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Abstract 
 

Recently, wireless sensor networks have been proposed for assisted living and residential 

monitoring. In such networks, physiological sensors are used to monitor vital signs e.g. 

heartbeats, pulse rates, oxygen saturation of senior citizens. Sensor data is sent periodically 

via wireless links to a personal computer that analyzes the data. In this paper, we first 

describe the architecture of a sensor-based medical information system that we are 

developing. Then, we describe how we deal with security issues in our system. Next, we 

describe an ECG anomaly detection scheme that we proposed. Our approach is based on 

time series analysis that will allow the computer to determine whether a stream of real-time 

sensor data contains any abnormal heartbeats. If anomaly exists, that time series segment 

will be transmitted via the network to a physician so that he/she can further diagnose the 

problem and take appropriate actions. When tested against the heartbeat data readings 

stored at the MIT database, our ECG anomaly scheme is shown to have better performance 

than another scheme that has been recently proposed. Our scheme enjoys an accuracy rate 

that varies from 70-90% while the other scheme has an accuracy that varies from 40-70%. 

1. INTRODUCTION 

Recent report [1] has indicated that an aging baby-boom generation is stressing the US 

healthcare system. Hospital administrators and other medical care-givers are looking for ways 

to maintain quality of care at reduced costs.  Thus, some researchers [1] have proposed to 

shift from the familiar centralized, expert-driven, crisis-care model to one that allows senior 

citizens to live with informal caregivers e.g. family, friends, and community. They propose 

using wireless sensor networks that can provide capabilities that are valuable for continuous, 

remote monitoring [1]. In such sensor networks [1],[2],[9], wireless devices are integrated 

with a wide variety of environmental and medical sensors. Vital sign data can be collected 

automatically, thus enabling remote medical monitoring and diagnosis. It is envisioned that 

such a system needs to be designed efficiently since some of these monitoring devices run on 

battery and thus have limited power constraints. Usually sensor data is collected by some 

intermediate storage nodes which have higher wireless bandwidth. For better energy 

efficiency, the intermediate storage nodes can process these real-time streams to identify any 

abnormality. Once identified, only the abnormal data needs to be sent to the physician for 

further diagnosis while the rest of the normal data can be archived at the local storage nodes. 

The local storage nodes can further transfer such normal data to longer term storage units at a 

slower time scale (e.g. daily). The system can also provide a feature for the physician to 

request for more detailed immediate data from the local storage nodes or change the 

frequency of monitoring of the sensor nodes. 

 

In this paper, we first give a high level overview of the system architecture of a sensor-

based medical information system that we are developing for a nursing home. Our system 

uses the medical sensors designed by the CodeBlue [2] project. Base stations and some 
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mobile data collectors e.g. PDAs owned by care-givers that can communicate with such 

sensors are deployed all over the nursing home. The base stations are connected to a 

centralized data server. Several design issues need to be addressed before such a system can 

be deployed e.g. secure transfer of measurement data from the sensors to a centralized server, 

power-efficient scheme to monitor the vital signs of the elderly, location tracking of the 

elderly etc. Next, we discuss some of the potential threats to sensor-based medical 

information systems. Hackers can eavesdrop on the data or spoof a base station to retrieve 

data from the deployed sensors or modify the sensor data sent to a base station. To mitigate 

such threats, our system only allows the sensors to communicate directly with legitimate base 

stations or mobile data collectors. Medical personnel can only query a patient’s data through 

one or a few base stations but not directly through the sensors. The base stations or the 

centralized data station will verify the medical personnel before allowing for such queries.  

 

Besides tackling security issue, our initial work focuses on designing a power-efficient 

scheme for monitoring vital signs and secure transfers of these measurements. The medical 

sensors run on batteries and communications have been shown to be the primary sources of 

power consumptions [16]. Several important vital signs that are usually collected in such a 

medical sensor monitoring system are heartbeats, pulse rates and oxygen saturation. To allow 

the sensor nodes to last longer, we propose to transmit only abnormal data via wireless links. 

