
International Journal of Smart Home

Vol. 2, No. 2, April, 2008

139

Solving Unbounded Knapsack Problem Using an Adaptive Genetic

Algorithm with Elitism Strategy

 *Rung-Ching Chen, *Cheng-Huei Jian, +Yung-Fa Huang
*
Department of Information Management,

+
Graduate Institute of of Networking and

Communication Engineering, Chaoyang University of Technology

168, Jifong E. Rd., Wufong Township, Taichung County 41349

Taiwan, Republic of China
crching@mail.cyut.edu.tw

Abstract

With the popularity of sensor networks, solving the knapsack problem has become

important in selecting the best combination of sensor nodes. Many methods have been

proposed to solve the Knapsack problem, but few of them have used the genetic algorithm,

especially in unbounded Knapsack problems. In this paper, we use the genetic algorithm to

solve the unbounded Knapsack problem. We combine an elite strategy and a self adapting

system into the genetic algorithm. Using the elite strategy overcomes the problem of the slow

convergence rate of the general genetic algorithm. The elite strategy retains good

chromosomes and ensures that they are not eliminated through the mechanism of crossover

and mutation, ensuring that the features of the offspring chromosomes are at least as good as

their parents. The system automatically adapts the number of the initial population of

chromosomes and the number of runs to be executed in the genetic algorithm. It will obtain

the best value from the chromosomes of each run executed, and retain the values in an elite

group. The optimal value is then taken from the elite group and adopted as the real solution.

Experimental results have shown that our method rapidly discovers the best solution of the

problem.

1. Introduction

The Knapsack problem is used in many practical situations, such as cargo-loading,

capital-budgeting, project scheduling, and selection of portfolio investment. For example, in

portfolio investment selection, there are many kinds of investment programs. Each program

offers differing returns. In this case, the investor wants to find the sum of the selected values

that is maximized under the constraint of limited funds for investment.

In a wireless sensor network, many nodes are distributed across a space. Each

sensor node will detect and collect information and transfer the information to head

nodes, cluster heads, or sink nodes. Selection of suit for nodes that offer the greatest

benefit is an important research goal.

The Knapsack problem concerns the choice of items to be placed in a mountaineer’s
knapsack: though each item benefits the climber, capacity is limited. It consists of finding the

best trade-off of benefit against capacity. Fundamentally, the knapsack problem is a version

of the problem of placement of wireless sensor systems: trading off capacity against space.

The Knapsack problem is a well-known NP-complete problem[12]. Many methods have

been used to find the optimum solution. Several strategies for solving NP hard optimization

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

140

problems are known, one of which is the Branch and bound approach, which finds the exact

solution. An approximation algorithm is another method, which finds a near optimal solution.

Metaheuristic methods find near optimal solutions as well. Such methods are iterative

generation processes that guide a subordinate heuristic by intelligently combining different

concepts for exploring and exploiting. Search space learning strategies are used to structure

information to efficiently find near-optimal solutions.

Metaheuristic methods consist of several different approaches, such as the trajectory

method or the population base method. Genetic algorithms represent one type of population

base method. In this paper, we use a metaheuristic method, an adaptive genetic approach, to

solve the unbounded Knapsack problem.

The unbounded Knapsack problem is formally defined as follows: there are different

items which have different values and weights. The number of each item is unbounded, and

there are no restrictions on the choice of items. The problem lies in determining what

combination of items yields the greatest benefit for the mountaineer under the capacity

constraint. The equation is shown in (1.1). The condition of xi is different in the Knapsack

problem: its value is a positive integer, including zero.

 1

n

i i

i

Maximize x p
=
∑

 1

. .
n

i i

i

S t x w C
=

≤∑
 (1.1)

 0 ,i ix x≤ ∈ integer , i=1…..n

Mathematically, the unbounded Knapsack problem is defined thusly: We have n kinds

of items, x1 through xn. Each item xi has a profit value pi and a weight wi. The maximum

weight that we can carry in the bag is C, and each item has many copies. Formulated this way,

the unbounded Knapsack problem is an NP-hard optimization problem of combination. Thus,

the optimal solution cannot be found in short time when the number of selection items is

large[14].

