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Abstract 
In most advanced real-time control applications such as service robots, the tasks have 

different criticality, flexible timing constraints and variable execution time. For instance, 
autonomous service robots perform their activities in dynamic environments, share resources 
and have to cooperate to fulfill their objectives. These changing environmental conditions 
produce a variability of the system load. Firstly, the computational requirements of 
recognition tasks are variable and dependent on the number of objects perceived in scenes. 
Secondly, the application processes are executed at different frequencies with varying periods 
and deadlines that are dependent on robot speeds. To tackle these aspects a flexible real-time 
architecture is implemented in rt-linux in this paper. Moreover, the architecture permits to 
extract the slack time, enabled in the system due to load variability, and to invest it in  
improving the communication performances of the robots. Experimental evaluations of the 
architecture have been carried out with real autonomous robots. 
 
1. Introduction 

Service robots move in spaces (i.e. hospital, campus) and can interact with humans and 
other robots. They manipulate objects and share resources. Their tasks consist of inform, 
guide, care and accompany people, control of traffic, surveillance, transportation, etc. Most of 
these tasks have variable computation characteristics. For instance, the service robots perform 
their activities in dynamic environments, they share resources and have to cooperate to fulfill 
the objectives. The conditions of the environment have influence on the variability of the 
computation time of the vision system and the recognition tasks. These tasks are variable and 
dependent on the number of objects that are perceived in the spaces. On the other hand, some 
processes of the applications (i.e. sensory system) are executed at different frequencies, with 
varying temporal requirements (periods and deadlines) depending on the speed that the 
vehicle applies. To ensure the robot safety requirements, the periods and deadlines of real-
time tasks have to be gradually adjusted and proportionally to the actual robot speed [1].  

This paper presents a real-time architecture that supports the computational variability of 
service robotic applications. A feedback control scheduler (FCS) is designed to carry out the 
execution of the variable hard-real time tasks that represent the critical processes of robots 
(i.e. obstacle_avoidance).  

On the other hand, the variability of the load enables sufficient slack time in the system 
that could be used to improve the communication performances of the robotic system. 
Enhanced communication processes can be scheduled as optional tasks during the slack time 
periods. Therefore, a flexible server (FS) is implemented to cope with the optional 
communication real-time tasks. Moreover, heuristic strategies are designed to permit the 
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distribution of the optional time extracted accordingly to the communication requirements of 
the robotic applications, and hence improve the communication performances of the robots. 

After the introduction, section 2 reviews previous work performed on variable computation 
and QoS management. In section 3, the components of the real-time architecture are 
described. The implementation of the architecture in rt-linux is presented in section 4. 
Experimental evaluations of the different subsystems in real environments are carried in 
section 5. Finally, conclusions are summarized in section 6. 
 
2. Related work 

In the literature, different techniques focusing in the adaptation of the characteristics of the 
load to the environmental conditions and in improving the quality of service of real-time 
applications have been emerged as major research issues. In [2, 3, 4] a feedback control 
scheduler based on the feedback control theory is used with a proper QoS actuator for 
adjusting the task QoS levels in order to minimize the deadline miss ratio, when task’s 
execution time are not known. In [5, 6] periodic computations are modeled as springs with 
given elastic coefficients and minimum lengths. The spring elastic coefficients are used to 
change the rates of the periodic tasks under overload conditions or when variations in task 
execution rates are requested. However, [7] proposes the use of concepts such as task values 
and priorities rather than spring coefficients. Beccari [7] proposed a rate adaptation 
scheduling framework for soft real-time periodic tasks characterized by a range of admissible 
rates. When the rate of some task is required to change by the high-level control system, the 
remaining soft real-time tasks can be adapted based on heuristic criteria. Abdelzaher [8] use 
QoS contracts specifying degraded acceptable QoS levels to obtain a graceful degradation of 
the communication subsystem. Under overload or under-utilisation conditions, a QoS 
optimization process attempts at maximizing the aggregate reward, given rewards/penalties 
information specified by QoS contracts. A method that integrates a reservation mechanism 
with an application level QoS adaptation strategy is presented in [9]. The method controls the 
CPU bandwidth reserved to a task and allows each task to change its QoS requirements 
(enlarging the periods or skipping task instances) if the amount of reserved bandwidth is not 
sufficient to accomplish its QoS. A scheduling algorithm maximizing the effective processor 
utilization during overload, given a minimum slack factor for all tasks, is presented in [10]. 
The algorithm is based on EDF, hence it does not guarantee which tasks will not be affected 
by overload. In [11] the skip approach assumes that certain tasks could abort some instance 
during a periodic execution, especially for applications, such as process control architectures.. 
 