To decide if a real time sensor data stream contains abnormal data, one needs to use an 

anomaly detection scheme. In this work, we propose an adaptive window-based discord 

discovery (AWDD) scheme to detect abnormal heartbeats within a series of heartbeat 

readings. Our scheme is an enhancement of the Brute Force Discord Discovery (BFDD) 

scheme proposed in [4]. Using the heartbeat records from the MIT-BIH arrhythmia database 

[3], we demonstrate that our AWDD scheme provides higher accuracy in distinguishing 

between normal/abnormal heartbeats within a 40 seconds excerpts of heartbeat readings when 

compared to the BFDD.  

 

The rest of the paper is organized as follows: In Section II, we first summarize related 

work on ECG anomaly detection. Then, we summarize related work on the security design of 

medical information systems. In Section III, we first describe the overall architecture of our 

system. Then, we describe the security architecture of our system. In Section IV, we describe 

both the BFDD and the AWDD schemes that are used for ECG anomaly detection. In Section 

V, we present the training and test results when the two schemes are applied to the records 

selected from the MIT-BIH arrhythmia database. We conclude in Section VI. 

2. RELATED WORK 

2.1 ECG Anomaly Detection 

Heart arrhythmias result from any disturbance in the regularity, rate, site of origin or 

conduction of the cardiac electric impulse [1],[2]. There are two groups of arrhythmias [2]: (i) 

the first group is life threatening and includes ventricular fibrillation and tachycardia, and (ii) 

the second group is not life threatening but may require medical attention to prevent bigger 

problems. There are well researched and successful detectors for detection of the first group 

of arrhythmias. Such detectors have high sensitivity and specificity [3],[4],[5],[6],[7]. 

However, these detectors have been tested using data collected from expensive medical 

sensors. In our work, we hope to use cheaper medical sensor nodes which may generate more 

noisy data. Thus, we are focusing more on the detection of the second group events.   

 



International Journal of Smart Home 

Vol. 2, No. 2, January, 2008 

 

 

113 

Due to the limited power resources in a sensor-based medical information system, we need 

to use an anomaly detection scheme that is not computationally expensive. In a seminal paper 

[4], the authors introduce the new problem of finding time series discords.  Time series 

discords are subsequences of a longer time series that are maximally different to all the rest of 

the time series subsequences. Time series discords have many uses for data mining including 

data cleaning, improving quality of clustering and anomaly detection. The authors in [4] 

propose two discord discovery algorithms, namely the Brute Force Discord Discovery 

(BFDD) and the Heuristic Discord Discovery (HDD) schemes. The BFDD scheme has a 

O(m
2
) time complexity while the HDD can have an O(m) time complexity where m is the 

number of samples in the time series. The authors show that their schemes can be used to 

detect discords that exist within Electrocardiograms (ECGs) (which are a time series of the 

electrical potential between two points on the surface of the body caused by a beating heart). 

For example in Figure 1, the identified discord coincides with the location annotated by a 

cardiologist as containing an anomalous heartbeat. The Adaptive Window Based Discord 

Discovery (AWDD) scheme that we design in this paper is motivated by the two schemes in 

[4], and will be described in more details in Section III. 

 

Figure 1: The time series discord in an excerpt of electrocardiogram qtdb/sel102 

(marked in bold) which coincides with a premature ventricular contraction [4]. 

 

2.2 Related Work on Security Design of Medical Information System 

One of the major barriers to deploying security on sensor networks is that the sensors have 

limited computation and communication capabilities. Early work on sensor network security 

uses symmetric cryptography e.g. [11] to protect sensitive data. In [12], the authors describe 

TinySec, a fully-implemented protocol for link-layer cryptography in sensor networks. 

TinySec provides two options, namely authenticated encryption and authentication only. With 

authenticated encryption, TinySec encrypts the payload and authenticates the packet with a 

Message Authentication Code (MAC). The MAC is computed over the encrypted data and the 

packet header. In authentication only mode, TinySec merely authenticates the entire packet 

with a MAC. The data payload is not encrypted. However, TinySec has been tested on mica2 

motes but we are using micaz motes. In addition, TinySec does not address the key 

management issue. Recent research [13],[14] has shown that performing public-key 

computations are viable in the resource-constrained sensor motes. 

 

Several of the existing medical sensor network research projects acknowledge the need for 

security in their systems but do not provide detailed descriptions of their security design 

except for [1]. In [1], the authors propose using symmetric Advanced Encryption Standard 

(AES) cipher but does not elaborate on how key management can be accomplished. 