Many papers have suggested using different kinds of heuristic method to evaluate the

solutions, including genetic algorithms and simulated annealing [2,7,10,13]. More computing

time is required to find solutions for heuristic evaluations, but the most feasible solution can

usually be located. The method of randomly researching the optimal solution has been widely

applied to different kinds of problems as well. In this research we describe the character of

the unbounded Knapsack problem and search for an optimal solution using an adaptive

genetic algorithm.

Pisinger[5] gave an overview of all recent exact solution approaches for the Knapsack

problem, and showed that the Knapsack problem is still difficult for these algorithms to solve

[3]. However, Pisinger’s book does not offer any genetic algorithms for solving the Knapsack

problem. Genetic algorithms, originally proposed by Holland, have been applied to many

different areas. Li[7] used genetic algorithms to solve the unbounded knapsack problem,

using problem-specific knowledge and incorporating a preprocessing procedure, but it was

affected by knowledge.

One stumbling block to wider application of the genetic algorithm is that it cannot

obtain good results when the search space is large. To improve genetic algorithms, Last [9]

proposed a Fuzzy Logic Controller (FLC) that treats the crossover probability as a function of

the chromosomes’ age in order to reduce their rate of premature convergence. Javadi[1]

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

141

presented a hybrid optimization algorithm based on a combination of the neural network and

the genetic algorithm which used a back-propagation neural network to improve the

convergence of the genetic algorithm in large search spaces for the global optimum solution.

The system has to be trained in advance. Haupt[11] has shown that a small population size

and a relatively high mutation rate are superior to large population sizes and low mutation

rates. Zhiming[17] proposed an improved adaptive genetic algorithm that used a selection

probability based on the ranking of fitness values, and adaptively varied the probabilities of

crossover and mutation to improve the search capacity. Zhou[8] developed a self-adaptive

genetic algorithm (SAGA) that made certain key parameters variable over the evolution of the

solution. Yun[15, 16] used a hybrid genetic algorithm with an adaptive local scheme to

enhance efficiency.

In this paper we will propose a novel method for finding the optimal solution for the

unbounded Knapsack problem based on an adaptive genetic algorithm with an elite selection

strategy. The adaptive method can dynamically adjust the scale of population sizes and the

number of runs of execution. For small-scale problems it is thus able to rapidly locate optimal

solutions, while still able to find the best solutions for large scale problems. We make use of

an elite selection strategy that enables rapid convergence and reduced processing time. The

experimental results also consider uncorrelated, weakly correlated and strongly correlated

data distributions. These experiments showed that our method is not affected by the data

relations. The results indicate that our method is not only superior to the greedy method or the

general genetic algorithm, but is also capable of finding the optimal solution in a larger search

space.

The remainder of the paper is organized as follows. We give a system workflow in

section 2. Section 3 introduces the adaptive strategy. In Section 4, we propose a genetic

algorithm using the elite strategy. Experimental results are given in section 5.

Conclusions and future work are presented in section 6.

2. The System Workflow

Let the constraint of the knapsack’s capacity be C kg. The number of the items is N. The

weight of each item is equal to W1, W2, …, WN. Each item has a different profit, given by P1,

P2, … ,PN. The knapsack restriction, its total capacity, is C.

We then use a genetic algorithm to find the optimal solution, under which each item has

a profit value and a weight value. Figure 1 shows the workflow of the novel method. First,

each initial possible combination has to be encoded into a chromosome, a set of possible

combination of items. Next, the system generates a number of chromosomes N. Then, it will

check each chromosome’s weight and filter the chromosomes out using the constraint of

capacity C. In addition, it evaluates the fitness value of each chromosome. It then checks the

number of generations against a threshold. If the number of generations is less than the

threshold, the system will process its selection operation using the elite strategy, performing

conventional genetic operations: crossover and mutation. After the genetic algorithm is

finished, the system takes up the chromosome with the maximum fitness value into the elite

set. We take the chromosome with maximum fitness value from the elite set to be the optimal

solution, after many runs of the genetic algorithm have been executed. Furthermore, we set an

adaptive mechanism that guarantees the best value must appear at least K times. If the number

of times the best value appears is less than K times, we increase the number of runs until the

threshold is reached. Thus, the system gradually approaches the optimal solution by using the

elite strategy.

