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Abstract 
In a ubiquitous environment, the hardware resources are limited; thus, an appropriate 

resource management mechanism is required for guaranteeing its processing activity. 
However, most operating systems (OSs) lack an access control mechanism for CPU resources 
to guarantee satisfactory processing and to safeguard the system from malicious attacks that 
affect the CPU resources, resulting in denial of service (DoS). Access control is not intended 
for CPU resources, which are important for the execution of a program. As a result, OSs 
cannot control the usage ratio of CPU resources. In this paper, we propose an access control 
model for CPU resources based on an execution resource. The proposed model can control 
the usage ratio of CPU resources appropriately for each user and each program domain. 
This execution resource can be applied to mitigate DoS attacks. In order to evaluate the 
effectiveness of the proposed method, we describe the results of a basic performance 
experiment and a DoS simulation experiment employing the Apache web server. From the 
results, we show that the proposed method can mitigate DoS attacks and does not have bad 
effects upon the performance of a target service. 
 
1. Introduction 

With the spread of computers and the Internet, the number of reports on software attacks is 
increasing with time. The widespread use of automated attack tools and attacks against 
Internet-connected systems are common and therefore the number of attack incidents is also 
increasing [1]. In addition, denial-of-service (DoS) attacks are one of the serious problems in 
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computer systems. Therefore, various defense mechanisms against such attacks have been 
actively studied. 

A firewall blocks packets from incoming connections, but cannot evaluate the contents of 
“legitimate” packets. Besides, intrusion detection systems (IDS) [2], [3], [4] observe program 
executions and detect malicious behaviors of the program. The incidence of false negatives 
and false positives is not zero on IDS. Therefore the combination of a firewall and IDS is not 
sufficient to prevent attackers from attacking computers. 

In a ubiquitous environment, the hardware resources are limited and the processing must 
be performed with the limited hardware resources. Thus, an appropriate resource management 
mechanism is required for guaranteeing the processing ability of the environment. In 
particular, the CPU power in a ubiquitous environment is lower than that in other 
environments such as server systems and cluster systems. Therefore, the CPU time must be 
appropriately assigned to processes on the basis of their priority. However, most operating 
systems (OSs) do not have an access control mechanism for CPU resources to guarantee 
satisfactory processing and to safeguard from malicious attacks that affect the CPU resources, 
resulting in DoS.  

Access control is not intended for CPU resources, which are important resources for the 
execution of a program. As a result, such OSs cannot control the usage ratio of CPU resources. 
For example, a secure OS [5] employs mandatory access control (MAC) and role-based 
access control (RBAC) [6]. Even if the authority to control the usage ratio is assumed, the 
secure OS renders the range of influence a minimum by implementing the least privilege 
policy. However, access control is not intended for CPU resources. As a result, a secure OS is 
not able to prevent attackers from carrying out DoS attacks, which affects CPU resources. In 
general OSs, attacks can limit only the maximum CPU time for each process and not the 
proportion of CPU time among the processes.  

In an earlier study, we proposed an execution resource for regulating and guaranteeing the 
performance of processes [7], [8]. In this paper, we propose a new type of execution resource 
that controls the maximum extent of CPU usage for preventing abuse of CPU resources. In 
addition, we propose an access control model for CPU resources based on an execution 
resource. Each execution has a degree of CPU usage. The CPU time for the execution of a 
process is assigned by a scheduler according to the degree of CPU usage. 

The proposed model can control the usage ratio of CPU resources appropriately in each 
program domain. The proposed execution resource enables system administrators to control 
the maximum extent of CPU usage for each user and each program domain because the 
access control of CPU usage is performed in a similar manner as an object such as a file. In 
other words, this execution resource can be applied to mitigate DoS attacks. Finally, we 
describe the results of experiments employing the Apache web server. 
 
2. Related Work 

Most defense techniques against Internet-originated DoS attacks have targeted the 
transport and network layers of the TCP/IP protocol stack [9]. Our research focuses on 
the access control mechanism of and the rate limiting technique for CPU resources. 

