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Abstract 
Wireless sensor networks receive much attention in these few years due to its wide 

spectrum of applications. Localization is one of the significant techniques in the ubiquitous 
sensor networks, and most localization techniques nowadays apply RSSI-based ranging 
techniques to compute the location of the object in wireless sensor network. However, a 
wireless sensor network is of a fading-signal environment that comprises noises, and the 
noises cause RSSI to become unstable and lead to abrupt distance estimates. In this paper, we 
propose Verification-Based Localization Method (VBLM) to alleviate the effect of the 
unstable signal and provide the high-accuracy location estimates in wireless sensor 
environments. The basic idea of VBLM is to prune noisy signals in the localization process. In 
our method, the sensor node would use another neighboring beacon to assist to verify the 
quality of received signal under acceptable communication cost, and thus, the noisy signals 
can be removed to avoid increasing the error in the localization. The experimental results 
show that VBLM indeed reduces the localization error in the unstable signal sensor networks 
than other localization methods. 

 
Keywords: wireless sensor networks, unstable signal, localization, verification, RSSI, real-

world sensor system simulation 
 
1. Introduction 

Recent advance in the wireless sensor network have led to a vast and expeditious 
development in wireless sensor applications. In the real-world wireless sensor 
applications, e.g., smart-home applications, the localization component used to obtain 
the geographical locations of sensor nodes plays an important role to support location-
based services [1],[2],[3]. For instance, a remote home-care system in the smart-home 
environment would ask sensor nodes to obtain the geographical locations of children in 
order to understand the children status, such in the cradle or near the stairs. If the 
sensors detect a child near the warning area, e.g., stairs, the remote home-care system 
would notify the nursemaid to pay more care on the child. 

Among the proposed technologies [4], the RSSI-based localization technique (RSSI 
stands for received signal strength indication) is the most applicable solution to the 
wireless sensor applications in the smart-home environment due to the low deployment 
cost. The RSSI-based methods adopt the transmission antenna to run the localization 
process, and thus, do not need any additional expensive hardware. In this way, 
popularizing the smart-home applications to each family then becomes feasible. 
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Although the RSSI-based localization technique is suitable for great amount of 
wireless sensor applications, the unstable radio signal brings a challenge to the 
localization in the smart-home environment [5],[6]. More specifically, when the 
antenna transmits network packets, the radio signal frequently become unstable [7], and 
the radio strength of packets become outlier in the statistic data. Hence, the effect of 
such the packet is like the noise in the signal processing [8], and taking such kind of 
packets into the localization process would reduce the accuracy. For example, the 
interference of furniture or movement of people or pets could easily produce the 
unstable radio signal in the smart-home environment. Therefore, the RSSI localization 
technique needs to consider the unstable-signal effect while it is applied to the smart-
home environment. 

Many small-area localization methods for the sensor networks have been proposed in 
the past years [4],[5],[9],[10]. However, the proposed RSSI-based localization methods 
do not consider the effect of unstable signal on distance measurement. Therefore, the 
past methods directly use the collected signals in their localization method, and thus, 
the unproofed signals increase the localization error in the real-world applications. In 
this paper, we propose the Verification-Based Localization Method (VBLM) to alleviate 
the effect of the unstable signal and provide the high-accuracy location estimate in 
wireless sensor environments. Assume the unknown node is the node that requests the 
localization, and a beacon node is the node that has known its own position and offer 
the function that translates a signal strength value (i.e., RSSI) to distance. In traditional 
methods, the distance between the unknown node and a beacon node is estimated only 
through the cooperation between the two nodes themselves. Hence, it is difficult to 
understand whether a received signal is a noise, because no evidence can be used to 
approve the reliability of the received signal. Different from the traditional methods, in 
the proposed verification mechanism, the unknown node would use another neighboring 
beacon to assist to verify the quality of received signal. To the best of our knowledge, 
none of existing methods study the localization problem based on the collaboration of 
beacons.  