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

142

A case study was used to test the genetic algorithm. To obtain the optimal solution, we

observe phenomena associated with the elite strategy, such as the population size, and the

number of runs executed, in order to create an adaptive solution. The system is follows the

genetic algorithm proposed by John Holland (1975). Generally speaking, processing the

genetic algorithm requires 10 steps (Negnevitsky, 2004), but we reduce these steps to 4 parts:

gene coding, crossover and mutation mechanism, fitness function, and selection mechanism.

In addition, we added an adaptive mechanism to the system. The adaptive mechanism and

elite strategy will be specified in the next two sections.

Figure 1. The workflow of the adaptive genetic algorithm with Elite Strategy.

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

143

3. Genetic Algorithm With Adaptive Mechanism

Basing on the rule of natural selection and genetic variation specified by the modern

Neo-Darwinian synthesis[10], the genetic algorithm was first proposed by Holland in 1975. It

uses the principles of survival of the fittest and natural selection to find the optimal solution in

a wide solution space. Holland argued that just as in nature animals exchange genetic

information with fit partners, to produce fitter offspring, researchers could select good

ancestors, and exchange bits of information randomly to reproduce better offspring, until the

optimal offspring (from the view point of researcher) are obtained. Genetic algorithms (GAs)

exploit the mode of gene change; encode the parameter of problem into the code of gene; and

apply evolution based on the genetic procedure, to search for the optimal solution. The basic

operations involved in GA are selection, crossover, and mutation. Due to its concurrent

parallel and multiple search directions, GAs are able to systematize selecting possible regions

for multiple searches in a wide search space, in a way that is different from other search

methods. This variety of lines of attack is the reason GAs are one of the most efficient search

methods. However, genetic algorithms face certain problems, including difficult convergence,

local optimality, and consumption of time. We use an adaptive genetic algorithm and elite

strategy to overcome these problems.

In this paper, we consider the mechanisms of adaptive genetic algorithm using two

parameters: runs executed, and population size. The mutation rate is not considered in our

system. Smaller mutation rates make for shorter running times, but the search space will be

smaller. When the mutation rate is higher, the convergence speed will slow, meaning that the

mutation rate has to be set higher to find better results. In our tests, we found the best

mutation rate to be between 30% and 50%. We observed that there is no relationship between

finding the best automatically adaptive trend and the mutation rate.

The number of executed runs was selected to ensure that the final value is the best. The

system attempts to make the best solution appear at least K times. If this threshold is not

reached, the number of runs executed is automatically increased. The system also attempts to

avoid executing too many runs, while ensuring that the value obtained is optimum.

The procedure of the adaptive mechanism is given in a algorithm. First, it sorts the

values generated by GAs (genetic algorithms) into an elite set. It then checks whether the first

K items of value are identical. If identical, the system finds the best solution. Otherwise, the

system will increase the number of runs by the number of runs initially set, until the threshold

is reached. If the number of runs reaches R times the number of initial runs, the system will

double the population (from the initial size) to enlarge the search space. The algorithm is

listed as follows.

Algorithm: An adaptive mechanism operating procedures

Input: An elite set; an initial set of runs times Si; a population size Ps

Output: Decide whether increase population size

Step 1: Sort the array of elite set by descending

Step 2: If the first item in the array of elite set has been appeared K times

 Output the first item as solution and Go to Step 5

 Else

 Increase the times of runs depended on the initial set Si .

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

144

Step 3: If the times of runs greater than R times of the initial set Si

 Add population twofold.