3. Real-time architecture 
3.1 Service robots 

The services that the robots have to perform can be appreciated in the Figure 1.  
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Figure.1. Robot services. 
The robots move in the space of the schools and can interact with humans and other robots. 

They manipulate objects and share resources with the former agents. Some of the tasks that 
the robots have to perform are to inform and guide people, to care about persons and to 
accompany them if they are lost. They can work in the control of traffic when it is heavy and 
they perform the surveillance of the spaces of the campus and objects and their transportation. 
Robots can perform diagnosis of systems and proceed to the reparation of failures. 

The communication protocol is established between two agents. An agent can be either a 
robot or a human. An agent i asks the closest agent j for some service. The agent j assumes 
the requirement of agent i. Then, agent j evaluates the situation, and it can solve it or it looks 
for cooperation of other agents. The cooperation consists of  Agent-i delegates/exchange a 
goal and agent-j assumes/refuses the goal. 

Figure 2 shows the organisation of the tasks in the system. The periodic tasks support the 
execution of the reactive processes of the robot. The optional tasks are used to improve the 
communication quality of the periodic tasks. The communication tasks are executed in the 
slack periods as optional tasks to improve the collaboration between the agents. 

 

 
 

Figure.2. System scheduling. 
3.2 Task model 

In order to cope with the process temporal and computational requirements identified 
in Figure 2, a task model, according to the hardness of the timing constraints of these 
processes is proposed. Three task sets define the task model:  
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ovf TTTT ∪∪=  

Where: fT is the fixed periodic task set, vT  the variable periodic task set and oT the 
optional task set. 

The requirements of processes related to low-level reactions (i.e. detecting and 
avoiding obstacles) must be strictly guaranteed. Since these temporal requirements can 
be either fixed or variable they are mapped to either fixed or variable periodic tasks.  

The fixed periodic task set, fT , represents the periodic processes that don’t depend 
on any application parameter. A fixed periodic task, f

iT , is characterized by the 
temporal parameters of the definition (1). 

 

{ }iiiiii
f

i mDPCT ,,Pr,,, φ=  (1) 

 

Where, Ci is the worst case execution time, Pi is the period, Di is the deadline, Pri is 
the priority, φi  is the offset and mi  is the motivation of the i task. 

The variable periodic task set, vT , supports the execution of processes that are 
dependent on the environment and/or on application parameters. The characteristics of 
variable periodic task, v

iT , are expressed with the temporal parameters of the definition 
(2). 

 

{ }iiiiii
v
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In this case, the computational time, Ci is variable and depends on the application 
parameter 1k (i.e. number of obstacles in the scene). Pi and Di attributes are also 
variables and depend on the parameter 2k  (i.e. robot speed). These variable temporal 
parameters should accomplish the conditions of the definition (3). 
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         (3)

 
min
iC  and max

iC  are the minimum and maximum computational time corresponding 
respectively to an under-loaded and overloaded environment. min

iP  and min
iD are the 

minimum task periods and deadlines respectively, these are applied for the maximum 
robot speed. When the speed is minimum, the maximum temporal requirements max

iP  
and max

iD  are applied.  

The high-level deliberative processes of the application do not require strict 
guarantees (i.e. collaboration info task (see Fig. 2)) and their execution is not 
mandatory. The mandatory communication (i.e Agent info Sharing task of Fig 2) is 
executed as periodic tasks. To deepen in the collaboration, optional tasks are scheduled. 
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Consequently, the enhancing communication processes are modelled with optional soft 
aperiodic tasks (Liu 1991). Each optional task, o

iT , is composed of different quality 
levels. The first level generates a minimum communication quality response of the task. 
By increasing the level, the quality of the result is improved. The characterisation of an 
optional task, o

iT , is given in (4).  