In VBLM, once the beacon node receives the request message from the unknown 
node, it broadcast a ranging message so that the unknown node and another beacon node 
can simultaneously hear the message. Since the beacons have prior knowledge about 
their own locations, the beacon broadcasting the ranging message can verify the 
reliability of the broadcast signal by comparing the measured distance from another 
beacon. If the broadcast signal is reliable, the beacon broadcasting the ranging message 
calculates the distance between the unknown node and the beacon, and then, returns the 
measured distance to the unknown node. Otherwise, the beacon informs the unknown 
node to redo the ranging process due to the interference of the unstable signal. Using 
such the verification mechanism, VBLM is able to prune most of the unstable signals, 
and delivers the reliable signals to the location calculation component. Although the 
verification mechanism needs more communication between nodes, we also show the 
communication cost for VBLM is still acceptable. We then conduct a set of real-world 
experiments to show the performance of the proposed method. Our experimental results 
show that VBLM is trustable in the unstable-signal sensor network by observing the 
reduction of the error of distance estimates and location estimates. Furthermore, the 
results show that VBLM indeed provides a higher accuracy than other localization 
methods without the verification mechanism. 
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The remaining sections of this paper are organized as follows. Section 2 describes 
the related work on the localization technologies. Next, we describe the system 
environment in Section 3. We present our proposed localization algorithm in Section 4. 
Then, Section 5 gives the experiment results. Finally, we conclude the paper in Section 
6. 
 
2. Related work 

This section describes the localization techniques in wireless sensor network 
nowadays. The localization methods can be divided into two classes: range-based 
schemes and range-free schemes. The classification for the localization methods is 
shown in Fig. 1. The range-based schemes focus on that the sensor nodes have the 
ability to measurement of the distance or angle for 1-hop neighboring nodes. The range-
based scheme includes RSSI [5],[9],[10], TOA [11],[12], TDOA[13],[14]. On the other 
hand, the range-free schemes focus on that the sensor nodes infer the distance between 
nodes according to the transmission information in the sensor network, such as hop-
count messages [15]. The range-free scheme mainly includes DV-Hop [15]. 

 

 
Fig. 1. Classification of the localization techniques in the wireless sensor 

network. 
 
The received signal strength indication (RSSI) based localization techniques 

[5],[9],[10] read RF signal from a received packet, and use the information to estimate 
locations. The RF signal attenuates as the increasing broadcast distance. Thus, sensors 
can read the RSSI from the RF signal sent by other sensor nodes, and estimate the 
distance to the transceiver node. RSSI-based techniques do not require any special 
hardware for ranging, thus, the advantage is low cost on deployment and energy 
consumption. However, RF signal is easily interfered by the noises in the wireless 
environment, and the corresponding RSSI values become unstable. Consequently, 
sensor could generate large error from reading RSSI values. Some methods [7] 
proposed for cleaning sensor readings are based on temporal statistics, however, 
localization techniques need the signals occurred at the same timestamp. In this paper, 
we focus on the property of localization techniques, and propose an efficient 
localization method considering the cleaning of the noisy signals. 

Time of arrival (TOA) techniques [11],[12] apply the time that a packet travels from 
the transceiver to the receiver to estimate distance. TOA techniques require sensors to 
be well synchronized in order to obtain accurate distance estimates. However, due to 
the energy consumption, computational power, and environment limitations, the 
synchronization for all sensors is still a severe research challenge in wireless sensor 
networks. Time difference of arrival (TDOA) based techniques [13],[14] improve the 
inconveniences of TOA. TDOA simultaneously sends a radio signal and an ultrasound 



International Journal of Smart Home 

Vol. 2, No. 3, July, 2008 

 

 

58 

pulse to the receiver. Base on the difference in traveling speeding of two types of 
message, the receiver is able to estimate the distance by observing the time difference 
of the message arrival. The comparisons between the TOA(and TDOA)-based technique 
and the above mentioned RSSI-based technique are shown in Table 1. 
 

Table 1. A comparison of RSSI-based and TOA(TDOA)-based localization. 
 RSSI-based TOA(TDOA)-based 

challenge shadowing, fading, multipath, 
environmental obstacles 

interference, multipath, envir
onmental obstacles 

time synchroniza
tion none highly depend on synchroniz

ation of the sensor nodes  
hardware require

ment none need additional hardware (e.
g., ultrasound transceiver) 

deployment cost low high 
energy consumpt

ion low high 

 
Range-free DV-Hop [15] estimates distance based on inference, instead of directly 

measuring the distance. DV-Hop evaluates the distance between two nodes as 
multiplication of the number of hop counts and the average distance of a hop. Thus, the 
distance of two nodes is basically inferred from the geometry relationship in the 
topology of the sensor network. Although DV-Hop does not require special hardware 
for ranging, the distance estimate is less accurate compared to the range-based 
techniques. Especially, the ranging error can be quite large when the sensor nodes are 
not uniformly distributed in the sensor network. 