Step 4: Go to Step 2

Step 5: End

The second parameter is population size [6]. The system automatically increases runs to

R times, and then adds the parameter of population size to accelerate the convergence

procedure. It increases the population size twofold when the number of runs increases to R

times (Formulas 3.1, 3.2 and 3.3). If the number of runs does not reach R times in the initial

run, the population size remains the same as the initial state. If the numbers of runs reaches R,

the population size is updated by Formulas 3.1 and 3.2.

For example, let the population size is 20 and runs are set to 5, R is set to 6, and K is set

to 5. This triggers at least 5 runs, until the best solution appears 5 times. If the number of runs

exceeds 30, the population size would be 60. Execution of runs would continue until the

threshold is reached.

We use this adaptive method to find the best solution. The value of η is a positive

integer, determined by Formula 3.2. If current runs are less than R times the number of initial

runs, η is zero. If η is a positive integer, η determines the value of the population size.

Population sizes=(initial population size)×(1+2×η) (3.1)

)2.3(,)

2

)(
int(__

 Rruns) (initial than less runs if ,








×
×−

×
=

others
sinitialrun

sinitialrunRrunscurrent
boundupper

o

η

 The number of runs=





(3.3) K times than lessappear sbest value if runs, initial of Times

K timesan greater thappear sbest value theif , runs Initial

4. Genetic Algorithm Using Elite Strategy

The purpose of this paper is to find the solution of the unbounded Knapsack problem

that yields the maximum benefit. In this section we offer a step by step description of the

algorithm. First, the algorithm encodes the unbounded Knapsack problem into a suitable

representation chromosome. Next, it measures the domain quantity of problem to set the size

of the initial population and the number of runs to be executed. The system then solves the

problem based on the genetic algorithm using the elite strategy.

(1) Gene coding with reducing bits
The system represents the unbounded Knapsack problem genetically. It begins by

considering the weight of items, the capacity constraint, and the restriction on the quantity of

each item under the limitation of maximum weight that is less than or equal to a threshold C.

(a) Individual definition: Assume the weight of first item is W1 kg and the combination is

l1 (the low bound integer of (C/W1)). The number of options range from 0 to l1, giving l1+1

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

145

objects. The remaining option numbers for the other items are (l2+1), (l3+1), …,(lk+1) . The

mathematical model is depicted in equation (4.1).

}1l0;{ +≤≤∈= ii xIntegerxxS (4.1)

 1

(1)
k

i

i

S l
=

= +∏

Si is the set of selection options of item i. x is the value of the number of items

selected of the same item. Assume the maximum capacity is 100kg and ten items are given in

Table 1. So, there are 94,594,500 options.

(b) Transfer the definition to binary codes: The system transfers the combination of

candidate items to binary codes.

(c) Reduce the bits of binary code: With the exceptions of items 4 and 9, the

representations of the item do not require 4 bits. Item 2 has 0, 1, or 2, a total of three options,

so only 2 bits are required to represent it. Three bits are necessary for items 1, 3, 5, 6, 7, 8, 10,

based on the number of possible combinations of each item. Each item is represented by the

fewest possible bits, to promote the performance of the algorithm (Table 2).

(d) Chromosome representation: We combine each item for representation as a

chromosome. For example: a code for a chromosome might be 010,00,000,0000,000,000,

010,000,0011,000. The string means there are 2 of the first item, 2 of the seventh item, and 3

of the ninth item.

Table 1. Unbounded Knapsack problem with ten items.

item# 1 2 3 4 5 6 7 8 9 10

Weight 22 50 20 10 15 16 17 21 8 25

Cost 1078 2350 920 440 645 656 816 903 400 1125

Table 2. Representation of each item in binary form.

item possible combinations in binary form

1 000 001 010 011 100

2 00 01 10

3 000 001 010 011 100

4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

5 000 001 010 011 100 101 110

6 000 001 010 011 100 101 110

7 000 001 010 011 100 101

8 000 001 010 011 100

9 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

10 000 001 010 011 100

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

146

(2) Crossover and mutation mechanisms

Generally speaking, there are three crossover methods: one-point crossover, two-point

crossover and uniform crossover. (a) One-Point Crossover: One crossover point between the

two strings is taken, and all bits from that point to the end of the two strings are changed. (b)

Two-Point Crossover: Two crossover points are taken and all bits between the two points on

the two strings are changed. (c) Uniform Crossover: A bit indicator that has the same length

of the chromosome is generated. The uniform mask is found by random oscillation between 0

and 1. The location of the changed bit occurs when the masked bit is 1.