 
 

 

 

 



International Journal of Smart Home 

Vol. 2, No. 2, April, 2008 

 

 

114 

3. ARCHITECTURE OVERVIEW OF OUR SENSOR-BASED MEDICAL 

INFORMATION SYSTEM  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overall System Architecture of the SBMIS 
 

Figure 2 shows the overall system architecture of our SBMIS. The elderly residents will 

wear sensors that help to monitor vital signs. Each sensor consists of a mote connected to 

another medical sensor board e.g. a pulse oximeter or ECG board that collects samples of an 

elderly’s vital signs when it is activated. We will refer to this integrated sensor merely as the 

medical sensor mote. The medical sensor mote can communicate with any base stations that 

are deployed all over the nursing home. Base stations (referred to as local storage nodes in 

Figure 2) are deployed all over the nursing home. These base stations form an ad hoc network 

and are connected to a centralized data server. In addition, mobile data collectors e.g. PDAs 

owned by care-givers are also deployed. The base stations and the mobile data collectors run 

multihop routing protocol. These base stations or the mobile data collectors can issue queries 

to the medical sensors to retrieve sensor data or issue commands to change the sampling 

frequency of the medical sensors. However, the mobile data collectors are only allowed to do 

so after the users are authenticated by the centralized system. All communications are done 

securely so that outsiders cannot eavesdrop on the data exchange between the base stations 

and the medical sensors. More discussions of our security design is deferred to the next 

subsection.  

 

Each sensor mote is pre-loaded with some information that captures the normal profile of 

the elderly that wears the sensor mote. Each medical sensor mote runs an anomaly detection 

module and sends only excerpts of abnormal time series of vital signs to the base stations 

which are relayed to the centralized data server. The data server runs applications that allow 

alert messages to be generated to the cell phones of physicians that take care of the elderly. In 

our initial prototype, the ECG anomaly detection software runs either on a PDA that is 

deployed in the bedroom of the elderly or at the base stations. In the final version, we hope to 

simplify the ECG anomaly detection module such that it can reside within the medical sensor. 

We have not implemented the application on the data server yet but we intend to investigate if 

the one developed in the I-living project [15] can be tailored for our needs. 
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3.1 Security Challenges 

There are two types of threats to the sensor-based medical information system (SBMIS), 

namely outsider and insider attacks. Outsider attacks are those launched by attackers who do 

not have control of any legitimate nodes in the system e.g. the medical sensors or base 

stations. Such attackers can eavesdrop on the communications between the medical sensors 

and the base stations, between the base stations. They can also masquerade as legitimate base 

stations to extract data from the medical sensors or change the packets exchanged between 

base stations. In addition, they can replay some old data packets that are sent from the 

medical sensors to the base stations. Insider attacks are launched by attackers once they have 

compromised the nodes within our SBMIS. For example, if they have control of the medical 

sensors, they can forge false data or extract any stored measurement data. If they control any 

base stations, they can arbitrarily change the sampling frequency of the medical sensors or 

issue queries to extract measurement data from the medical sensors. Such physical 

compromise is more likely in medical sensor networks than in mobile ad hoc networks 

because the nursing home is often visited by outsiders. Security solution needs to be provided 

to thwart such attacks. Furthermore, a scalable solution to authorize different personnel e.g. 

physicians, nurses or care-givers to access different levels of medical information need be 

provided to ensure the privacy of the data.  

 

3.2 Security Design 

In our system, we assume that the centralized data server will authenticate any medical 

personnel before he/she is allowed to issue queries to retrieve medical measurements stored at 

the sensors. A submitted query will be routed to a base station that is closer to the sensor 

worn by a particular elderly. To prevent attackers from using any sensor nodes that do not 

belong to the network to communicate with legitimate base stations, we propose storing a 

biometric signature inside any mote that is deployed and worn by an elderly. This signature 

can be verified by a base station before communication between the base station and the mote 

can occur. Such biometric signature can be created from an offline fingerprint reader. In 

addition, the queries and responses between any base station and a mote are encrypted using 

pairwise symmetric keys shared between the mote and that base station. Such symmetric keys 

can be negotiated securely at the beginning of their communication. We describe an identity-

based key negotiation protocol that allows a mote to negotiate a symmetric key with a base 

station. 