 

)Im,( i, ji
o

i LT =  (4) 

 

Where Li,j is the estimated computational time of the jth level of the ith task. Imi is 
the importance of the optional task. 
 
3.3 Feedback control scheduler 

The execution of the fixed and variable periodic tasks is supported by the feedback 
control scheduler (FCS) of the Figure 3. The FCS regulates two control loops. In the 
first loop the FCS has to adapt the periods and deadlines of tasks accordingly to the 
requested robot speed. And in the second loop, the utilisation of the reactive processes 
is maintained between predefined utilisation limits (i.e. minU =40% and maxU =70%). 
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Figure 3. Feedbak control scheduler. 
The FCS is composed of a monitor, a controller and a fixed priority-based pre-

emptive scheduler (rate-monotonic scheduler [13]. The monitor performs the 
monitoring of the actual load of the system, it updates the actual variable utilisation and 
the actual speed and sends them to the controller. The controller receives, in addition, 
speed requests from the application and is responsible for the regulation of the system 
to satisfy the requested speed and to preserve the utilization limits. 

The regulation of the system takes place when the actual utilisation doesn’t respect 
the utilisation limits, and/or a robot speed change is required. Hence, if the actual 
utilisation doesn’t respect the limits and no robot speed change is required, the 
controller analyses the causes of the load rejection −because of the system saturation or 
laxity. If the system is overloaded, the controller performs a load relaxation by 
increasing the periods. Otherwise, the load is increased by reducing the variable task 
periods. Instead, if the actual utilisation respects the limits and the agent requires a 
speed change, the controller should analyse whether the utilisation generated by the 
required speed is accepted or not. If it is accepted then it is executed by adjusting the 
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periods, accordingly to that speed. Otherwise, the rejection causes are analysed and the 
regulation is solved as has been done previously. Finally, when the two control loops 
are not fulfilled, the controller will perform the regulation of the speed. Once the 
controller has decided that a regulation of the system should be performed, it would 
calculate the new periods of the tasks. 

 
3.4 Flexible server 

The flexible server (FS) schedules the optional tasks in the slack time of the system. 
To extract this time, the FS incorporates a slack time controller which has been adapted 
to cope with the variable periodic tasks. To improve the performances of the 
communication, heuristic strategies are implemented to distribute the extracted idle 
time among optional tasks, accordingly to the application requirements. 

3.4.1. Slack time controller. The slack time is calculated with a variation of the 
dynamic approximate slack stealing algorithm [12]. This algorithm has been extended 
to take into account the variable temporal and computational characteristics of the 
system load. The actual available slack time, realS , is calculated by means of the 
equation (5). 

 

{ }
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     (5) 

 

where lp(i) is a task set whose priorities are lower than task i priority level and to 
cope also with the variable characteristics of the load, the calculation of )(tSi  is 
extended as can be seen in the equation (6). 
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Being hp(i) the tasks with higher priority levels than i task, ),( etI f
j  the interference 

produced by the j fixed periodic task and ),( etI v
j  the interference produced by the j 

variable periodic task obtained with the equation (7). 
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Where max
jC  is the maximum computational time of the j variable task. ),( etf v

j  is the 
number of complete invocations of the j variable task in [ ]ett +, . ),( etST j is the total sum 
of the variable periods of the j variable task in [ ]ett +, . The calculation of ),( etf v

j  and 
),( etST j  is performed with a specific algorithm, taking into account that the variation of 

the actual period real
jP  during the transition phase is performed at jtΔ  rate; real

jP  is 
updated in each activation such as j

real
j tP Δ+ . The overhead introduced by the new 
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dynamic approximate slack stealing algorithm is O(n), n is the number of tasks. This 
complexity is increased to O(mxn), when the system is in a transition phase. Where m is 
the number of activations of a j  variable task within [t, t+e]. 
 

3.4.2. Heuristics. Different heuristic strategies permit to improve the performances 
of the communication by executing the optional tasks depending on different profiles of 
the application: most-important strategy, importance-rotation strategy, balance 
strategy. By means of the heuristic strategies it can be distributed differently the slack 
time among the different optional tasks. The strategy applied depends on the missions 
that service robots have to carry out in each situation. For instance, when the robot is 
exploring the environment and is looking for a specific material, or place, then the 
robot will require more attention and hence the most-important strategy that grants the 
biggest part of the optional time for the communication, is applied.  
 