The one-point crossover method is used in this research. In our system, it generates a

random number between 0 and N and is mated by a crossover rate. The value of N is the

length of the chromosome. The random number adds 1 to count out the exchange location,

and we change bits from the right side to the exchange location between the two

chromosomes.

The mutation method follows the options of each item. For example, the sixth item has

the combination 0, 1, 2, 3, 4, 5 and 6. It has 3 bits and should have the combination 111. It

does not have the probability of 111 in this example. Thus, the number 111 cannot be an

option for the mutation choices.

(3)The definition of the fitness function:

The definition of fitness function for each individual chromosome is listed in equation

(4.2). The constraint definition is shown in equation (4.3). There are n kinds of item i. Each

item i has the benefit Pi and the weight Wi.

1

max
n

i i

i

imize p x
=
∑ (4.2)

1

() 100
n

i i

i

f s w x c
=

= ≤ =∑ (4.3)

0 ,i ix x≤ ∈ integer，i=1…n

 (4) The Elite Selection Strategy:

The selection mechanism of this system is the “elite method” (or “tournament selection

method”). If a new offspring cannot fit the capacity constraint, it is eliminated. New offspring

can become the new population if their weight is less than the constraint. The goal is to obtain

the maximum benefit. Based on the complexity of the search space, the system will choose a

different number of initial chromosomes of population scale N. A small N maps to fewer

options of a given problem, while a larger N maps to a larger number of options of a given

problem. The system will then sort the chromosomes by benefit and select the top 70% of

chromosomes, then perform the process of selection, crossover and mutation to produce new

populations. Fitness and objective functions are then evaluated again. The system keeps

recycling until the first generation threshold is met. Then the system picks the best

chromosome and puts it in the elite pool. When all the runs have been executed, the optimal

chromosome is chosen as the solution from the elite pool.

5. Experimental Results and Analysis

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

147

5.1 Experimental arrangement and analysis

The system was implemented on PC with Intel Pentium(R) processor 1.6GHZ using VB

language. The system is capable of altering the benefit, weight, and maximum capacity,

depending on the problem. The parameters of the genetic algorithm, including the population

sizes, generations, crossover rate, and mutation rate, may also be controlled.

In general, the genetic algorithm modifies the crossover rate and mutation rate to search

for optimal solutions. However, in this research we focus on the initial population size and

run executed, unlike approaches used in previous research [2,3,4]. In the first part of

experiment, we focus on static parameter settings and observe the result. As discussed in the

previous section, the population size and runs executed is updated depending on the number
of options of the problem. The more options the problem has, the greater the population sizes

and runs executed. We spread the net widely in the search space at each random initial

population, and use the local convergence of the genetic algorithm to find the maximum value

through the elite strategy. There is a very high probability of finding the real solution under

such conditions.

Assume the maximum capacity is 55 kg, 82 kg and 100 kg. The options are 435456,

11404800, 94594500, and the optimal results can be found less than 40 seconds. We

previously calculated the options of the constraint of maximum capacity; set the mutation rate

to 3% and 90%; and population sizes to 20, 50 and 100. Thirty runs were executed. The larger

the maximum capacity, the more options we obtain and the lower the possibility of obtaining

the optimal solution. If the optimal solution with highest possibility is desired, we should

increase the population size and the number of runs executed.

The method enumerated above is capable of obtaining the optimal solution within

acceptable time limits with fewer options, though the genetic algorithm is superior if the

number of options is great. A feature of the genetic algorithm is that it converges to local

optimum. When the number of options is large, we increase the size of the population and the

number of executed runs.