 
3. Environment 

The wireless sensor network comprises sensors nodes. These nodes are either beacon 
nodes or unknown nodes, as shown in Fig. 2. Beacon nodes are those that know their 
own absolute location in the sensor network. Since the absolute locations of the beacons 
are known, the absolute distance can be deduced by processing pre-measured positions, 
e.g., Euclidean(B1,B2) in the figure. Unknown nodes are those that need to request for 
their current locations, e.g., U in the figure. In many scenarios of smart-home 
applications, the unknown nodes represent the moving objects in the sensor network 
[16]. 

 

 
Fig. 2. Illustration of wireless sensor environment. 
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In general, a sensor node has four major components: the sensing unit, the processing 

unit, the communication unit, and the power unit [17]. For the scope of the paper, the 
communication unit and the processing unit are the most important components in the 
localization process. The communication unit equips with an antenna and is used to 
send or receive RF messages through the antenna. The communication component also 
has an analog-to-digital converter (ADC) to recognize the received signal strength 
indication (RSSI) of a received message. Some common chipset for the up-to-date 
sensors include ChipCon CC1000, ChipCon CC2420 [18], etc. The communication 
component can operate on over 30 transmission power levels and multiple transmission 
frequencies. The different settings of the communication component can vary the 
transmission range and quality.  

The processing unit comprises a processor and a memory unit so that a sensor node 
can run certain designated tasks, such as noise verification and location calculation. The 
training data for the RSSI to distances are stored in the memory of the wireless sensor. 
While a RSSI of a message is received, the processor can match the RSSI to all possible 
distances. 
 
4. Verification-based localization method (VBLM) 

In this section, we will present the Verification-Based Localization Method (VBLM), 
which adopts a threshold-based error control approach to determine erratic RSSI values. 
The basic idea of VBLM is that the sensor node would use another neighboring beacon 
to assist to verify the quality of received signal, and thus, the noisy signals can be 
removed to avoid increasing the error in the localization. Fig. 3 depicts the idea of 
VBLM. Assume B1 and B2 are the beacon nodes and U is the unknown node. In this 
case, we also assume that B1 is selected as the ranging node. Initially, B1 broadcasts the 
ranging-request message to the neighbor beacon node B2 and the unknown node U, and 
collects the RSSI values that U and B2 read from the ranging request message (say, -
62dBm and -60dBm in this example, respectively.) Next, the distance between B1 and 
B2, Estimate(B1,B2), is evaluated by comparing the RSSI values to the entries in the 
signal-matching table, and obtained 100cm (because RSSI(-62dBm)=100cm). Since the 
estimated distance Estimate(B1,B2) equals to the reference distance between B1 and B2, 
Euclidean(B1,B2), that is computed from the pre-trained beacon positions, we thus treat 
the signal of the ranging-request message is reliable. Notice that the distance error is set 
to 0cm in this example for easily understanding our idea. As the signal is reliable, B1 
continues to evaluate distance Estimate(B1,U) by looking up the signal-matching table, 
and obtain 80cm (because RSSI(-62dBm)=100cm). Finally, B1 reports 
Estimate(B1,U)=80cm to U. 
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Fig. 3. Illustration of the basic idea of the VBLM. 

 
The flow diagram of VBLM consists of three stages, and is depicted in Fig. 4. The 

first stage is to apply the signal matching model to build a signal-matching table, as 
shown in the left side of the figure, for each beacon. A beacon that equips with the 
signal-matching table has the capability of translating RSSI values to distance 
estimates. The second stage is the Verification-Based Ranging Algorithm (VBRA), 
which handles the ranging task, and VBRA is the most critical component in our 
proposed method. The main objective of VBRA is to verify whether the distance 
estimates are reliable. If the verification result is reliable (that is, ε<δ in the figure, 
where ε is the distance error and δ is the pre-defined error threshold), then the ranging 
result is sent back to the unknown node. Otherwise (that is, ε>δ), the ranging result is 
discarded and VBRA is re-executed again. After obtaining the verified ranging results, 
the third stage, location calculation, is used to estimate the location from the verified 
distance estimates. When nodes receive distance from at least three beacons, the 
location can be estimated. The details of the three stages are presented in the following 
three subsections. 
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Fig. 4. VBLM flow diagram. 