3.5. Schedulability analysis 

The FCS guarantees the execution of the fixed and the variable periodic tasks while 
the FS guarantees the execution of the optional tasks without jeopardizing the execution 
of the periodic tasks. Before run-time, fixed priorities are assigned to the periodic tasks. 
The priorities of the mandatory and the action parts of periodic tasks should be the 
same. During the system execution these tasks keep their priority fixed. To guarantee 
the execution of these tasks, the Rate Monotonic Scheduler is used and schedulability 
analysis for such algorithm is applied [13]. Although variable periodic tasks introduce 
changes in the run-time workload, this should not exceed the maximum system 
utilization that is guaranteed before run-time by the RMS, and therefore, the variable 
run-time workload is always guaranteed. In the FS, the adapted dynamic approximate 
slack stealing algorithm is responsible of obtaining the available idle time in the 
system, while the shedulability of the periodic tasks is preserved. The gained time is 
invested in scheduling optional tasks at the priority of the FS, which is in turn executed 
at the priority of the periodic task that previously invoked it. Therefore, the optional 
tasks don’t interfere in the system schedulability guarantee because they are scheduled 
in the slack time provided by the FS. 
 
4 Architecture Implementation 

The architecture has been embedded in the real-time linux kernel [14] as can be seen 
in the Figure 4. Service robotic applications (agent.conf) are specified with the lex and 
yacc tools. A specific parser (agent.ini) transforms the application entities to real-time 
linux data structures and tasks. After the initialization, the components of the emotional 
agent can be changed or updated with a linux process (agent.mod). Likewise, 
monitoring tools (log_event and log_app) have been developed in the space of the 
Linux O.S to monitor the state of the objects and task requirements of the robot during 
the execution performed in the rt-linux space. The communication between Linux and 
rt-linux is performed through fifo channels. 
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Figure 4. Architecture implementation. 
 

Taking into account the computational requirements of the entities of the service robot, 
the task model composed of fixed and variable periodic tasks has been incorporated to 
the rt-linux kernel. The attention system embeds the rate-monotonic scheduling 
algorithm to guarantee the execution of fixed and variable periodic tasks, and it self 
performs the schedulability analysis based on fixed priority pre-emptive theory. The 
slack server is executed as a real-time Linux task. When it starts the execution it 
calculates the available slack time by executing the algorithm of equation (6). This time 
is sent to the heuristics executed as rt-Linux tasks. The selected heuristic shall plan the 
execution of the optional communication tasks in the rt-Linux space. 
 
5. Experimental evaluation 

Different properties of the real-time architecture are evaluated in this section. Firstly, 
the FCS flexibility under different environmental conditions of the robots are shown. 
Secondly, the idle time extraction capacity of the slack time controller when robot 
speed variations take place, is evaluated. Finally, the heuristic strategies have been 
assessed to show how they distribute the optional load according to the robot profiles. 

 
5.1. FCS: a flexible real-time scheduler 

The FCS has been evaluated to show how it adjusts the periods and deadlines to 
preserve the laxity and saturation utilization limits [30%, 70%] when the computation 
time of the tasks varies due to the obstacles and other robots found in the environment. 
For this experiment, real autonomous vehicle processes of the Table 1 have been used.  

 
Table 1. Temporal characteristics of vehicle processes 

 
Reactive Tasks [ ]max

,
min
, , mimi CC aiC , [ ]maxmin , ii DD  [ ]maxmin , ii PP  iα  

Obstacle_avoidance [10,20] 1 [250, 2500] [250, 2500] 0.25 
Go_objective 2 0 [200, 2000] [200, 2000] 0.2 

Odometry 1 0 [100, 1000] [100, 1000] 0.1 
Local_map [70,120] 0 [225, 2250] [225, 2250] 0.225 
Trajectory  1 0 [285, 2850] [285, 2850] 0.285 

Speed 1 0 [275, 2750] [275, 2750] 0.275 
Mission_planner [5,15] 0 [300, 3000] [300, 3000] 0.3 
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The computation variations have arisen in the time instants of the Table 2.  

