
International Journal of Smart Home

Vol. 2, No. 1, January, 2008

15

 Formal Mirror Models: an Approach to Just-in-Time Reasoning for

Device Ecologies

Seng W. Loke,1 Sucha Smanchat,2 Sea Ling,3 Maria Indrawan3
1La Trobe University, Department of Computer Science and Computer Engineering,

Australia
2
Faculty of Information Technology, King Mongkut's Institute of Technology North

Bangkok, Thailand
3
Monash University, Faculty of Information Technology, Australia

s.loke@latrobe.edu.au, ssmanchat@acm.org, Chris.Ling@infotech.monash.edu.au,

Maria.Indrawan@infotech.monash.edu.au

Abstract

Pervasive computing calls for new ways of thinking about software and new ways of

applying software development techniques. In pervasive computing environments, users will

need to interact with collections of devices surrounding them (such as the “system” of smart

devices in a user’s home), which we metaphorically term device ecologies. A user can

interact with these devices with embedded software and hardware, either directly via the

device’s own interface, or automated through scripts executed by a central coordinator. For

the latter, we employ a workflow abstraction for the collective operation of devices, which we

call decoflow. While executable formal models are typically used at specification time, we

maintain and use such models, calling them mirror models, to record the on-going states of

devices, their relationships, and the effects that such devices have on the environment. Users

effectively update a mirror model of the devices s/he interacts with. The model can be used to

predict the effects of decoflows just before execution. Generalizing from mirror models for

device ecologies, we propose the novel paradigm of continually updated mirror models for

on-going tracking and reasoning about pervasive computing systems which cohabitates with

the user.

1. Introduction

Living spaces contain an increasing number of electronic appliances and devices of

different form factors. Everyday objects might also be embedded with computers and sensors.

These appliances can interact with each other, as well as with their environment. The

American Heritage Dictionary defines the word “ecology” as “the relationship between

organisms and their environment.” We perceive the above mentioned developments as

yielding a computing platform of the 21st century that takes the form of device ecologies

comprising collections of devices (in the environment and on users) interacting

synergistically with one another, with users, and with Internet resources, undergirded by

appropriate software and communication infrastructures that range from Internet-scale to very

short range wireless networks [1]. Elsewhere, collections of devices have been termed device

ensembles [5].

For example, consider a bedroom environment. When the alarm clock rings, the light will

be automatically switched on and the heater automatically adjusts the temperature settings.

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

16

However, one would like to reason with the effects on the environment which the operation

of these devices may have, such as whether a “comfortable” environment will result for the

user. For example, a device ecology can be designed to monitor and control the brightness

and temperature level in the house to satisfy user’s comfort specifications. The automation of

household activities requires the clear modeling of the interactions among the devices and

their environment. Since it is important in the device ecology to model the sequence of the

devices’ interaction, we investigate a workflow based model as an appropriate choice in

modeling the interactions [1]. A mechanism to control the device operations and the

interactions among devices is called a device ecology workflow, or decoflow for short. Such a

workflow can be executed by a workflow engine (which we call DecoFlow Engine) which

receives a specification of the workflow from the user and then executes it by issuing

commands to devices.

The user can interact with a collection of devices as mediated by the DecoFlow Engine in

four stages, as outlined in Figure 1: (1) specify the workflow, (2) do a what-if analysis by

simulating execution of the workflow, (3) after the analysis, either (3.1) or (3.2) is carried

out, depending on whether the user wishes to modify the workflow or to execute it, and (4)

the workflow is executed, which may result in feedback to the user (4.1) or the workflow

might be interrupted by the user or due to errors (4.2).

Fig. 1. Interaction model of user with DecoFlow Engine

Alternatively, the devices mentioned above can be operated directly by the user (e.g., the user

switches off the alarm clock).

There needs to be some means to (i) keep track of the states of the devices (i.e., observable

states) and (ii) predict the effects of a decoflow before execution (e.g., for safety reasons, user

requirements, or to estimate the resource consumption of a decoflow). We propose the use of

mirror models for this purpose. Figure 2 illustrates the devices and their mirror models. The

device models are updated when the user operates directly on the device or as a result of a

decoflow execution which changes the states of devices. The operation of the devices in a

device ecology might have a direct effect on the user’s environment. The environmental

effect, in particular within the context of creating a “comfortable” user environment, can be

characterized using a set of variables, such as brightness level, noise level, and temperature

level.