 
4.1. Signal-matching table 

The signal-matching table is design to match possible distances for a given RSSI, and 
the table records the mapping between RSSI and the distance. We adopt the signal-
matching model to design the signal-matching table because the proposed RF 
attenuation model [19] cannot adequately represent the multi-path effect in the real-
world applications. In this work, the signal-matching table is called the signal-to-
distance table, which is used to keep track of the distance units that correspond to each 
RSSI value. After constructing the signal-to-distance table, a beacon node can find the 
most probable distance estimate during running the ranging algorithm that will be 
discussed in Section 4.2. 

In order to build the signal-to-distance table, RSSI values at different distances need 
to be collected and organized. The flow diagram of building the signal-to-distance table 
is illustrated in Fig. 5. Firstly, the settings for the RSSI training process are initialized, 
including the training distance interval, length of distance, number of RSSI samples, 
and transmission power. After the settings are initialized, the RSSI training process 
then starts to collect RSSI values at every distance interval. Then, the signal-to-distance 
table is built by organizing the fixed interval of RSSI values and the distance range 
from received messages in the RSSI training process. 
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Fig. 5. The flow diagram of building the signal-to-distance table. 

 
4.2. Verification-based ranging algorithm (VBRA) 

Fig. 6 shows Verification-based Ranging Algorithm (VBRA). The algorithm includes 
three phases: (i) ranging node selection phase, (ii) ranging phase, and (iii) verification 
phase, and the three phases are presented in details as follows. 

 
Verification-based Ranging Algorithm 
Input: 
U: denotes the sensor node U that issues to the ranging request; // i.e., unknown node. 
δ: denotes the ranging result error threshold; 
Output: distm(Bn, U);  // distm(Bn, U) is the measured distance from Bn to U. 
// Phase 1: Ranging-node selection phase 
Step 1: U broadcasts a ranging request message to 1-hop neighbors; 
Step 2: All neighbors detect RSSI from ranging request message, and returns RSSI to U; 
Step 3: U selects the nearest beacon Bn with the largest RSSI; 
// Phase 2: Ranging phase 
// Bm is the closest beacon from Bn. 
// distm(Bn, Bm) is the measured distance from Bn to Bm. 
Step 4: Bn broadcasts a ranging message to 1-hop neighboring nodes; 
Step 5: After U and Bm detect RSSIU and RSSIBm from ranging message, respectively, U and Bm return 

RSSIU and RSSIBm to Bn; 
Step 6: Bn converts RSSIBm to distm(Bn, Bm); 
// Phase 3: Verification phase 
// dist(Bn, Bm) is the actual distance between Bn and Bm. 
//δ is pre-defined error threshold. 
Step 7: Bn computes the dist(Bn, Bm); 
Step 8: ε=| distm(Bn, Bm)-dist(Bn, Bm)|; 
Step 9: if (ε>δ) then  
          goto Step1; 
            else 
        Bn converts RSSIS to distm(Bn, U); 
   return distm(Bn, U); 
            endif 

Fig. 6. Verification-based Ranging Algorithm (VBRA). 
 
4.2.1. Phase 1: Ranging node selection phase: 
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In order to obtain a distance between the unknown node and a beacon, the unknown 
node selects a beacon node out of neighboring beacon nodes that are one-hop distance 
from the unknown node. The condition of the selected ranging node is that the ranging 
node should have the greatest RSSI value. This is because in many practical 
experiences [5], the greater RSSI value has lower probability to incur noise. 

The steps of this phase are shown in Step 1~Step 3 in Fig. 6. In this phase, the 
unknown node broadcasts a ranging request message to the nearby beacon nodes. Next, 
the neighboring beacon nodes return their RSSI back to the unknown node. Then, the 
unknown node selects the beacon node with the largest RSSI to be the ranging node. 
 