The mutation rate represents a change in the chromosome. Its role is to provide a

guarantee that the genetic algorithm does not become trapped on a local optimal. Mutations

provide more variability than the parent genes, resulting in a greater search space. That is to

say; search space and mutation are in direct proportion. Traditional genetic algorithms suffer

from the problem of loss of the pioneer’s best chromosomes under high mutation rates. This

system uses the elite strategy to overcome this problem and retain the useful genes in

subsequent generations. With a large number of options, high mutation rates would become

trapped in a random search and converge only with great difficulty. The process of search

optimization takes place in a situation of oscillation. Though elite selection and high mutation

rates are used, fewer optimal values are obtained than with low mutation rates.

We use elite selection to enlarge the field of the search space when mutation rates

increase. By contrast, if we reduce the mutation rate more, the search space will decrease. To

optimize searches, a balance between convergences and enlarged search space should be

found.

The number of options depends on the size of the capacity constraint. The more weight

the knapsack can take, the more options there are. The search space thus has a strong cubic of

weight. When the search space becomes too large, it becomes too great for the enumeration

method to calculate, though our method can handle it. The experiments also show that our

method is better than the greedy method solution (Figure 2) as well.

What population sizes should be set, and how many runs executed, are important issues

that we looked at in light of the portfolio investments, a variant of the Knapsack problem.

After observing the static parameters in experiments, we updated the program to let the

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

148

system automatically self-adapt the parameters of runs executed and population size. The

trend diagram is shown in Figure 3 where the capacity constraint is 100kg, initial population

size is 20, and the number of initial runs is set to 5. The self-adaptive mechanism finds the

optimal value five times in 40 runs, and the final population size adjusts to 60 automatically.

After 30 runs the population size is 20 and only one optimal value appears. Between 31-40

runs, the population size increases to 60 and four optimal values are obtained. The real

optimal value can thus be found by our method

.

5.2 Data distributions

In order to detect whether the self-adaptive mechanism easily becomes trapped in certain

input data relations, the system was applied to three cases: the uncorrelated, weakly

correlated, and strongly correlated data relations. The comparison diagram is shown in Figure

4. In the uncorrelated case we found that the number of runs shifted from 5 to 40 and the

population size shifted from 20 to 60. It then reached our pre-determined level, obtaining 5

instances of the optimal value. There was a large variation between the benefits and the

weight. The weakly correlated case showed the same result as the uncorrelated case in

reaching the set level. The example we investigated in the previous section was weakly

correlated. In that case the benefit differs from the weight by only a few percent. However, in

the strongly correlated case, we found that only 5 runs had been executed and the population

size was 20 when the set level was reached. The benefit depends on the weight. In

determining an investment portfolio, the results are analogical to the investment plus a fixed

charge.

Our results show that this approach is useful in instances of different relations between

benefit and weight. Using this approach, when the search space has less than 10
9
options in

our experiments, discovery of the real optimal solution is ensured. We also tested a large

search space with 10
15
 options. Our system can find the answer better than greedy method and

does so within 100 seconds.

Figure 2. Comparison of Greedy method and the genetic algorithm.

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

149

Figure 3. The capacity is 100kg which automatically adaptive population sizes
from 20 to 60 and runs executed from 5 to 40.

Figure 4. The relationship between benefit and weight.

International Journal of Smart Home

Vol. 2, No. 2, April, 2008

150

6. Conclusions and Future Work

The unbounded Knapsack problem is more complex than the general Knapsack problem.

In this paper we proposed an adaptive genetic algorithm to solve the unbounded Knapsack

problem. The elite strategy improves the genetic algorithm for solving unbounded Knapsack

problem, overcoming the problem of slow convergence in traditional genetic algorithms. The

elite strategy guarantees each offspring is at least as good as its parent. The system

automatically adjusts the population size and runs executed based on the complexity of the

search space. The algorithm picks the best value and retains it in the elite set after each run.