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

17

Fig. 2. Mirror models for devices in the real world.

We use executable formal models as the mirror model in order to conveniently reason with

the mirror models and use the mirror models in order to predict the effects of decoflows.

Based on the mirror model, one could simulate the execution of a decoflow before actually

executing the decoflow to see what environmental effects a decoflow is likely to yield, or the

simulation can happen concurrently with the execution of the decoflow but with several steps

ahead at each point in time.

For our executable formal models, we require a formalism with the following properties:

a. modular: a full specification being composable from disparate specifications, enabling

our model to be modifiable, extensible and scalable as new devices are added or

removed;

b. has well-defined formal properties for representing state and state transitions, and

concurreny, with state reachability analysis,

c. well-known and comes with tools for simulation (so that we can leverage on existing

tools), and

d. easy to understand semantics and can be depicted visually.

A number of formalisms can satisfy the above properties, including process-calculi, and Petri

Nets.

While any formal model with the above properties can be employed, we illustrate our

approach using a modular Petri Net model of decoflow, device behaviours and environmental

effects, such models being intuitive, graphical (visual), formal yet executable, and

compositional (the reader is referred to [2,3] for more information on Petri nets). Petri nets

are also more general than finite state machines, enabling concurrency to be modeled if

needed.
1
 In the rest of this paper, we validate our approach by

1 We note that the metaphor of workflow is useful here since the same workflow can be viewed using

different formalisms or abstractions suited for different purposes: the user can specify a decoflow using a

graphical tool (with diagrams as Figure 4) or English like scripts such as the following:

(in parallel turn on lights and turn on heater) then show news on tv then raise curtain

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

18

i). demonstrating how the modular Petri net formalism enables different aspects of devices to

be captured independently at first, and later linked, and

ii). providing a tool to enable simulation-based analysis of decoflow behaviours, prior to their

actual execution.

2. Background

2.1. Architectural Overview

The analysis of workflows is done by a component of the DecoFlow Engine as depicted in

Figure 3. The user composes workflows and requires them to be analyzed before execution.

Overall execution is managed by the Decoflow Manager which initiates conversations with

one or more devices at a time, such conversations being managed by the Device

Conversations Manager. The rest of this paper focuses on the decoflow analysis component,

whose outcome is a validated decoflow. We also note that environmental sensors are attached

to the DecoFlow Engine which provides actual initial conditions for decoflow analysis.

Fig. 3. Components of the DecoFlow Engine

2.2. Decoflow Representation and Example

A decoflow describes the interactions and tasks to be performed on devices, from the

perspective of a central coordinating engine. Consider a decoflow implementing a wakeup

routine which is adapted from [1]. The scenario comprises six concurrent tasks: opening

window, turning on the TV and adjusting the volume, raising curtain, turning on heater and

increasing the temperature setting, and switching on the bedroom light and bathroom light

(see figure 5 (box diagram view)). In Figure 5, once the wakeup notice is received, the six

tasks are executed concurrently. After all tasks are completed the wakeup routine is

considered completed. This scenario involves five types of device: window, TV, curtain,

heater, and light. There are six instances of devices: two instances of light (bedroom light and

bathroom light), and one instance for each of the other device types. There are some

and then such a script or graph is translated into a BPEL XML document and into a Petri Net for analysis. We do not
describe in detail the English like language or the graphical BPEL tools in this paper.

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

19

assumptions made to this scenario to clarify the environmental effect of the devices. The

tasks “Open Window”, “Turn on TV”, “Raise Curtain”, “Switch on Bedroom Light”, and

“Switch on Bathroom Light” are assumed to affect the brightness level. The task “Increase

Volume” is assumed to affect the noise level and the task “Turn On Heater” and “Increase

Temperature Setting” are assumed to affect the temperature level.

In our work [1], we model such an example in terms of workflow or business process. At

the user level, we use a high-level, English-like language to represent workflow and at the

low level, we use BPEL4WS [10]. The specification can then be executed by a BPEL like

engine. Our modelling of devices as a collection of Web services implies issuing commands

to devices is invoking calls on Web services. We model the observable and controllable

aspects of devices as Web services as done in [11]. Such device modeling is not inconsistent

with emerging standard models for appliances such as the AHAM Appliance Models,
2
 where

each appliance (such as clothes washer, refrigerator, over, room air conditioner, etc) is

modelled as a collection of objects categorized according to subsystems. We note that there

will be aspects of the device which are not exposed as Web services. Such an approach also

enables uniform modeling of devices and Internet resources in the same workflow (e.g., a

decoflow can not only involve tasks among devices (or invocations of Web services on

devices) but also invocations of Web services over the greater Internet to check the weather

report or book a hotel room). We can then write a decoflow which downloads the weather

report and show it on the television, for instance, or make a purchase for eggs over the

Internet (with appropriate authorization) after asking the fridge and discovering no eggs left.