 

Figure 3 shows the identity-based key negotiation protocol we propose. Before a mote is 

given to an elderly, it is preloaded with the resident identifier (RID) assigned to that elderly 

and its private key. One may use the same public key for all base stations or a few different 

public keys e.g. all base stations in the 1
st
 floor have the same public/private keys. We assume 

that base stations periodically send beacons advertising their own identifiers which will also 

be used as their public keys since we are using identity-based cryptography. We further 

assume that when a query is issued to a particular mote via the mobile reader or base station, 

the query contains the mote identifier which also acts as the public key of that particular 

mote. The key negotiation begins by having a base station sends a key_init message. This 

key_init message is encrypted using the public key of the mote. The mote responds with a 

key_neg_start message that contains the RID, a session number, and a nounce n1. This 

message is encrypted using the public key of the base station. The base station then responds 

with a key_neg_ack message that contains the mote’s nounce n1, another nounce n2 generated 

by the base station and Km. This message is encrypted using the public key of the mote. The 
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master key Km and both nounces are used to create the encryption key and the MAC key for 

all subsequent messages between the mote and the base station. The mote then returns a a 

confirm message called key_neg_cfm which contains the RID, the base station’s nounce, and 

Km. These exchange allow both the mote and the base station to authenticate one another. 

Note that the encryption key and the MAC key is not sent during this key negotiation process. 

Thus, unless the nodes are compromised, eavesdroppers cannot figure out what the encryption 

and MAC keys are since they do not know the functions f, and g. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 
Figure 3. Key Negotiation Process between a Mote and the Base Station 

 

4. OVERVIEW OF THE BFDD AND AWDD SCHEMES 

As mentioned earlier, to ensure that the medical sensor can be used for a long time before its 

battery needs to be changed, the sensor software is designed such that it only sends abnormal 

measurements to the base station. In order for this feature to work, we need to design efficient 

anomaly detection module that can run on the motes. In this section, we describe two 

anomaly detection schemes that can be used to detect abnormal heart beats. 
 

4.1 Notations Used 

Before describing both the BFDD and the AWDD schemes that find discords in a time series, 

we first list the notations we use (which is the same as [4]): 

Times Series:  A time series T = t1, …, tm is an ordered set of m real-valued variables. In 

this project, the real-valued variables are the heartbeat sensor readings. 

Subsequence:  Given a time series T of length m, a subsequence C of T is a sampling of length 

n≤m of contiguous position from T, that is, C = tp, …, tp+n-1 for 1 ≤  p≤ m-n+1. 

 

Sliding Window:  Given a time series T of length m, and a user-defined subsequence length 

of n, all possible subsequences can be extracted by sliding a window of size n across T and 

considering each subsequence Cp. 
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Distance:  Dist is a function that has C and M as inputs and returns a nonnegative value R, 

which is said to be the distance from M to C. For subsequent definitions to work we require 

that the function D be symmetric, that is, Dist(C,M) = Dist(M,C). 

 

Euclidean Distance:  Given two time series Q and C of length n, the Euclidean distance 

between them is defined as: Dist(Q,C) = sqrt [ ∑ (qi - ci)
2
 ]. 

 

Non-Self Match:  Given a time series T, containing a subsequence C of length n beginning at 

position p and a matching subsequence M beginning at q, we say that M is a non-self match to 

C at distance of Dist(M,C) if | p - q| ≥ n. 

 

Time Series Discord:  Given a time series T, the subsequence D of length n beginning at 

position l is said to be the discord of T if D has the largest distance to its nearest non-self 

match. That is, ∀subsequence C of T, non-self match MD of D, and non-self match MC of C, 

min(Dist(D, MD)) > min(Dist(C, MC)). 

4.2 Adaptive Window Based Discord Discovery (AWDD) Scheme 

The original BFDD algorithm proposed in [4] is a one-pass algorithm which uses a fixed 

window size and hence a user needs to specify the window size.  

This algorithm compares a fixed length subsequence with another subsequence of the same 

length that is obtained by sliding down a given time series one sample at a time. Hence, the 

original BFDD scheme is very computational expensive. Our AWDD scheme is motivated by 

the BFDD scheme. The AWDD scheme is a two-pass approach with adaptive window size. In 

the first pass, we identify the peak points in the 40-seconds excerpts of heartbeat readings. 