4.2.2. Phase 2: Ranging phase 

The ranging phase measures distances from the ranging node to the unknown node 
and other beacon nodes, and the steps are shown in Step 4~Step 6 in Fig. 6. The ranging 
node starts by broadcasting a ranging message to 1-hop neighboring nodes. Notice that 
the neighboring nodes have to include the unknown node and beacon nodes. After 
receiving the ranging message, neighboring nodes returns the RSSI value of the 
received message to the ranging node. Subsequently, the ranging node converts the 
RSSI to distance estimates by looking up the signal-to-distance table. 
 

4.2.3. Phase 3: Verification phase 

The verification phase determines whether the distance estimates generated in the 
ranging phase is reliable. The condition is the quality of the distance error from the 
ranging node to the beacon node. If the distance error between the absolute distance and 
the estimated distance is less than the pre-defined error threshold, the ranging result 
from the ranging node to the unknown node is reliable and can be used for the location 
calculation in the next stage.  

This phase is depicted in Step 7~Step 9 in Fig. 6. In this phase, the ranging node 
starts by computing the absolute distance between beacons based on the pre-trained 
positions of beacons. The ranging node then computes the distance error ε between the 
absolute and estimated distances for the beacon node. If the error ε is less than the error 
threshold δ, the ranging node sends the distance estimate to the unknown node. 
Otherwise, VBRA discards the current distance estimate and generates the next distance 
estimate. The process is stopped when the condition ε<δ is met. 

The parameter, error threshold δ, in the algorithm is pre-determined by the system 
administrator according to the real environment. If the error threshold δ is too large, 
then the verification mechanism cannot filter the abrupt signal. In this case, VBRA 
degrades to the traditional ranging methods. On the other hand, if the error threshold δ 
is too small, VBRA would frequently abort the ranging result due to the strict 
restriction on achieving the error threshold δ. In this case, the sensor network would 
waste much additional cost on computation and communication. Hence, setting a 
sophisticated value for the error threshold δ is important for VBRA. Since the error 
threshold δ is sensitive to the physical environments, it is hard to derive a general rule 
to setting the error threshold δ. Some literature [5] offers practical experiences, and it 
could help the system administrator increase the familiarity on the deployed 
environment. 

The pack size used in the communication is economic in the VBRA. Fig. 7 illustrates 
the packet format for the unknown node and beacons. The packet consists of four 
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attributes, including Destination, RSSI, Source, and Location. The size of the packet is 
11 bytes and much less than the default packet size (40 bytes) in the TinyOS system 
[20]. Each attribute is explained as follows. The first attribute, Destination, records the 
ID of the ranging node. The second attribute, RSSI, has the RSSI value of the received 
ranging message. The last two attributes, Source and the Location, represent the node 
ID and the location of the message source, respectively. Notice that the location marked 
as null stands for the unknown node. 

 

 
Fig. 7. The message format in VBRA. 

 
4.3. Location calculation 

Since the distance measurements could be inexact accurate, the location of the 
unknown node is uncertain and bounded in a region [9], as shown in the gray region in 
Fig. 8. In the location calculation, the classic multilateration algorithm is employed to 
estimate the location. When the unknown node receives the distances from nearby 
beacons, the unknown node can estimate its location as follows. 

 

 
Fig. 8. Illustration of the possible region of location calculation. 

 
Assume locations of n beacons are Ai(xi, yi ), i = 1, 2, 3…n and the location of the 

unknown node U is (xu, yu). We also assume VBLM ranging distances are di, 
i=1,2,3…n. The distance estimation between U and other beacons can be represented by 
using a set of equations: 
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In order to solve the location of node U, the above equations can be transformed into the 
matrix form as follows. 
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Notice that the Equation (2) is an over-determined system of the linear equations, 

hence the location of U can be solved by employing the Minimum Mean Square Error 
(MMSE), and can be represented as bAAAU TT 1)( −= , where 
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We use a simple example to demonstrate the above equations for the location 

calculation. Assume A1(x1,y1)=(0,7), A2(x2,y2)=(8,7), A3(x3,y3)=(8,0), and A4(x4,y4)=(0,0) 
in Fig. 8, and the distances between the unknown node U and the beacons are 
d1=d2=d3=d4=6. Then, Equation (2) can be rewritten as 
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After algebraic operations on Equation (3), the location of unknown node (xu, yu) is 

obtained as (4,3.5). 
 