BPEL4WS is expressive, but is not by itself amenable to formal analysis. Petri net

semantics has been given to BPEL4WS [12], which provides a means to translate a

BPEL4WS specification to a Petri net for analysis using Petri net tools [2].

3. A Mirror Model for Device Ecologies: an Example Using Petri Nets

The decoflow, the devices involved in the decoflow and their environmental effects can be

modeled as Petri Nets. Three Petri Nets are shown for comfort level analysis. The DecoFlow

Net is the Petri Net that represents the decoflow. The Device Net is the Petri Net that models

observable behaviors of the devices in a decoflow [8]. In the Device Ecology project, we use

RENEW as our modeling tool for Petri Net. RENEW [6,9] is developed based on one type of

Petri Net called Reference Net [7] which enables composition of a set of separate Petri Nets

via a downlink and uplink synchronization mechanism. In RENEW, the synchronous

communication is achieved by using the idea of system-net and object-net from the Reference

Net. In a Reference Net, a system-net represents the main workflow and the object-net

represents sub-workflows. For the system-net and object-net to communicate, two

communication channels can be used, downlink and uplink. Downlink is the inscription at the

transition where there is the need to reference to other net instance i.e. system-net or object-

net. Uplink is the inscription at the transition which serves the call from the downlink. An

example is figure 4.

2 AHAM. Connected Home Appliances – Object Modelling, AHAM CHA-1-2002, 2002.

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

20

Fig. 4. Example of Synchronous Communication in RENEW

The Effect Net is the Petri Net that models each environment variable that characterizes the

environmental effect of the devices. The requirement of the Petri Nets modeling for comfort

level analysis in the Device Ecology is that the DecoFlow Net, the Device Nets, and the

Effect Nets can be analysed at run-time. Thus, users, or the device ecology designer, can run

the Petri Net simulation to predict environmental effects before (or while) a decoflow is

(being) executed. While we do not show how in this paper, for an application at hand, the

state and the current values of tokens in the DecoFlow Net, the Device Nets, and the Effect

Nets can be captured accurately at run-time by interrogating the devices and appropriate

sensors. We use synchronous communication among the DecoFlow Net, the Device Nets, and

the Effect Nets in our model, as modeled using uplinks and downlinks in RENEW.

In the device ecology simulation, the DecoFlow acts as the system-net. The Device Net and

the Effect Net act as the object-nets. The execution of the decoflow as system-net influences

the firing of the object-nets representing the devices and the environmental effects. The

system-net representing the decoflow is inscribed with the downlinks which call the uplinks

inscribed in the object-net representing the devices and the environmental effects. By the use

of synchronization links, the environmental effect of the execution of DecoFlow Net can be

synchronized through to Effect Net in a single firing. In other words, the firing of the

transition in the DecoFlow Net, the firing of transition in Device Net, and the firing of the

transition in Effect Net happen synchronously. Therefore, run-time comfort level analysis can

be performed correctly given that, in the real world, environmental effects by device

operations would happen immediately.

Initialization Petri Net. In RENEW, which is based on the reference nets concept, in order

to use or refer to a Petri Net, an instance of that Petri Net must first be created. As for comfort

level analysis in Device Ecology, instances of the DecoFlow Net, Device Nets, and Effect

Nets must be created and made known to each that needs to send messages to or to

communicate with [6, 7]. Figure 5(a) shows the Initialisation Petri Net that is used to create

the instances of Petri Net used in the comfort level analysis. From the initialisation in figure

5(a), all the Petri Nets for the comfort level analysis are created. The DecoFlow Net sc1 has

the references of all the Device Net instances with the use of the 5-tupled token “[tvn, ln, wn,

hn, cn]” passed as argument of the synchronous channel init. Each Device Net instance also

has the references of all the Effect Net instances representing the environment variables

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

21

which are affected by the device represented by that Device Net by the use of argument of the

synchronous channel init. Below, we describe how to model the decoflow given as a box

diagram in figure 5(b) with a Petri Net.