In the past decade, resource accounting techniques and resource protection 
techniques for defending against DoS attacks have been proposed, and these techniques 
have been successfully utilized to counter DoS attacks. The Scout operating system has 
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an accounting mechanism for all the resources employed by each I/O path [10]. Scout 
also has a separate protection domain for each path. The present research focuses on the 
I/O paths and not on the access control of CPU resources. 

The resource control mechanism is implemented by the resource control lists (RCL) 
in Linux RK [11]. This mechanism involves the resource reserve function and rate 
limiting function for controlling the CPU time, and this mechanism controls a process 
as a unit of RCL and enforces the RCL rules to it. Thus, this mechanism cannot control 
the CPU time of users using the rate limiting function. 

Resource containers [12] have been proposed, and they can be used to account for 
and limit the usage of kernel memory. This container mechanism supports a multilevel 
scheduling policy; however, it only supports fixed-share scheduling and regular time-
shared scheduling. 

Execution resources with upper bounds are classified under resource accounting 
techniques [13]. The execution resource can control the maximum extent of CPU usage 
of programs for preventing abuse of CPU resources. The policy of rate limiting can be 
enforced for a CPU resource by using an access control mechanism for the execution 
resource. In addition, the proposed access control model can be applied to general OSs 
and secure OSs. 

 
 
3. Execution Resource 

In this section, we explain the concept of execution resource on the basis of the 
presentation in previous papers [7], [8].  

 

 

 

 

 

 

 

 

 

 

Figure 1. Change of scheduling queues 

 
3.1. Overview 

A process may be described as a unit of program execution in an existing OS, and it has a 
degree of CPU usage. For example, a priority is associated with each process in UNIX. We 
have separated the degree of CPU usage from a process. The degree of CPU usage has been 
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named execution resource. Therefore, only the execution resource involves the degree of CPU 
usage, and a process does not have a degree of CPU usage. Scheduling queues are shown in 
Figure 1. Prior to the introduction of the execution resources, processes are listed on a linked 
list on the basis of their priority. After the introduction of the execution resources, it is these 
execution resources that are maintained on the linked list on the basis of their priority. 
Processes are then linked to executions. A process can be executed by linking it to an 
execution. 

Figure 2 shows the relation between executions and processes. The execution manager 
points to an execution with the highest degree of CPU usage. All processes need to be linked 
to executions to be assigned a CPU time. The execution manager selects a process from the 
scheduling queues. When the state of a process is READY, it is linked to the execution with 
the highest priority. The amount of CPU time that is assigned to a process is proportional to 
the total amount of CPU usage time required for the executions linked to the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Relation between executions and processes 
 
3.2. Types of Execution Resources 

There are two types of execution resources. One is execution with performance and 
the other is execution with priority. 

 
 Execution with performance: Execution with performance includes a degree of CPU 

usage that indicates the proportion of bare processor performance. The bare processor 
performance can be defined as 100%. When a process is linked to an execution with n% 
performance, the assigned CPU time is n% of the bare processor performance. We 
named a unit of CPU usage as a “time slot.” We termed a group of time slots as a “time 
block.” Figure 3 shows the relation between time slots and a time block. An execution 
in which the degree of CPU usage is n% is assigned n% of the time slots in a time block. 
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Figure 3. Time slots and a time block 

Execution with priority: Execution with priority includes the degree of performance that 
indicates the priority. The execution manager assigns the execution with priority that has the 
highest priority to the processor. However, execution with performance takes precedence over 
execution with priority because the former is guaranteed an assigned CPU time. 

  
3.3. Hierarchical Execution Tree 

The structure of a process group is represented as a tree structure of executions because the 
relation between a process group and its processes is represented as a parent and a child. 
Figure 4 shows the relationships between a process group and executions. The node of an 
execution tree is called “directory execution” and it represents the degree of CPU usage for a 
process group. A leaf is called “leaf execution”; every leaf execution is linked to a process. 

The total assigned CPU time for leaf executions equals the assigned CPU time for the 
parent directory execution. The degree of CPU usage for leaf executions indicates the priority 
or a ratio (%) to assigned CPU time of parent directory execution. In the leaf execution, the 
ratio corresponds to the point where the parent directory execution is defined as 100%. The 
depth of an execution tree is greater than one. As a result, it is possible to create a process 
group within another process group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relationships between a process group and executions 
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Figure 5. Two process group executions 

Figure 5 shows a case where more than one execution is linked to a process group. When 
the second execution (B1a) is linked to a process group, leaf executions (D2b, E2b, F2b) have 
to be created and linked to each process (A, B, C) in the process group. As a result, each 
process within the process group is linked to two leaf executions. 

