-
linux O.S. The load regulation of the FCS, the idle time extraction capacity of the FS
and the scheduling heuristics have been evaluated using real autonomous robotic
application performing their tasks in dynamic environments. In the future work, the
design of a task model better representing the environmental conditions and parameter
applications is planned. The evaluations of other dynamic scheduling policies of the
FCS are being considered, to improve the FS implementation different soft real-time
servers are being studied, and a multiprocessor based platform to embed the
architecture will be analyzed.

Acknowledgments

This work has been partially funded by the Spanish government under grant
DPI2006-15320-C03-013 of the national research commission of science and
technology.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

72

Reference

[1] Domínguez C., Hassan H., Crespo A, (2005). Real-Time Robotic Agent Based on Emotions. International

Journal of Software Engineering. pp. 79-90, Vol2. Nº 1. January 2008.
[2] Stankovic, J. A., Lu, C., Son, S. H. and Tao, G. 1999. The case for feedback control real-time scheduling. In

Proc. Euromicro Conference on Real-Time Systems, ECRTS’99, York, UK.
[3] Ch. Lu, J. Stankovic, G. Tao, S. Son. “Feedback Control Real-Time Scheduling: Framework, Modeling and

Algorithms”. Special Issue on Control-Theoretical Approaches to Real-Time Computing, Journal of Real-time
Systems. 23(1/2), May 2002.

[4] Lu, C., Stankovic, J. A., Abdelzaher, T. F., Tao, G., Son, S. H. and Marley, M.. Performance specifications and
metrics for adaptive real-time systems. In Proc. IEEE Real-Time Systems Symposium, RTSS’00, Orlando,
FL.

[5] Buttazzo, G. C., Lipari, G. and Abeni, L.. Elastic task model for adaptive rate control. In Proc. IEEE Real-Time
Systems Symposium, RTSS’98, Madrid, Spain.

[6] G. Buttazzo, G. Lipari, M. Caccamo,L. Abeni, “Elastic Scheduling for Flexible Workload Management” IEEE
Transactions on Computers, Vol. 51, No. 3, pp. 289-302, March 2002.

[7] G. Beccari, S. Caselli, F. Zanichelli, “ A Technique for Adaptive Scheduling of Soft Real-Time Tasks”. Journal
of Real-Time Systems, vol. 30, pp. 187–215, 2005.

[8] Abdelzaher, T. F. and Shin, K. G 1998. End-host architecture for QoS-adaptive communication. In Proc. IEEE
Real-Time Technology and Application Symposium, RTAS’98, Denver, CO.

[9] L. Abeni and G. Buttazzo, “Hierarchical QoS Management for Time Sensitive Applications”, Proceedings of
the IEEE Real-Time Technology and Applications Symposium, Taipei, Taiwan, May 2001.

[10] Baruah, S. K. and Haritsa, J. R 1997. Scheduling for overload in real-time systems. IEEE Transactions on
Computers 46(9):1034–1039.

[11] Caccamo, M. and Buttazzo, G. 1997. Exploiting skips in periodic tasks for enhancing aperiodic
responsiveness. In Proc. IEEE Real-Time Systems Symposium, RTSS’97, San Francisco, CA

[12] R.I. Davis. “Approximate Slack Stealing Algorithms for Fixed Priority Pre-emptive Systems”. Report
Number YCS217. Real-time Systems Research Group. Department of Computer Science. University of York,
U.K. 1993

[13] N.C. Audsley, A. Burns, R. Davis, K. Tindell and J. Wellings “Fixed Priority Pre-emptive Scheduling: An
Historical Perspective”. The Journal of Real-Time Systems, Vol. 8. pp. 173-198. 1995.

[14] M. Barabanov and V. Yodaiken, “Introducing real-time Linux". Linux Journal 34, Feb 1997.

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

73

Authors

David Ramada received the M.S. degree in computer engineering from the

Polytechnic University of Valencia (UPV), Valencia, Spain, in 2006. He has been
pursuing his Ph.D. at the Department of Computer Engineering, UPV, since 2006. His
research interests include the development of real-time control systems, scheduling and
real-time operating systems. Mr. Ramada has been involved in different projects in
Hewlett Packard, Barcelona since 2006.

Carlos Domínguez received the M.S. degree in electrical engineering from the
Polytechnic University of Valencia (UPV), Valencia, Spain, in 1991. He has been an
Assistant Professor of the Department of Computer Engineering, UPV, since 1992. His
research interests include the development of intelligent agents for mobile robots, real-
time systems, and planning and scheduling integration. Mr. Domínguez has been
involved in different projects in the Industrial Informatics group since 1989.

Houcine Hassan received the M.S. and Ph.D. degrees in computer engineering from
the Polytechnic University of Valencia (UPV), Valencia, Spain, in 1993 and 2001,
respectively. He has been an Associate Professor of the Department of Computer
Engineering at UPV since 1994. His research interests focus on a number of aspects of
the development of hardware and software architectures for embedded processors,
embedded systems, real-time systems and their application to control and robotic
systems. Dr. Hassan joined the Industrial Informatics group of the UPV in 1993, where
he is presently participating in several research and educational projects.

Alfons Crespo is Professor of the Department of Computer Engineering of the
Universidad Politécnica de Valencia. He received the PhD in Computer Science from
the Universidad Politécnica de Valencia, Spain, in 1984. He held the position of
Associate professor in 1986 and full Professor in 1991. He leads the group of
Informática Industrial and has been the responsible of several European and Spanish
research projects. His main research interest include different aspects of the real-time
systems (scheduling, hardware support, scheduling and control integration, ...).

International Journal of Smart Home

Vol. 2, No. 4, October, 2008

74