 
Table 2. Load variation instants 

 
Time (ms) )()(1 mstC )()(4 mstC )()(7 mstC

t=0 10 70 5 
t=2025 10 90 5 
t=2100 10 90 10 
t=2250 15 90 10 
t=4050 15 100 10 
t=4200 15 100 15 
t=4275 15 130 15 

t=11940 15 90 15 
t=11966 15 90 10 
t=12089 10 90 10 
t=14520 10 70 10 
t=14540 10 70 5 
t=14571 5 70 5 

 
 

The first column shows the time instants where the computation of the variable tasks 
(1, 4 and 7) are changed, due to environmental conditions. The three other columns 
represent the actual task computation.  

The results of the adaptation of the system utilisation to the workload computational 
variations of the Table 2 can be appreciated in the Figure 5. 
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Figure 5. System adjustment (T=2s). 
 

Initially, the environment contains obstacles and the load is about 55.48%. The speed 
is maximum (1m/s) and hence the utilisation is 39.89%. The environment becomes 
crowded in t=2100 ms, the load increases to 78.4% and the utilisation to 55.64%. In 
t=4395ms the vehicle is in a zone where the number of objects is maximum. The task 
computations is 100% and the utilisation increases to 70.64% - exceeding the saturation 
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utilisation limit. To allow the correct recognition of this zone, the speed is required to 
be reduced from 1m/s to 0.7 m/s and therefore the system is being regulated by 
reducing the utilisation (because of the increase of the periods and deadlines). The 
transition phase, due to agent dynamics (to fulfil security requirements), is considered 
to be 2s. It can be seen how the speed and the utilisation take 2s to reach their steady 
state -from 4700ms to 6700ms. After, in t=12112ms the vehicle detects that the 
environment is becoming under-loaded. When the load is 54.81% (speed=0.71 m/s) the 
utilisation drops to 28.1% -under the laxity utilization limit. Consequently, the 
controller performs an increase of the vehicle speed to 0.9 m/s which will cause a 
growth of the utilization.  

The FCS maintains adequately the real utilization of the system between the laxity 
and saturation pre-established system limits and, the utilization adjustment is performed 
accordingly to the required dynamics of the vehicle. 
 
5.2. Slack time controller: Extracting idle capacity 

This section evaluates the performance of the system regarding the extraction of idle 
time when the vehicle speed changes. The load model is composed of variable periodic 
tasks sets of 80%, 70%, 60% and 50% utilisation levels. Each set is composed of 10 
tasks. The periods are comprised in the range of 10 and 1000 t.u. The maximum 
hyperperiod considered is 20000 t.u. A synthetic load generator has been used. For each 
utilization level, the experiments have been repeated 10 times. The OPT task executes 
the extracted idle time. The capacity that cannot be extracted is consumed by the idle 
task. In each experiment Ei, the system is submitted to the speed changes of the Table 3 
during time intervals of 5000 t.u.  

 
Table 3. System speed variations. 

 
1E  2E  3E  

Time intervals (ms) )/( smvreq )/( smvreq )/( smvreq

[ ]500001 −=I  1 1 1 
[ ]1000050012 −=I  0.9 0.8 0.75 
[ ]15000100013 −=I  0.8 0.6 0.5 
[ ]20000150014 −=I  0.7 0.4 0.25 

 
 

The changes are performed in the instants: t=5001, 10001 and 15001. Three 
experiments have been carried out: 1E , 2E  and 3E . The experiments have been executed 
for different transition phases T=2000 t.u., 3000 t.u. and 4000 t.u. The results of 
extracting the idle time for the generated utilisations of 80%, 70%, 60% y 50% can be 
appreciated in the Figure 6. 
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a) 80% utilisation                 b) 70% utilisation 
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c) 60% utilisation                   d) 50% utilisation 
 

Figure 6. Idle time extraction. 
 

The different simulations show that the extracted idle time increases progressively 
for each of the time intervals because the temporal requirements of the tasks increase as 
the system speed is being reduced. For all the experiments, the OPT task consumes all 
the available idle time in the system, while the idle task doesn’t execute any time. For 
example, in the first interval, OPT consumes 1017.5 t.u. what corresponds to all the idle 
time of the interval [0, 5000], since the mean utilization is 79.65% (3982.5 t.u.). It can 
be concluded that all the available idle time has been extracted when the system 
performs speed changes. 
 