 
3.4. Operation Interface of Execution Resource 

We designed 8 operation interfaces for the execution resource for constructing an 
execution tree and controlling a program execution. Table 1 shows the interfaces 

Table 1. Operation Interfaces of the execution resource 
Form Contents of operation 
creat_execution( mips) Create the execution specified by mips and return the execution 

identifier execid. When mips is between 1 and 100 it signifies the 
performance regulation execution degree (as a percentage with the 
performance of the processor itself taken to be 100 percent), when it 
is 0 or negative is signifies the priority of the execution degree (the 
absolute value is the process priority). In this case the larger value 
signifies the higher priority. 

delete_execution(execid) Delete the execution execid. 
attach_execution(execid, pid) Associate the execution execid and the process pid. Here linking to 

an execution execid that is already associated with a process will 
result in an error. 

detach_execution(execid, pid) Remove the association between execution execid and process pid. 
wait_execution(pid, chan) Forbid the assignment of processor [time] to process pid and its 

associated execution[s]; this puts the process in the WAIT state. 
When pid is 0, the executions associated with the currently running 
process[es] are forbidden from having processor [time] assigned to 
them; this puts the process[es] in the WAIT state. chan is a channel 
identifier. 
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wakeup_execution(pid, chan) Make it possible to assign CPU time to the process pid and its 
associated executions; this puts the process in the READY state. 
When pid is 0, make it possible to assign CPU time to the 
executions that are associated with processes that have been 
forbidden the assignment of CPU time on channel chan; this puts 
the processes in the READY state. When chan is 0, it signifies all 
channels. 

dispatch(pid) Run process pid. 
control_execution(execid, 
mips) 

Change the execution degree of execid to mips. mips is interpreted 
as in creat_execution. 

 
 
4. Execution Resource with Upper Bound 
 
4.1. Mechanism of Rate Limiting Using Execution Resources 

With regard to the operation of an existing OS, based on the time-sharing technique, a 
process can use the CPU time according to its priority and without an upper bound. Therefore, 
the allocation of CPU time to other services is affected when two or more programs that 
demand infinite CPU time run simultaneously. In this case, the service performance is 
significantly decreased. 

To solve this problem, we propose an execution resource with an upper bound for the CPU 
usage ratio for preventing the abuse of the CPU resource. In this execution, the CPU time is 
allocated according to the priority until it reaches a specified ratio in a time slice. When it 
reaches the specified ratio, the state of a currently running process is changed to a WAIT state 
until the current time slice expires. Even if a process that is linked to an execution with an 
upper bound of the CPU usage ratio is affected by a malicious attacker, this system can 
prevent an attacker from using the CPU time. Moreover, the execution resource can be 
grouped with a user or a service. Therefore, the CPU usage ratio of a user or a service can be 
specified. As a result, the influence of a DoS attack can be controlled within the process 
group even if a child execution has been newly created because the execution belongs to the 
same group. 

As described in a previous paper [7], [8], we can guarantee the performance of important 
processes by using execution resources with a good performance. 

 
4.2. Advantages 

(1) The proposed technique can prevent the use of a CPU resource by DoS attacks 
by using an execution with an upper bound of the CPU time. 

(2) The CPU usage ratio that is employed by processes, users, and services can be 
controlled by using an access control mechanism for the execution resource. 

(3) A maximum CPU usage ratio can be configured for each user and each service. This 
mechanism can be used for the prevention of CPU abuse in a manner similar to the 
quota mechanism in a file system. 