DecoFlow Net. The DecoFlow Net is the Petri Net that models a decoflow. A task in the

decoFlow is modelled as a single transition and the concurrent execution is modelled by

AND-Split and AND-Join [4]. The additional transition “Init” at the top in figure 5(b) is

created to receive the call from the Initialization Petri Net through the synchronous channel

init with the devices as argument to initialize the DecoFlow Net. The argument devices is the

5-tupled token which contains the instances of Device Nets initialized in the Initialization

Petri Net. Each transition that represents a task in Device Ecology Workflow is inscribed with

the downlink using the Device Net instance in the 5-tuple token to communicate with the

Device Net (to change the state of the device). The downlinks at these transitions must match

with the uplink of the synchronous channel in the Device Net that they need to communicate

with [6, 9].

(a) Initialization Petri Net

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

22

(b) DecoFlow Net which models a decoflow (wakeup routine)

Fig. 5(a) and (b) DecoFlow representation

Device Net. Device Net models the observable behavior of the device involved in the

decoflow – we do not model the details of internal device states. Each Device Net represents

a device type; a device (or an instance of a device type) is represented as a token in the

Device Net. Each place in the Device Net represents the observable state of a device and each

transition represents the change of observable state of the device. The initialization transition

“Init” at the top of each Device Net in figure 6(a)-(e) is added to receive the initialization

message from the Initialization Petri Net. In the Device Net Light, ebn, or the instance of the

Effect Net Brightness which represents the environment variable that is affected by the device

Light, is passed in as the argument from the Initialization Petri Net. The light can be in two

states, “Light off” and “Light on”, and can be switched on and off. Three 3-tupled tokens

indicate that there are three light instances (though only two are used in the DecoFlow Net in

figure 5(b)). If the device would affect more than one environment variable, the 3-tupled

token can be extended to 4-tupled or more to accommodate the Effect Net instances. The

transitions “Switch on” and “Switch off” are inscribed with the downlink using the instance

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

23

of the Effect Net Brightness to communicate about the effects of the operations of the device.

The guard conditions are also inscribed to determine which light instance to be switched on

or off.

Effect Net. Effect Nets models (figure 6(f)-(h)) the environment variables. Each Effect Net

receives the messages from Device Nets to adjust the value of each environment variable.

There are only two transitions “Increase” and “Decrease” in each Effect Net to increase and

decrease the level of each effect.

These two transitions are also inscribed with the uplinks of the synchronous channel to

receive the messages from the downlink inscribed at the transitions in the Device Nets (see

figure 6). The only Petri Net place in Effect Net is given the alias as “Effect Place”; it holds

the token used in the Effect Net. The token used in the Effect Nets is simply an integer which

is initialised when the Effect Nets are created by the Initialization Petri Net as the initial

marking. This integer value is increased or decreased as the Effect Net receives messages

from Device Nets.

(a) Device Net for Lights

(b) Device Net for TVs

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

24

(c) Device Net for Windows

(d) Device Net for Curtains

(e) Device Net for Heaters

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

25

(f) Effect Net for Brightness

(g) Effect Net for Noise

(h) Effect Net for Temperature

Fig. 6(a)-(e). Device Nets for five device types, (f)-(h). The Effect Nets for three
environment parameters.

4. Reasoning With Decoflows: an Example with Comfort Levels

With the DecoFlow Net, Device Nets, and Effect Nets, the environmental effect of the

execution of the tasks in the decoflow can be represented in the Effect Nets. Effect Nets can

receive messages to increase or decrease the environmental effects from the Device Ecology

Workflow Net indirectly via the Device Nets by the mechanism of the downlinks and uplinks

of the synchronous channels. Since the comfort level can be characterised as a set of

environmental effects and each is in turn represented as the Effect Net, the comfort level

analysis can be performed on these Effect Nets.