5.3 Heuristic scheduling strategies 

In this experiment the heuristic strategies have been evaluated to show how they 
distribute the idle time among the optional communication tasks according to  different 
robotic application profiles. For the experiment, the periodic load has been obtained for 
utilization levels of 40%, 50%, 60% and 70%. The hyperperiods are 25000 t.u. 
maximum. The 10 sets of tasks are composed of 10 tasks each. Regarding the optional 
tasks, it has been considered 5 refinement levels per task. The computation time of each 
level has been randomly generated between the wcet of the periodic task plus one and 
its deadline minus its total computation.  

Figure 7a shows the results of scheduling the optional tasks when the most important 
strategy is selected. It can be observed that the idle time is granted to the more 
important tasks: OPT1 to OPT5. This heuristic can be interesting when a master robot 
needs to communicate with slave robots. 
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Figure 7. Heuristics: a) Most important and b) Importance_rotation c) Balance 
To solve the greediness of the previous heuristic the importance-rotation heuristic 

has been implemented (Fig. 7b). It can be noted that the more frequent tasks have 
smaller optional levels and vice-versa. This situation is due to the fact that when the 
system is overloaded the less frequent tasks have big optional parts that cannot fit in the 
small available slack times, however the optional part of the more frequent tasks are 
smaller and fit better. On the other hand, when the system is relaxed, the less frequent 
tasks can execute their maximum optional times, consequently, the more frequent tasks 
have less slack time to execute their optional levels. Although the importance-rotation 
heuristic distributes better the idle time among the different tasks than the most 
important, the load is not yet totally balanced. This strategy can be interesting to 
prioritise the communication of the more critical tasks under overloaded conditions. 

To balance the consumption of the idle time among the optional tasks, the balance 
heuristic is designed. This strategy gives more importance to the optional task that 
consumes less idle time. The results obtained by this strategy are plotted in the Figure 
7c. It can be observed that in each of the experiments, the execution of the idle time is 
more suitably balanced among all the optional tasks. This strategy is useful when it is 
convenient that all the robots transmit information. 
 
5.3.1 Strategy comparison. The heuristic criteria should schedule high amount of 
optional tasks to be useful for the improvement of the robot performances. Figure 8 
shows, for each heuristic, the utilization of the optional load related to the periodic 
utilization.  
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Figure 8. Optional load  
 

The heuristics take very well advantage of the available idle time as can be seen in 
Figure 8. The most-important heuristic consumes a mean of 99.5% of the available idle 
time left by the periodic tasks, the balance heuristic is the second one that profits better 
the idle time since it uses a 98,5%, and finally the importance-rotation heuristic 
consumes a mean ratio of 98.2% of the available idle time. In fact, the consumed idle 
time is very significant for the three evaluated heuristics. The most-important heuristic 
dedicates greater idle time for the optional tasks because it allocates the time to the 
most important tasks that have smaller refinement levels. 
 
6 Conclusions 
 

The analysis of the temporal, computational and communication requirements of the 
processes executed in advanced real-time robotic applications and the identification of 
their dependency on the changing environmental conditions has been performed. To 
cope with the computational variability of the real-time vehicle applications a flexible 
real-time architecture has been developed. To schedule the variable hard-real time tasks 
that represent the reactive load, a feedback control scheduler that permits the adaptation 
of the task periods and deadlines, has been designed. A flexible server, responsible of 
the execution of soft real-time tasks representing the communication processes, has 
been implemented. To improve the performances of the communication system of the 
robots, accordingly to application profiles, a set of heuristic strategies have been 
defined. The implementation of the architecture has been performed in Linux and rt-
linux O.S. The load regulation of the FCS, the idle time extraction capacity of the FS 
and the scheduling heuristics have been evaluated using real autonomous robotic 
application performing their tasks in dynamic environments. In the future work, the 
design of a task model better representing the environmental conditions and parameter 
applications is planned. The evaluations of other dynamic scheduling policies of the 
FCS are being considered, to improve the FS implementation different soft real-time 
servers are being studied, and a multiprocessor based platform to embed the 
architecture will be analyzed. 
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