 
5. Execution-Resource-Based Access Control Model for CPU Resource 
 
5.1. Access Control of Execution Resource 



International Journal of Smart Home 

Vol. 1, No. 2, July, 2007 

 

 

116 

A0

A1
Execution
for user

CPU

Execution
for program

B1 C1 ・・・

A2a A2b B2a

A3a A3b A3c

・・・ ・・・ C2a C2b ・・・

Process

A1A1 A2A2 A3A3 B1B1 C1C1 C2C2A4A4 ・・・・・・ ・・・

The execution resource model requires the operations of process creation, execution 
creation, and the linking of a process and an execution for executing a program. The purpose 
of this access control is to enforce the policy of rate limiting. Thus, an OS must check the 
policy before executing operations related to the setting or changing of the degree of CPU 
usage. Therefore, in order to enforce an access policy for the CPU usage ratio, the OS checks 
the operation of execution creation and the change in the degree of CPU usage for each user 
and each program domain in the kernel. In this check, the OS calculates the degree of CPU 
usage before executing the operation. If the degree of CPU usage is permitted by the policy, 
OS grants the operation. Otherwise, OS refuses the operation. 

 
5.2. Mapping Model of Execution Resource 

General OSs can limit the usage of the disk by each user by using a “quota” mechanism. In 
a similar way, an OS should limit and control the usage ratio of the CPU for each user and 
each program domain. In addition, SELinux labels program domains and object types. A 
secure OS should limit and control the usage ratio of the CPU for each program domain. Thus, 
we propose a mapping model of execution resources. The one is for users on general OSs, and 
the other is for program domains on secure OSs. 

Access Control Model for User: Discretionary Access Control is used to control access by 
restricting a subject's access to an object in most OSs. A subject is a user in most case. Thus, 
the access control of CPU resource for each user is suitable for general OSs. Figure 6 shows 
an execution tree for access control for users. In this execution tree, a child of root execution 
represents an execution that corresponds to a user. In order to control the degree of CPU 
usage, an administrator can control the mips of execution resource that is child of root 
execution. In this figure, an administrator controls execution A1, B1 and C1 that are 
correspond to user A, B and C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Execution Tree for the Access Control of Users 
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In order to construct the execution tree, an OS creates an execution resource as a child of 
root execution after login of a user. If the user executes a program, the OS create an execution 
as a child of the execution resource. Then, the OS links the execution to a process. To do this, 
the OS can create an execution tree for access control of users. This execution tree enables the 
OS to control the degree of CPU usage of each user. 

An example of a policy is described as follows. A line of the policy file includes statement 
of allow, a user name, a maximum guaranteed performance, a maximum priority and an upper 
bound. Default policy should not allow any user to use any CPU resource. 

 

# allow [username] {[maximum guaranteed performance] [maximum priority] [upper 
bound]} 

 

allow userA {10 2 90} 

allow userB {0 6 30} 

 

Access Control Model for Program Domain: Subjects and objects in SELinux are labeled 
with security labels. The labels of subjects are called domains, while those of objects are 
termed types. Using these labels, SELinux can enforce a policy in a system. Because our 
purpose is to control the usage ratio of the CPU resource for each program domain, we 
propose an execution tree for the program domains. In order to control the degree of CPU 
usage for each program domain, we construct an execution tree as shown in Figure 7. In this 
model, a child execution resource of a root execution resource represents the execution 
resource of each program domain. In the figure, executions A1, B1, and C1 represent the 
execution resource of the domains http_t, sshd_t, and sysadm_t. Child execution resources of 
a program domain represent execution resources of the program (processes and process 
groups). These execution resources are linked to processes or process groups. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Execution tree for the access control of program domains 
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In the construction of an execution resource, the new execution resource must belong to 
same program domain as its parent process if domain transition does not occur. Thus, the new 
execution resource is linked to the execution resource that belongs to the program domain of 
the parent process. The administrator can control the usage ratio of the CPU resource for 
controlling access to these execution resources. In addition, a policy for enforcing CPU usage 
can be written in a policy file. An example of a policy that can be employed in secure OSs is 
as follows. 

 

# allow domain {[maximum guaranteed performance] [maximum priority] [upper bound]} 

 

allow http_t {0 1 80} 

allow sysadm_t {10 0 100} 

 
6. Implementation 

We implemented the proposed mechanism on The ENduring operating system for 
Distributed EnviRonment (Tender) [14]. We implemented the execution resource as a 
resource of Tender. 