Then, we consider only the subsequence that starts from a peak and ends at the next peak. The 

size of the sliding window is of one heartbeat’s length, as illustrated in Figure 4. In Figure 4, 

RR-i denotes the heartbeat to heartbeat (denoted as RR) interval between heartbeats i and 

(i+1). As in the original BFDD scheme, each subsequence is normalized to have a mean of  

zero and a standard deviation of one before calling the euclidean distance function, since it is 

meaningless to compare time series with different offsets and amplitudes [8]. Note that we 

use only euclidean distance in this work. Figure 5 shows the effect of normalization on a 

subsequence of time series obtained from the patient record 205. 
 

In the second pass, we consider each possible subsequence, and find the distance between 

this and its nearest non-self match. The subsequence that has the largest distance is the 

discord. The location of the discord is accomplished with nested loops, where the outer loop 

considers each possible candidate subsequence, and the inner loop is a linear scan to identify 

the candidate’s nearest non-self match.  

 

The time complexity of the AWDD scheme will be O(h
2 
) where h is the number of 

heartbeats but the technique that is used in HDD to reduce the time complexity to O(m) can 

be equally applied to the AWDD scheme to produce a scheme with a time complexity of 

O(h). As far as space is concerned, AWDD only requires an additional array to keep location 

of peaks. 
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Figure 4.  Adaptive Window 

 

Subsequence Before Normalization

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-23 27 77 127 177 227

Time (0.003 Second)

E
C
G
 S
a
m
p
le
 (
m
V
)

 
(a) Time-Series Subsequence:  Before Normalization 
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(b) Time-Series Subsequence:  After Normalization 

 

Figure 5.  Normalization of Time Series Subsequence 
 

 

For clarity, the pseudo code of the BFDD algorithm is shown in Figure 6(a), and our 

enhanced algorithm is shown in Figure 6(b). Since we are using adaptive windows, we make 

two more changes to determine and compare the discords. The first change is to ensure that 

we can compare subsequences of different lengths. To do this, we compress the longer 

subsequence to match the shorter one. The subsequences are normalized before any potential 

compression takes place. Figure 7 illustrates the effect of the compression on a subsequence 

of record 205. 
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(a) Pseudo Code for BFDD scheme 

 
(c) Pseudo-Code for the AWDD scheme 

 
Figure 6.  Discord Discovery Schemes 

 

The next change is to deal with the fact that one subsequence-pair may have more samples 

than the other subsequence-pair and hence we cannot compare the computed distances 

directly. We overcome this by scaling all distances such that they correspond to the distance 

computed using the same number of samples. 
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Figure 8 shows a 40-second ECG excerpt of the patient record 205 with samples from 290
th
 

second to 330
th
 second. In this excerpt, abnormal heartbeats start from the 296.875

th
 second 

and end at the 305.900
th
 second. When feeding this 40-second ECG excerpt to the discord 

discovery algorithm, our enhanced algorithm locates the discord at the 302.531
th
 second. Its 

nearest non-self match is at the 296.875
th
 second. Their distance is 7.483. By checking the 

ECG record annotated by the cardiologists, we can tell that there is indeed an anomaly sitting 

at the location of the discord found by our algorithm. Figure 9 illustrates the two 

subsequences, where the discord and the nearest non-self match reside.  
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(a)  Normalized Time-Series Subsequence:  Before Compression 
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(b) Normalized Time-Series Subsequence:  After Compression 

 

Figure 7.  Compression of Normalized Time Series Subsequence 

 

However, the discord found by the algorithm may or may not be an anomaly of the ECG 

excerpt. Thus, we use a configurable threshold to decide whether or not a discord is an 

anomaly. If the distance between the discord and its nearest non-self match exceeds the 

threshold, we determine that the discord found by our algorithm is an anomaly. Otherwise, 

our program will not flag this as an anomaly. This threshold is different for each patient and is 

found by training.  
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40-Second ECG Excerpt of Record 205
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Figure 8.  A Sample 40-Second ECG Excerpt from MIT-BIH Record 205 
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(a)  Normalized & Compressed Discord & Nearest Non-Self Match:  Distance = 7.843 
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(b) Discord & Nearest Non-Self Match in the 40-Second ECG Excerpt (the same one as in Figure 6) 