After the runs are completed, the best values are taken from the elite set. Our approach is able

to find the optimal solution using the multiple selection strategy in a wide search space.

Experimental results have shown that this method is capable of finding the optimal solution of

a problem when tested with search spaces of 10
15
options.

In the future we look forward to further improvement of the effectiveness of the search,

using dynamic gene allocation. We found during our experiments that the greedy method has

some interesting features that could be incorporated into the genetic algorithm. The spirit of

greedy method, in which the best choice is taken in every step, could be used to rearrange the

chromosomes. We will also explore the relationship between runs and population size in

order to improve the efficiency of the system.

References

[1] A.A. Javadi, R. Farmani, T.P. Tan, “A hybrid intelligent genetic algorithm.”, Advanced Engineering
Informatics, 2005, Vol.19, pp.255–262.

[2] C. Zhao, W.Zhang, “Using genetic algorithm optimizing stack filters based on MMSE criterion.” in image
and vision Computing, College of Information and Communication Engineering, 2005, pp. 853–860.

[3] D. Pisinger, “Where are the hard Knapsack problems? ” Computers and Operations Research, 2005, Vol. 32,
Issue 9,pp. 2271-2284.

[4] Holland, J. H, “Adaptive in Natural and Artificial Systems”, Ann Arbor, MI: Univ. Michigan Press, 1975.
[5] Hans Kellerer, Ulrich Pferschy, and David Pisinger, “Knapsack problems.” Springer, Berlin, ISBN 3-540-

40286-1,2004.
[6] J. Costa, R. Tavares, A.C. Rosa, “An experimental study on dynamic random variation of population size”, in

Proc. of the1999 IEEE Internat. Conf. on Systems, Man, and Cybernetics, 1999, pp. 607–612
[7] Ken-Li Li, Guang-Mingdai, Qing-HuaA Li1, “A genetic algorithm for the unbounded Knapsack problem.”

Computer School, Huazhong University of Science and Technology, Wuhan, 430074, China, Department of
Computer, China University of Geo Science, 2003.

[8] Lan Zhou, Sun Shi-Xin, “A Self-Adaptive Genetic Algorithm for Tasks Scheduling in Multiprocessor
System.” Communications, Circuits and Systems Proceedings, International Conference, 2006.

[9] Mark Last, Shay Eyal, “A fuzzy-based lifetime extension of genetic algorithms.” Fuzzy Sets and
Systems,2005,Vol.149,pp. 131–147

[10] M. Negnevitsky, “Artificial Intelligence: A Guide to Intelligent Systems” 2nd ed. Essex: Addison Wesley,
2004.

[11] Randy L. Haupt, “Optimum Population Size and Mutation Rate for a Simple Real Genetic
Algorithm that Optimizes Array Factors.” Antennas and Propagation Society International
Symposium, IEEE, 2000.

[12] Silvano Martello, Paolo Toth, “Knapsack problems: Algorithms and Computer Implementations.”
John Wiley &Sons Ltd., ISBN 0-471-92420-2, 1990.

[13] W. P. Su, “Simulated annealing as a tool for Ab initio phasing in X-ray crystallography.” Acta
Cryst. A51, 1995 ,pp. 845-849

[14] WiKipedia . “Knapsack problem.” http://en.wikipedia.org/wiki/Knapsack problem
[15] Young Su Yun, Minoru Mukuda, Mitsuo Gen, “Reliability Optimization Problems Using Adaptive

Hybrid Genetic Algorithms.” Advanced Computational Intelligence and Intelligent Informatics,
2004,Vol.8,No.4 pp. 437-441

[16] Young Su Yun, “Hybrid genetic algorithm with adaptive local search scheme.” Computers &
Industrial Engineering, 2006,Vol.51, pp. 128–141

[17] Zhiming Liu, “New adaptive genetic algorithm based on ranking.” Proceedings of the Second
International Conference on Machine Learning and Cybernetics, X.'an, 2-5 November, 2003.