 
6.1. Tender Operating System 

Tender, objects to be controlled and managed by the OS are called “resources.” We 
realized a high modularity amongst the resources. The resources are provided with resource 
names and resource identifiers. Figure 8 shows the structure of a resource identifier and 
resource names. Additionally, the interface to the operation of resources is unified. 
Furthermore, the program sections that operate each resource are separated and shared 
programs are eliminated. The management information of each resource is also maintained 
separately. In addition, a pointer between the management tables of each resource is 
prohibited. As a result, each resource can exist irrespective of the existence of other resources. 

We also implemented a BSD/OS-compatible system call interface in Tender. Thus, Tender 
can execute binary programs that are identical to those of the BSD/OS. 

 
6.2. Implementation of Execution Resource with Upper Bound 

We added an upper bound function to the execution with priority in the Tender operating 
system. Figure 9 shows the flowchart of the processing of the scheduler that is related to the 
function. We added an entry that is a counter, indicating the usage of time slots for each 
execution with priority in the process management table. The scheduler of Tender increments 
the entry of a currently running process at the boundary of the time slots, and it then checks 
the number of the counter. If the number of the counter is equal to the usage-limited number 
of the time slot, the state of the current process is changed to a WAIT state. When the current 
time slice expires, the state of processes that have reached the upper bound is changed to a 
READY state. 
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Figure 8. Resource identifier and resource name 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Flowchart of the processing of a counter of an upper bound 
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7. Evaluation 
 
7.1. Purpose of experiments 

We described the design, the implementation and the advantages of the execution resource 
with an upper bound. In this section, we describe the evaluation results of the execution 
resource. 

The purpose of the evaluation is to make clear how the execution resource with an upper 
bound works by employing application programs. Furthermore, we should evaluate the basic 
experiment to understand the characteristics of the execution resource. For this reason, in 
order to evaluate the proposed mechanism, we performed two environments as follows. 

(1) The experiment in local machine to evaluate basic performance. 

(2) Simulation a DoS attack against Apache Web server. 

In the local machine experiment, we used two simple programs. They are so simple that it 
is easy to analyze the results. In the simulation, we used Apache web server and a simple 
attack program. We evaluated the response time of the Apache web server to evaluate how 
the execution resource mitigates the DoS attack in a local machine. 

 
7.2. Basic performance evaluation 

We used two programs on a computer (CPU: Celeron 2.8GHz, OS: Tender). The one is a 
normal process, and the other is an attacker's process. The normal program executes a 
procedure using CPU instructions only. The attacker's process executes an infinite loop to 
demand infinite CPU time. 

Figure 10 shows processes and execution resources used in this experiment. The 
experiment is performed in two cases. In the first case, both the normal process and the 
attacker's process are linked to execution with priority which value is 4, and do not have 
upper limits. The priority means that a small number has high priority than a large number. 0 
means the highest priority and 255 means the lowest priority. In the second case, the 
attacker's process is linked to execution with priority with upper limit. The value of the 
priority is 4, and the upper bound of execution is 30%. On the other hand, the normal process 
is linked to execution with priority, and its value is 6. 

To perform the experiment, we executed the attacker's process first. Then we executed the 
normal process and measured the processing time of it. We also changed the number of 
attacker's processes from 0 to 7. Figure 11 shows the evaluation result of the experiment. 

The processing time of the normal process increases as the number of attacker's processes 
increases. When the execution of it does not have an upper limit, the increase of processing 
time is large. But the execution of the attacker's process has the upper bound, the increase is 
suppressed. The processing time is less than that has no upper bound. This demonstrates that 
the tolerance to a DoS attack involving the usage of CPU time is CPU time is significantly 
improved in the proposed method. 

 
7.3. DoS attack simulation against the Apache Web server 
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Next, we applied the proposed method to an application program. We choose the Apache 
web server as the target application program, because the Apache is used all over the world 
and the availability is required to web services. 