 

Figure 9.  Discord & Nearest Non-Self Match 
 

We select some subsets of data from each patient’s records as the training data. Each set of 

training data consists of 5 non-overlapping 40-second excerpts from the same patient, with at 

least one abnormal heartbeat (an abnormal ECG time series), and another 5 non-overlapping 

40-second excerpts from the same patient, which do not contain any abnormal heartbeats 

(normal ECG time series). Then, we apply the algorithm to each set of training data. Our 

conjecture is that the distance for the discord in an abnormal ECG time series should be larger 

than the one in a normal ECG time series. A threshold can then be easily found to allow us to 

conclude if abnormal heartbeats exist. We will discuss how this threshold is chosen for each 

patient record and the results of applying this threshold to the test data set in Section V. 

 



International Journal of Smart Home 

Vol. 2, No. 2, April, 2008 

 

 

122 

 

5 . EVALUATION RESULTS 
 

5.1 ECG Datasets 
 

Since our medical sensor boards are not ready yet, we use the ECG data from the MIT-

BIH Arrhythmia Database [3]. The database contains 48 half-hour excerpts of two-channel 

ambulatory ECG recordings, obtained from 47 patients studied by the BIH Arrhythmia 

Laboratory. According to [3],[10], twenty-three of these recordings were chosen at random 

from a set of 4000 24-hour ambulatory ECG recordings collected from a mixed population of 

inpatients (about 60%) and outpatients (about 40%) at Boston's Beth Israel Hospital; the other 

25 recordings were selected from the same set to include less common but clinically 

significant arrhythmias that would not be well-represented in a small random sample.  

 

According to [3],[10], the recordings were digitized at 360 samples per second per channel 

with 11-bit resolution over a 10 mV range. Two or more cardiologists independently 

annotated each record; disagreements were resolved to obtain the computer-readable 

reference annotations for each beat (approximately 110,000 annotations in all) included with 

the database. Out of the 48 half-hour excerpts of two-channel ambulatory ECG recordings, 

we randomly select 6 half-hour excerpts, which are numbered as records 106, 108, 114, 205, 

210, and 219 in the database. In each of the 6 half-hour ECG excerpts, we select 10 40-second 

excerpts, with 5 of them having abnormal heartbeats inside, and the other 5 having no 

abnormal heartbeats inside as the training set. We use the first channel ECG recordings, rather 

than use both channels’ ECG recordings. Later, we select another 10 40-second excerpts from 

the same patient records as the test dataset. 

 

5.2 Training & Testing  using Record 106 

The 10 40-second ECG excerpts chosen from record 106 for training purposes are listed in 

Table 1. The first 5 40-second excerpts contain at least one abnormal heartbeat, and the 

remaining 5 excerpts do not contain any anomaly. The 3
rd
 column indicates the location 

where the 1
st
 abnormal heartbeat starts. For example, the 1

st
 40-second ECG excerpt from 

record 106 starts from the 80
th
 second and ends at the 120

th
 second, with the 1

st
 abnormal 

heartbeat starting from 90.741
th
 second. 

 

 Using the BFDD scheme, the window is shifted by one ECG sample each time in 

both the inner and outer loops. The discord found in each of the 10 40-second ECG excerpts 

from record 106 is listed in Table 2(a). The last column tells if the heartbeat that the discord 

belongs to is an abnormal heartbeat. The distance column, which is next to that last column, 

tells the distance between a discord and its nearest non-self match. We can see that for 

excerpts 1-5, which do contain abnormal heartbeats, the reported distance between the located 

discord and its non-self match exceeds 6.5, and for excerpts 6-10, which do not contain 

abnormal heartbeats, the reported distance never exceeds 6.5, except excerpt 6. So we could 

set a distance threshold of 6.5, knowing that excerpt 6 will be misclassified as having an 

anomaly if similar data appear in the test set. 
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Table 1.  40-Second ECG Excerpts from MIT-BIH Record 106 
 

Index of excerpts start point - end point (second) 1
st
 anomaly’s location (second) 

1 80-120 90.74 

2 430-470 445.78 

3 700-740 710.89 

4 960-1000 965.98 

5 1040-1080 1048.75 

6 0-40 na 

7 200-240 na 

8 600-640 na 

9 1320-1360 na 

10 1380-1420 na 

  
 

Table 2(b) show the results of applying this threshold to the ten test datasets using the 

BFDD scheme. We see that with a threshold of 6.5, excerpts 1,3 and 5 will not be classified 

as abnormal and except 10 will be classified as abnormal. So, our accuracy is only 60% (with 

30% false negative and 10% false positive) using the BFDD scheme. 
 