4.4. Interaction Analysis among Nodes 

Fig. 9 illustrates the sequence diagram of VBLM. The sequence diagram shows the 
interaction among the nodes, and an integration viewpoint of VBRA (the ranging-node 
selection phase, ranging phase, verification phase) and location calculation module. 
Assume two beacons used for localization of the unknown node U are B1 and B2, and 
beacon B1 is the nearest beacon of the unknown node U (that is, B1 is the ranging node.) 
The settings are also consistent with Fig. 3. In the figure, Step 1~Step 9 demonstrates 
the interactions in VBRA algorithm and Step 10~Step 11 shows the location calculation 
module. From the sequence diagram, the unknown node U and the ranging node B1 only 
spend three communication messages, respectively. Hence, the communication of 
VBLM is limited and acceptable. 
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Fig. 9. The sequence diagram of VBLM. 

 
4.5 Discussions 

VBLM has four advantages. Firstly, our proposed technique offers distance estimate 
verification. Secondly, the VBLM is also be easily implemented. Moreover, users can 
set their error threshold according to the different application needs in various 
environments. Lastly, VBLM provides more reliable distance estimate. During the 
experiments, we found that VBLM is able to filter the environmental noise that affect 
the quality of RSSI. Therefore, VBLM can generate more reliable distance estimates. 

VBLM can also be adopted in various RF signal-based ranging techniques, which 
includes TOA, TDOA, RSSI, and etc. In this paper, we implement VBLM using RSSI 
because the hardware is cheap and widely used in many sensor applications. However, 
the proposed method is basically quite extensive. 
 
5. Experiment results 

This section provides a detailed quantitative analysis to verify our proposed method, 
including performance study of VBLM, as well as the comparisons with the trilateration 
algorithm and the multilateration algorithm [21] that do not deal with the unstable 
signal. 

The system prototype implemented for the experiment study is designed by the 
sensor programming language, nesC [22] on Tmote Sky motes [23]. The prototype is an 
extension from our previous work [9], [24]. We run the experiments in the campus of 
Southern Taiwan University to obtain the real-world results for performance study. In 
the default settings, the error threshold is set to 50cm, and four beacons are used on 
average in the localization which setting is similar to [25][26]. The four-beacon 
deployment is almost the minimal scale for a sensor localization system, thus, our 
experiment performance can be treated as the benchmark under the poor-resource 
scenarios. Hence, VBLM should have better performance in the larger-scale 
deployment than this experiment setting. Finally, the setting of obstacles is an imitation 
of the experiments in [5]. 
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5.1. Characterizing the RSSI versus distance 

In the first experiment, we show the RSSI property of our hardware and determine a 
proper value of the transmission power for broadcast messages. Fig. 10 illustrates the 
RSSI values for different settings of the transmission power in various distances (refer 
to the RSSI training process in Fig. 5). In the figure, the curves of the transmission 
power indicate that the capacity of the transmission distance is around from 200cm to 
560cm, and the curve of 0dBm can transmit messages with the longest distance. Hence, 
in the rest of the experiments, we set the transmission power to 0dBm, the maximal 
ranging distance to 500cm, and the maximal localization area to 500x500cm2. 
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Fig. 10. The RSSI values of different settings of transmission power. 

 
5.2. Effect of noises on distance estimations 

In order to evaluate the validity of VBRA in environmental interference, we conduct 
an experiment for comparing the distance estimations between VBRA and the 
traditional RSSI ranging algorithm [10]. We emulate the interference of noises by 
placing a carton in the middle between the unknown node and the beacon node. 

The Fig. 11 illustrates the comparison for different distances (i.e., from 100cm to 
500cm) in the noisy environment. Observing curves from the results, VBRA performs 
much better than the traditional RSSI ranging algorithm in various situations (i.e., Fig. 
11(a) ~ Fig. 11(c)). The reason is that VBRA successfully identifies the signal affected 
by the obstacle. Hence, VBRA can filter the interference of noises on RSSI.  