The scenario of the simulation is as follows. We assumed that an attacker intrudes into a 
server machine (CPU: Celeron 2.8GHz, OS: Tender) and takes control of the processes. Then, 
the attacker creates processes and attempts to use the CPU time in the machine. To use the 
CPU time, the attacker runs processes that execute an infinite loop. As a result, the 
performance of the web server (Apache) is influenced by the attack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Processes and execution resources in the basic performance evaluation 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Experiment results in the basic performance 
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Figure 12. Experiment environment of a DoS attack simulation employing the Apache web 
server 

Figure 12 shows the experiment environment of DoS attack simulation employing the 
Apache web server. To measure the server performance, we used ApacheBench as a 
benchmark program. ApacheBench is a command line program for measuring the 
performance of web servers. The ApacheBench comes bundled with the standard Apache 
source distribution. The ApacheBench was run on a client machine (CPU: Pentium4 3.0 GHz, 
OS: FreeBSD 4.3-RELEASE). We calculated the average response time of the Apache web 
server. 

 

 

 

 

 

 

 

 

 

 

Figure 13. Example of the 
execution tree of the experiments 

 

 

We performed two experiments. We tested the performance with different parameters. 
Figure 13 shows the example of the execution tree used in these experiments. 
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In the first experiment, the number of infinite loop processes was changed from 0 to 7. The 
priority of the web server was 4. The priority of the infinite loop processes was changed from 
2 to 6. The upper bound of the execution resource linked to the infinite loop processes was 
30%. We performed the same experiment, when the execution, which is linked to the 
processes, has no upper bound. We performed this experiment to evaluate the effectiveness of 
our proposed method against a DoS attack. 

In the second experiment, the upper bound of execution was changed from 10% to 90%. 
The number of the infinite loop process is 1 and the priority of the web server was 4. The 
priority of the infinite loop processes was also changed from 2 to 6. The relation between the 
effectiveness of an upper bound and the performance of process is tradeoff. Thus, we must 
evaluate the characteristic of the tradeoff and show how to use the proposed method 
effectively. 

Experiment 1: We performed this experiment for two cases. In the first case, the infinite 
loop processes were linked to an execution with priority. In the second case, the infinite loop 
processes were linked to an execution with an upper bound. The upper bound of the execution 
resource was 30% in this experiment. Figure 14 and Figure 15 show the results of this 
experiment. 

When the priority of an infinite loop process equaled 2, the process had a priority that was 
higher than that of the Apache server. The scheduler of Tender does not recalculate the 
priority of the processes in which the CPU is used for a long time. Thus, it is not possible for 
any other process with a priority lower than that of an infinite process to run. Therefore, the 
Apache server was not able to respond to any process when execution resources with priority 
were linked in Figure 14. 

The response time of the Apache server increases as the number of infinite loop processes 
increases in Figure 14, when the priority of the attacker’s execution equaled 4. The response 
time for seven processes was greater than that in the absence of a process. Thus, the influence 
of the DoS attack was clearly apparent. The time of a time slice in Tender is 100ms. Thus, the 
response time increased 100ms when an infinite loop process was added. When the priority 
equaled 6, there was little influence to the Apache web server, because any infinite loop 
process was not able to run in this case. 

On the other hand, even if the number of infinite loop processes increased for the proposed 
method in Figure 15 (priority = 2 or 4), the ratio increased only slightly. Although in the 
experiment of Figure 14, the Apache was not able to make response to any request, the 
Apache was able to make response by employing the execution resource had an upper bound. 
This result shows the effectiveness of the proposed method. When the priority equaled 6, 
there was little influence to the Apache web server.  

When the number of processes was increased to seven, the ratio was increased by 
approximately 257%. The processing time was less than 10ms, thus it was enough to provide 
a service. In the proposed method, the tolerance to the DoS attack involving the use of CPU 
time has significantly improved by limiting the upper bound performance of the infinite loop 
process to 30%. 
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Figure 14. Result of the experiment 1 where the executions have no upper bound 

 

 

 

 

 

 

 

 

 

Figure 15. Result of the experiment 1 where the executions have an upper bound 

 
Experiment 2: The response time was measured when one infinite loop process had a 

priority that was 2, 4, and 6. The number of infinite loop processes equaled 1. Figure 16 
shows the response time when the priority of the infinite loop process is changed from 10% 
to 90% 

 

 

 

 

 

 

 

 

 