Table 2(a).  Discords from the training set of MIT-BIH Record 106 using BFDD 

scheme 

index of 
excerpts 

start point 
- end point 
(second) 

1st 
anomaly’s 
location 
(second) 

discord's 
location 
(second) 

nearest non-self 
match's location 

(second) 

distance 
between discord 
& nearest non-

self match 

is the 
discord an 
anomaly in 

reality? 

1 80-120 90.741 86.611 80.917 7.21 No 

2 430-470 445.783 440.611 467.917 6.56 No 

3 700-740 710.886 728.25 731.222 7.14 Yes 

4 960-1000 965.98 985.361 968.528 6.71 Yes 

5 1040-1080 1048.75 1051.944 1056.861 6.78 Yes 

6 0-40 na na Na 6.93 Na 

7 200-240 na na Na 3.32 Na 

8 600-640 na na Na 6.16 Na 

9 1320-1360 na na Na 3.32 Na 

10 1380-1420 na na Na 5.00 Na 

  
 

Table 2(b).  Discords  from  the test set of MIT-BIH Record 106 using BFDD scheme 

index of 
excerpts 

start point 
- end point 
(second) 

1st 
anomaly’s 
location 
(second) 

discord's 
location 
(second) 

nearest non-self 
match's location 

(second) 

distance 
between discord 
& nearest non-

self match 

is the 
discord an 
anomaly in 

reality? 

1 160-200 160.233 178.167 160.528 5.83 No 

2 900-940 902.436 900.972 921.944 7.0 No 

3 1200-1240 1203.213 1201.194 1207.25 5.92 Yes 

4 1420-1460 1435.497 1421.639 1446.694 6.86 Yes 

5 1600-1640 1614.7 1637.139 1627.222 5.0 Yes 

6 270-310 na na Na 4.36 Na 

7 320-360 na na Na 4.12 Na 

8 380-420 na na Na 6.40 Na 

9 500-540 na na Na 4.58 Na 

10 560-600 na na Na 6.71 Na 
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Next, we train the AWDD scheme using the same training dataset. Table 3(a) shows the 

discord found in each of the 10 40-second ECG excerpts from the training set of patient 

record 106. We can see that for excerpts 1-5, which do contain abnormal heartbeats, their 

distance exceeds 2, and for excerpts 6-10, which do not contain abnormal heartbeats, their 

distance never exceeds 2. Thus, we could set a distance threshold of 2. If the distance between 

a discord and its nearest non-self match exceeds 2, we will declare the discovered discord as 

an anomaly and a cardiologist needs to examine the patient’s time series.  

 
Table 3(a).  Discords from the training set of MIT-BIH Record 106 using AWDD scheme 

index of 
excerpts 

start point 
- end point 
(second) 

1st 
anomaly’s 
location 
(second) 

discord's 
location 
(second) 

nearest non-self 
match's location 

(second) 

distance 
between discord 
& nearest non-

self match 

is the 
discord an 
anomaly in 

reality? 

1 80-120 90.741 116.675 96.828 3.17 Yes 

2 430-470 445.783 452.653 446.261 2.13 Yes 

3 700-740 710.886 725.464 729.858 20.85 Yes 

4 960-1000 965.98 970.131 973.117 9.38 Yes 

5 1040-1080 1048.75 1057.783 1043.897 7.41 Yes 

6 0-40 na na na 1.36 na 

7 200-240 na na na 0 na 

8 600-640 na na na 1.49 na 

9 1320-1360 na na na 1.38 na 

10 1380-1420 na na na 0 na 

  
In the test set shown in Table 3(b), all of the excerpts 1-5 have abnormal heartbeats. None 

of the excerpts 6-10 contain abnormal heartbeats. The results indicate that we can identify 

abnormality in excerpts 1-5 since the reported discord distance is greater than the threshold of 

2 (which is chosen based on the training set). For excerpts 6-10 with normal heartbeats, only 

except 8, will report a discord distance which is slightly larger than the threshold of 2. Thus, 

we get an accuracy of 90% on this testing dataset using our adaptive window based discord 

discovery scheme.   The false positive rate is 10%. 