In addition, we also observe that the effect of the environmental noise increases as 
the increasing ranging distance, and the noise affects both algorithms. For example, in 
the RSSI ranging algorithm, the number of time units that obtain the estimation error 
over 100cm for three experiments are two, five, and six, respectively. On the other 
hand, the noise do not affect VBRA, as shown in Fig. 11(a) and Fig. 11(b). And only 
five time units are affected in the Fig. 11(c). Thus, VBRA is more accommodative than 
the RSSI ranging algorithm in the noisy environment. 

 



International Journal of Smart Home 

Vol. 2, No. 3, July, 2008 

 

 

68 

-25

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10
time unit

es
tim

at
io

n 
er

ro
r (

cm
)

VBRA
RSSI

 
(a) ranging distance=100cm 
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(b) ranging distance=250cm 
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(c) ranging distance=500cm 

Fig. 11. Comparisons between VBRA and traditional RSSI ranging algorithm 
for different distances. 

 
5.3. Effect of noises on localization 

In order to evaluate the accuracy of VBLM in environmental interference, we next 
design an experiment for comparing the estimation error among the three localization 
methods, including VBLM, the multilateration algorithm [21], and the trilateration 
algorithm [21]. The interference of noises is simulated as the previous experiment. The 
results for these three algorithms are shown in Fig. 12. From the result, VBLM obtains 
lower estimation error than other two algorithms. This is because that VBRA filters 
most unstable signals. Hence, VBLM can obtain high-accuracy locations in unstable-
signal sensor environment. In contrary, the estimation error of other two algorithms, the 
multilateration algorithm and the trilateration algorithm, varies with time units since the 



International Journal of Smart Home 

Vol. 2, No. 3, July, 2008 

 

 

69 

two algorithms directly use the unreliable signal to calculate locations. Thus, the 
verification mechanism successfully improves the location accuracy. 

Similar to the last experiment, the effect of the environmental noise increases as the 
increasing localization area. The larger localization area implies the larger ranging 
distance between the beacon and the unknown node. According to the results in the last 
experiment, the large ranging distance would produce the distance estimates with large 
estimation error, and these distance estimates are then delivered to each localization 
method to produce worse location estimates. 

 

-25

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10
time unit

es
tim

at
io

n 
er

ro
r (

cm
) VBLM

Multilateration 
Trilateration 

 
(a) localization area=100x100cm2 
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(b) localization area=300x300cm2 
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(c) localization area=500x500 cm2 

Fig. 12. Comparisons of localization error in different areas. 
 

5.4. Effect of the number of beacons 

In the last experiment, we study the effect of number of beacons in different 
localization method, and the result is shown in Fig. 13. In the ideal environment, the 
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location calculation with the more beacons would obtain locations with higher accuracy. 
An interesting point in the figure is that the mulateration algorithm with four beacons 
does not perform better than that with three beacons. The reason is explained as 
follows. In the noisy environment, using more beacons would increase probability of 
employing the ranging results with large distance error in the location calculation. 
Thus, using more beacons in localization is not necessary to obtain higher accuracy in 
the unstable-signal sensor networks. 

Compare to the multilateration algorithm, VBLM is designed to aggressively filter 
noisy signals in the ranging stage (i.e., using VBRA). Hence, the high-accuracy distance 
estimates are delivered to VBLM to obtain high-accuracy locations. 
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Fig. 13. Estimation error for different number of the beacons. 

 
6. Conclusions and future work 

The localization is a critical technique of the wireless sensor applications in the 
smart-home environment. However, previous RSSI-based localization methods do not 
consider the effect of the unstable RF signal, and thus, the positioning accuracy 
decreases. In this paper, we propose the verification-based localization method (VBLM) 
to improve the positioning accuracy in the unstable-signal wireless sensor network. 
VBLM can verify the reliability of distance estimates during the ranging process, such 
that the system generates more reliable ranging results. Furthermore, we design an error 
control solution for user to determine the degree of accuracy by setting the error 
threshold. Our future work will continue study more detailed factors, such as failure 
ratio of localization, the relationship between the error threshold and the estimation 
error, etc. After the study, we plan to extend the work to investigate another 
localization challenge, the irregular broadcasting effect of the sensor antenna, in the 
smart-home environment. 
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