Since the marking at the Effect Place (the specific Petri Net place that is marked with the

integer representing the value of the environmental effect) is the integer that holds the value

of the environmental effect, the comfort level analysis can be performed by applying the

reachability concept of Petri Nets on the Effect Nets [2]. Reachability of a Petri Net indicates

whether a certain state of Petri Net is reachable in firings. The state of a Petri Net is

represented by the position of tokens (or marking) present in the Petri Nets. State B is

reachable from state A if there is a sequence of firing that moves the tokens whose positions

represent state A to the new positions that represent state B. For the Effect Nets, the

reachability should take into account the value of the token as well; the state of Effect Net is

represented by the value of the integer token at the Effect Place [2]. The current comfort level

from (partial) execution of a decoflow so far (and also, the desired comfort level) is

characterised as a set of integers, each representing the value of an environment variable. The

desired comfort level is satisfied when the value of the token in the Effect Place of every

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

26

Effect Net is equal to the value of the set of integers that characterize the desired comfort

level. Schematically, the comfort level analysis is done as in Figure 7(a).

Figure 7(b) shows the interface to the simulator build on top of RENEW. Trace messages

from RENEW are analysed to detect the changes in the value of the token in the Effect Places

of the Effect Nets. In figure 7(a), the trace messages are analysed and the current values of

the environment variables are initialized (e.g., 6 for Brightness, 5 for Noise, and 6 for

Temperature) – which can be obtained via sensors or interrogating devices.

(a) The analysis integrates multiple nets.

(b) Interface to the Petri Net decoflow simulation

Fig. 7. Analysis of decoflows

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

27

The summary text area displays the summary of the execution of the Decoflow Net. The

“Comfort Level” part displays the current value of each environment variable and the relative

changes compared to the initial values. The three text fields at the bottom left part are used

for specifying the desired comfort level (in terms of values for brightness, noise and

temperature) to be compared with the comfort levels resulting from the decoflow execution as

seen under the “Comfort Level” part. The value of each environment variable can be set

between -255 and 255 (inclusive). The summary of the comfort level analysis is the

comparison of the value of the environment variable representing current comfort level and

the desired comfort level. If both set of values are equal then the message will show that the

desired comfort level is satisfied, otherwise the message will show that the desired comfort

level is not satisfied as in figure 7(b).

5. Related Work
There has been much work on building the networking and integrative infrastructure for

such devices, within the home, the office, and other environments and linking them to the

global Internet. For example, UPnP
3
 and Jini

4
 provide infrastructure for devices to be inter-

connected, find each other, and utilize each other's capabilities.

Getting devices connected via Web services is the aim of the proposed Device Profile for

Web Services (DPWS)
5
 which can be viewed as the next major version of UPnP (UPnP v2)

with closer alignment to and taking advantage of standardized Web Service protocols. The

various prototypes of DPWS led to embedded devices hosting Web services. Hence, the idea

of being able to “talk to” and control devices by invoking their Web services is not new and

we can expect to see more advanced versions of these in time to come and more of such

devices. The gap that this paper fills is, given a collection of such devices, each exposing

Web services, how one can utilize a mirror model for just-before-execution understanding

(via simulation) of a decoflow.

However, there has been little work on specifying at a high level of abstraction (and

representing this specification explicitly) how such devices would work together at the user-

task or application level, and how such work can be managed. Our earlier work in [1]

introduced device ecology workflows as a metaphor for thinking about how collections of

these devices (or devices in a device ecology) can work together to accomplish a purpose.

VRDK [14] is a graphical tool for programming home automation tasks. It also uses a notion

of processes for device control. With underlying workflow notions, VRDK scripts can be

programmed to accomplish tasks involving devices. The user drags and drops devices to

compose event-driven processes (e.g., wait for a movement or certain time before turning the

lights on). A code generator transform scripts to executable code. VRDK also employs a

location model to position devices. Our work employs a well-known formal model to mirror

executable decoflow programs in order to reason about the decoflow before execution or

during execution.

In [15], UPnP itself was formalized using an abstract state machine model in AsmL. The

aim of the formalization was to resolve ambiguities, incompleteness, loose ends, or

inconsistencies. Key entities used are agent, communicator, control point and device, and an

application is modelled as combinations of these key entities. UPnP communication protocols

are formalized in the paper. Our work formalizes device ecology workflows and device

3 http://www.upnp.org/
4 http://www.sun.com/software/jini/
5 http://specs.xmlsoap.org/ws/2005/05/devprof/devicesprofile.pdf

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

28

models via Petri Nets to enable practical reasoning with the whole system, before or after

runtime.