 

Table 3(b). Discords from the test set of  MIT-BIH Record 106 using AWDD scheme 

index of 
excerpts 

start point 
- end point 
(second) 

1st 
anomaly’s 
location 
(second) 

discord's 
location 
(second) 

nearest non-self 
match's location 

(second) 

distance 
between discord 
& nearest non-

self match 

is the 
discord an 
anomaly in 

reality? 

1 160-200 160.233 177.4 179.36 17.88 Yes 

2 900-940 902.436 914.467 916.017 8.72 Yes 

3 1200-1240 1203.213 1218.761 1220.578 9.9 Yes 

4 1420-1460 1435.497 1446.622 1459.036 9.15 Yes 

5 1600-1640 1614.7 1636.711 1625.739 2.9 Yes 

6 270-310 na na na 0 na 

7 320-360 na na na 0 na 

8 380-420 na na na 2.08 na 

9 500-540 na na na 0 na 

10 560-600 na na na 1.06 na 

  
 

5.3 Accuracy Comparison 
 

We repeatedly performed the above operations on 20 40-second excerpts selected from 

patient records 108, 114, 205, 210 and 219. Ten excerpts are used for training purposes and 

ten excerpts are used for testing purposes. The accuracies of the reported anomalies using the 
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BFDD and the AWDD schemes for the various patients are summarized in Table 4. In Table 

4, the first number is the accuracy, the second number is the false negative rate, and the third 

number is the false positive rate. A higher false positive rate than the false negative rate is 

acceptable since it pays to check the patient slightly more frequently than to miss checking 

abnormal heartbeat events. The results indicate that our AWDD scheme can detect 

abnormality better than the BFDD scheme. 

 

Table 4.  Accuracy Using BFDD vs. AWDD Schemes 

record 
accuracy using fixed 

window (%) 
accuracy using 

adaptive window (%) 

106 60 (30,10) 90 (0, 10) 

108 50 (10,40) 80 (10, 10) 

114 70 (10,20) 80 (0, 20) 

205 70 (30,0) 80 (10,10) 

210 70 (0,30) 90 (0, 10) 

219  40 (20, 40) 70 (30, 0) 

  
6. CONCLUSION 

In this paper, we have presented a high level overview of a sensor-based medical 

information system that we are building for a nursing home. We also describe the security 

solution that we adopt in our system. Our solution only allows sensors to communicate with 

base stations and all users’ queries are authenticated and routed via the base stations. In 

addition, we describe an adaptive window-based discord discovery (AWDD) scheme for 

detecting abnormal patterns in the heartbeat related time series. Our scheme is motivated by 

the BFDD scheme proposed in [4] but we use adaptive rather than fixed windows. Our 

AWDD scheme uses a simple re-sampling method to compare two subsequences that are of 

different lengths. We apply both the BFDD and the ADWW schemes to ten 40-seconds 

excerpts of six patient records from the MIT-BH arrhythmia database. Our results show that 

the enhanced algorithm can achieve better accuracy in locating anomalies in the heartbeat 

time series of the patients. 

 

We are currently redesigning the Code-Blue mote-based medical sensors designed by 

Harvard [2] because the operational amplifier chip used in the original design is phased out 

by Texas Instrument. Once we successfully build our new ECG sensors, we will collect 

heartbeat data from several volunteers. Then, we will apply the AWDD scheme to these more 

noisy heartbeat sensor data. We also hope to analyze the sensor data collected from pulse 

oximeters using the AWDD scheme to see if it is equally effective in detecting anomalies in 

time series of oxygen saturation readings. In addition, we intend to optimize this algorithm so 

that it can be run on the mote. Software to display excerpts of medical sensor data with 

anomalies on PDAs will also be developed. In addition, we intend to investigate if the server 

platform designed for the I-living [15] can be tailed to our needs. 
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