Figure 16. Result of the experiment 2 
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When the number of the infinite loop process equaled 1 and the execution of the process 
had no upper bound, the processing time increased apparently in Figure 14. In the case that 
the priority equaled 2, Apache was not able to make response to a client. In the case that the 
priority equaled 4, the response time was approximately 100ms. From the Figure 16, the 
response time was less than 7ms in all cases. These results show that the proposed method 
can suppress the influence of the infinite loop process. In addition, the server was able to 
respond to client programs by using the proposed technique. Therefore, the execution 
resource with an upper bound can limit the performance of the infinite loop process. 
Moreover, the response time increased slightly in proportion to the upper bound performance. 
When the priority equaled 6, there was little influence to response time. 

From the fact described above, we may conclude that the increase in the Apache response 
time can be suppressed to less than 7ms, even if the infinite loop process has a high priority is 
executed. The proposed technique has more tolerance to an attack as compared to the original. 

 
7.4. Evaluation of performance regulation 

disadvantage of the proposed method is that it limits the performance of target services. In 
order to evaluate the influence, the performance of the Apache web server was measured by 
using execution with performance where the performance was regulated. Figure 17 shows an 
execution tree used for controlling the performance of the Apache web server. In this 
experiment, there was no process that had effects upon the performance of the Apache web 
server. We controlled the degree of CPU usage of execution resource A1a. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Execution tree used for controlling the performance of the Apache web server 

 

Figure 18 shows the results of this experiment. When the performance was changed from 
100% to 10%, the response time increased from 40%. This is because Apache did not require 
much CPU time for providing the service. Maybe the CPU usage ratio was less than 50% in 
this experiment. In the experiment 2 described above, the proposed method shows the good 
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result against the DoS attack and the response time of Apache increased slightly compared 
with that of 100%. Therefore, to mitigate DoS attacks, it is not necessary to designate the low 
upper bound. If the upper bound is designated 90%, the response time is almost same as that 
of 100%. In addition, the proposed method can mitigate DoS attacks when the upper bound of 
an execution resource is 90%. Therefore, the Apache web server can get the both advantage 
of the performance and the tolerance 

 

 

 

 

 

 

 

 

 

 

Figure 18. Response time of the Apache where the performance of the Apache was 
regulated by executions with performance 

 
8. Conclusion 

In this paper, we proposed an execution resource that controls the maximum extent of CPU 
usage for preventing the abuse of CPU resources. This execution resource enables system 
administrators to control the maximum extent of CPU usage for each process because the 
access control of CPU usage is performed in a similar way as an object such as a file. 

In addition, we propose an access control model for CPU resources based on an execution 
resource for enforcing the access control policy. By mapping the execution resource to users 
and program domains, we can control the CPU usage of the users and the program domains. 
This model can be easily applied to most OSs because it requires only a modification of the 
process scheduler and process creation interface. The proposed mechanism is very useful for 
a computer with limited CPU power, such as mobile and ubiquitous environments. 

Next, we describe the results of a basic performance experiment and a DoS simulation 
experiment employing the Apache web server. The results of the basic performance 
experiment show that the processing time of the normal process increases as the number of 
attacker’s processes increases. When the execution of it does not have an upper limit, the 
increase of processing time is large. However, when the execution has the upper bound, the 
increase is suppressed. 

The results of the DoS simulation experiment show that the ratio is increased by 
approximately 257%, when the number of processes is increased to seven. The processing 
time is less than 10ms, thus it is enough to provide a service. They also demonstrate that the 
tolerance to a DoS attack involving the usage of CPU time is significantly improved in the 
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proposed method. This result shows that our proposal can ensure a good quality of web server. 
The second experiment shows that the increase in the Apache response time can be 
suppressed to less than 7ms, even if the infinite loop process with a high priority is executed. 
This result also reveals that the proposed technique has an increased tolerance to an attack as 
compared to the original execution. 

Finally, in order to evaluate the influence, the performance of the Apache web server was 
measured by using executions with performance where the performance was regulated. The 
result shows that the response time is almost same as that of 100% where the upper bound is 
designated 90%, and the proposed method can mitigate DoS attacks. Therefore, the Apache 
web server can get the both advantage of the performance and the tolerance. 
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