Work by Bellotti and Edwards [16] has noted the importance of technology being

intelligible and our work, while not specifically aiming to tackle all those issues (but to

provide decoflow analysis prior to execution), does help in the user understanding and

making sense of the effects of a decoflow (which they have composed themselves or pre-

programmed) before it is even executed. Indeed, making sense of script written to automate a

home or certain activities within a home is important. With our formal approach, one could

even answer questions regarding whether a particular decoflow can accomplish a given effect

(i.e., the query is translated in our model into a reachability analysis - is this particular state

reachable?). Our approach helps in reasoning about a decoflow before execution or midway

during its execution (to understand the effects of the remaining part of the decoflow to be

executed).

Instead of scripts which are centrally executed, one can also specify possible device-to-

device interactions separately as recipes [17]. Such pairwise or n-wise recipes for how two

devices can interact are useful though they might not provide a bird’s eye-view that a

centrally controlled approach can provide.

6. Conclusion

We have proposed an approach to reason with decoflow effects on a formal basis,

articulating mirror models as run-time counterparts (in the sense of [13]) of device ecologies

and their immediate environment parameters, and showed that this provides the advantage of

reasoning with device behaviours. A user may compose a decoflow, which is then translated

into a decoflow net and reasoned about in combination with current (up-to-date) device and

effect nets, at any time just when they are about to be executed.

Our notion of decoflow was inspired in part by the notion of “automation scripts” of the

late Michael Dertouzos.
6
 We are also aware of other programmatic solutions to device

collective behaviour such as Jini,7 UPnP8 and AutoHan.9 Users might compose decoflows

using some high level (e.g., graphical or speech based) tools to manage the devices at home,

in public spaces, in offices, in museums, in gardens, or in factories, and mirror models for the

device ecologies maintained in these different places enable reasoning any time users need to

compose and run decoflows that meet requirements, not only comfort levels but perhaps also

safety levels, noise levels, energy consumption levels, water consumption levels, and

engagement levels (e.g., entertainment applications).

We illustrated our ideas using modular Petri Nets as mirror models of device ecologies.

The Petri Net models can be fed with environmental parameters obtained via real sensors

and/or interrogating devices for their observable states (as noted in Figure 3). The Petri net

models are scalable as increasing the number of devices results in more tokens and not more

nets (e.g., the Device Net for Lights is for all three lights, rather than for only one), and can

be linked with newly introduced nets for new devices or effects. Nuances of concurrent

actions and effects are also captured.

6 In the book, “The Unfinished Revolution: Human-Centered Computers and What They Can Do For Us”,

Harper Collins, 2001.
7 http://www.sun.com/software/jini/
8 http://www.upnp.org/
9 http://www.cl.cam.ac.uk/Research/SRG/HAN/AutoHAN/

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

29

In summary, we see that

(i) an explicit and formal model of the on-going devices’ collective behaviour is

useful, and this can be done via a combined collection of executable formal models

of devices’ observable behaviours - these models can be updated when devices

operate either due to the user’s action directly on the device or as a result of a

decoflow execution, and new devices added will be modeled by adding device nets

to the existing model, and

(ii) predicting and validating (via simulation) end-user programs before execution is

useful for the user to understand the effects of his/her programs (even if this cannot

be done perfectly, due to uncertainties at run-time – the DecoFlow Engine still

needs to be able to deal with run-time exceptions), and sensing can provide initial

conditions for prediction, as real-time inputs into the formal executable models

maintained throughout the lifetime of the devices.

Our approach has not incorporated probabilities measures of certain events occurring that

might affect decoflow execution (e.g., the user’s direct intervention with a device might occur

with a given probability), though the theory on Petri Nets supports this (e.g., stochastic Petri

Nets). One reason is due to the engineering effort to provide probabilities in this setting as

well as the arbitrary nature in which probabilities in this case might be estimated. Such issues

can be explored for future work.

Also, the GUI for the system we have presented is a prototype and more work can be done

to provide a more end-user friendly view of results – the end-user does not even need to know

that the underlying model is based on Petri Nets.

Finally, we note that our approach of using formal models to accompany home automation

scripts is novel, and general in that it is

(i) applicable to automation in other environments such factories and vehicles, and

(ii) not restricted to the use of Petri nets alone or decoflows, but amenable to other

formal models and home automation in other scripting languages, as long as a

mapping exists between the constructs of the scripting language and the formal

model.

Acknowledgements. We acknowledge the Australian Research Council for support of the

Device Ecology Project under the ARC Discovery Grant scheme.

7. References

[1] S. W. Loke, "Service-Oriented Device Ecology Workflows," Proceedings of the International Conference on

Service-Oriented Computing, pp. 559 - 574, 2003, Springer-Verlag.
[2] T. Murata, "Petri Nets: Properties, Analysis and Applications," Proceedings of the IEEE, vol. 77, pp. 541-580,

1989.
[3] High-level Petri Nets - Concepts, Definitions, and Graphical Notation, Final Draft International Standard

ISO/IEC 15909, Version 4.7.1, 2000, http://www.petrinets.info/standard.php.
[4] W. M. P. v. d. Aalst, "The Application of Petri Nets to Workflow Management," The Journal of Circuits,

Systems and Computers, vol. 8, pp. 21-66, 1998.
[5] B.N. Schilit and U. Sengupta. Device Ensembles. IEEE Computer, pp. 56- 64, December, 2004.
[6] O. Kummer, F. Wienberg, and M. Duvigneau, Renew, Version 2.0.1, 2004, www.renew.de.
[7] W. M. P. v. d. Aalst, D. Moldt, R. Valk, and F. Wienberg, "Enacting Interorganizational Workflows using

Nets in Nets," Proceedings of the 1999 Workflow Management Conference, pp. 117-136, Germany,
November, 1999.

[8] S. W. Loke and S. Ling, "Analyzing Observable Behaviours of Device Ecology Workflows," Proceedings of
the 6th International Conference on Enterprise Information Systems (ICEIS2004), pp. 78-83, Porto, Portugal,
2004.

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

30

[9] O. Kummer, F. Wienberg, and M. Duvigneau, Renew - User Guide, Release 2.0.1, 2004,
http://www.informatik.uni-hamburg.de/TGI/renew/renew.pdf.

[10] Microsoft, IBM, Siebel, BEA, and SAP (2003). Business Process Execution Language for Web Services
Version 1.1. http://www-106.ibm.com/developerworks/library/ws-bpel/.

[11] K. Matsuura, T. Hara, A. Watanabe, and T. Nakajima. A New Architecture for Home Computing, In
Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems
(WSTFES’03), pp. 71-74, Japan, May 2003.

[12] K. Schmidt and C. Stahl (2004). “A Petri net Semantic for BPEL4WS – Validation and Application”.
Proceedings of the 11th Workshop on Algorithms and Tools for Petri Nets (AWPN), pp. 1 – 6, Paderborn,
Germany, 2004.

[13] K. Römer, F. Mattern, T. Dübendorfer, and J. Senn Infrastructure for Virtual Counterparts of Real World
Objects. Technical Report ETHZ, 2002. http://mics.epfl.ch/getDoc.php?docid=253&docnum=1

[14] M. Knoll, T. Weis, A. Ulbrich, and A. Brandle. Scripting Your Home. In Proceedings of LoCA, Lecture
Notes in Computer Science 3987, pp. 274-288, 2006.

[15] U. Glasser, Y. Gurevich, N. Veanes. High-Level Executable Specification of the Universal Plug and Play
Architecture. In Proceedings of the 35th Annual Hawaii International Conference on System Sciences
(HICSSS), vol 9., 2002.

[16] V. Bellotti and K. Edwards, "Intelligibility and accountability: Human Considerations in Context-Aware
Systems," Human-Computer Interaction, vol. 16, no. 2-4, pp. 193-212, 2001.

[17] M. Newman, T. Smith, and W.N. Schilit. Recipes for Digital Living. IEEE Computer, vol 39, no. 2, pp. 104-
106, 2006.

Authors

Dr. Seng Wai Loke is a Senior Lecturer at the Department of Computer

Science and Computer Engineering at La Trobe University. He is the

author of “Context-Aware Pervasive Systems: Architectures for a New

Breed of Applications” (December 2006). His research interests are in

pervasive computing including smart homes and device ecologies.

Sucha Smanchat is a lecturer at the Faculty of Information

Technology, King Mongkut's Institute of Technology North

Bangkok, Thailand. He completed his Master of Information

Technology at Monash University, Australia.

Dr. Chris Ling is a lecturer at the Caulfield School of Information

Technology in Monash University. He completed his PhD in Petri Nets,

and works with Dr. Loke on the Device Ecology project.

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

31

Dr. Maria Indrawan is the Associate Head of School at the Caulfield

School of Information Technology in Monash University. Her research

interests include device ecologies and information retrieval.

International Journal of Smart Home

Vol. 2, No. 1, January, 2008

32

