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Abstract

The impact of actuators should be considered in the prediction modeling of g N!e
air temperature. In this paper, the operating state of a greenhouse was divi %ﬁ'

sub-states based on the on-off characteristic of actuators. A group of no mental
auto regressive models with external variables (IARX modelshsuitable e operat-
ing sub-states were deduced from the mechanistic mod greenhofisg/air tempera-
ture. The new IARX models have fewer coefficients than, otiher kno models. In or-

der to validate the IARX prediction models, the rglated énvir ntal factors of a glass
greenhouse were measured. The prediction resultSwef the IAR dels were compared
with two typical ARX models. The maximum p@ction egr d the mean square errors
of the IARX models, under the three operati b-states o\g sive state(all actuators are
not working), mechanical ventilation a ad co , are 0.1°C, 0.14°C, 0.7°C, and
0°C, 0.3°C, 0.4°C, respectively. The ion we much better than those of one
compared model, while similar wi other.

*
Keywords: Incremental Aﬂodels&t@stic model, system identification, temper-

ature, prediction. @ \
1. Introductior’\\o

China h i@; ed many Ypa@dern greenhouses with automatic control systems
from Wes@ ope tries in the past thirty years. However, most of these
control sys as expected. One major reason is that the climate in
China is very diffe m that in Western European countries. In China, it is cold
in winter and hot~ mmer and there is a big temperature difference between day
and night in s and autumn, which lead that the imported greenhouses are very
energy-consumihg. Therefore, the actuators are still mainly controlled manually
over th , which is very laborious. In some greenhouses, the ventilation fans
can b@ rolled by using a simple Bang-Bang control method. However, the Bang-

ntrol methods sometimes cause the actuators to switch too frequently or

% 00 long because of improper set points. We found that if the greenhouse air
temperature in the next about ten minutes can be predicted accurately, there are

many advantages for making suitable control strategies, such as reducing the switch-

ing frequency and the operation time of actuators. So the accurate prediction models

represent a cornerstone for the development of different model-based control strate-

gies [1-3]. This paper will attempt to build new prediction models of greenhouse air

temperature for control purposes.

Almost all the actuators in greenhouses in China use an on-off mechanism. The
advantage of on-off actuators is that they are cheap and easy to operate and main-
tain, but the high nonlinearity of actuators makes the advanced control methods
can’t be used in greenhouses. It’s well-known that the on-off actions of actuators

ISSN: 1975-4094 |JSH
Copyright © 2016 SERSC


mailto:ytxu2000@163.com
mailto:inschenjj@sue.edu.cn
mailto:jinxi9029@163.com
mailto:fktemplar@163.com

International Journal of Smart Home
Vol. 10, No. 9 (2016)

have a strong impact on the greenhouse microclimate. Therefore, Linlin et al. took
the on-off combinations of different actuators as various operating sub-states of a
greenhouse, and then regarded the operating process of a greenhouse as a switching
one between these operating sub-states [4, 5]. A prediction model of greenhouse air
temperature suitable for each operating sub-state is required in the further research
on switching control of different actuators in a greenhouse. The external environ-
mental factors change continuously and they can only be measured but not con-
trolled. So when the greenhouse switches back to one operating sub-state after a pe-
riod of time, the prediction model of this sub-state may not work very well if the
external environment has changed greatly, even if it predicted accurately before.
Therefore, the prediction model of every operating sub-state should have as few co-
efficients as possible. When the models are unable to predict the greenhouse air
temperature accurately, it can be quickly recovered by using very few sets of new

measurement data of related environmental factors. .
The mechanistic modeling based on energy balance [6, 7], auto regreSS|

ing with external variables (ARX modeling) [8, 9], artificial neural ne odel—

ing [10, 11], and their combinations [12, 13] are th ain modelj n hods of

greenhouse air temperature. Compared with mechanl dEIs a |aI neural

network models, ARX models own a much smaller and can be

recursively identified online in real time to pr e gree ho ir temperature
However, the known ARX models are built Wlhe ful %@deratlon of the im-
pact of actuators, and they are also not compact €nough because the external varia-
bles are selected empirically and subwctrv%he fae uch as external air tem-
perature, relative humidity, solar rad d speed& cloudiness in the sky, all
have been previously selected as e%v var 8 12, 14]. Additionally, the
identification of ARX model struc s ver %q S [13, 15].

The purpose of this paper uce a grotp*of new ARX prediction models of
greenhouse air temperature%S or van perating sub-states for control purposes.
We aim to use as few coefficl as po, or the new models and use a simple and
deterministic structure t id the teti odel structure identification. The rest of the
paper is organized gsé-@ In segtion*2, the operating state of a greenhouse was divid-
ed into five sub- ased on_theon-off characteristic of actuators. A group of novel
incremental aut& sive mo ’Q} h external variables (IARX models) of greenhouse
air temper le fo five sub-states were deduced from the mechanistic model-
ing. In sec the ne models were identified and validated by using the data of
related environmen 2@3 s measured in a glass greenhouse. Two typical ARX predic-

e

tion models of gr e air temperature were also tested in order to compare the pre-
diction accurac @ new IARX models. The paper was concluded in the last section.
2. Dedu of the IARX Models

A S for controlling the greenhouse air temperature can be classified as ei-
% ling actuators or heating ones. Roof windows, side windows, ventilation
w

and wet pads are the main cooling actuators, while air-fan heaters and hot-
er pipelines are the main heating actuators. In China, a greenhouse control sys-
tem usually contains several cooling actuators at the same time, but generally only
one heating actuator, because heating actuators are very energy-consuming. Depend-
ing on the actual control situation, the operating state of a greenhouse is divided into
five sub-states: passive state (all actuators are not working), natural ventilation, me-
chanical ventilation, fan-pad cooling and air-fan heating. The benefit of such a clas-
sification is that there are no interactions between these sub-states. Therefore, the
following dynamic mechanistic model of greenhouse air based on the energy bal-
ance can be established:
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p.CV, M = Qs (1) %.Qu ()~ X, ()~ XsQ (1) + %@ (6) ~ Qyr (8) — Qo (1) ~ Qu 1)
Qlw (t) Qother (t) (1)
>x, <l x;=0,1(j=1-,4)

where p, denotes the air density (g/m®); C, the air-specific heat capacity
(3/(g°C)); Vq the volume of the greenhouse (m®); Ti(t) the internal air temperature
(°C); t the time (s); Qraq(t) the power produced by solar radiation (W); Qn(t) the
power loss caused by natural ventilation (W); Q. (t) the power loss caused by me-
chanical ventilation (W); Qpaq(t) the power loss caused by fan-pad cooling (W); Qx(t)
the power produced by the heating actuator (W); Qan(t) the power absorbed by crop
transpiration (W); Qexcn(t) the power loss caused by the heat exchange between the
internal air and external air through the cladding material of the greenhouse (W);
Q.a(t) the power loss caused by the absorption of crop canopy (W); Q.(t) the *

loss caused by the long-wave radiation (W); Qomer(t) the power loss caused er
factors, such as the absorption of soil and the energy leakage throug of the
greenhouse (W); X; (j=1,...,4) are the decision variables, d have s of ei-
ther 0 or 1 (0 denotes OFF and 1 denotes ON).

The crop transpiration has a close relationship wi Iar |a n, and usual-
ly increases with the increase of solar radlatlo ore, he er produced by
the solar radiation and that absorbed by the cr nsplra be combined to-

gether and expressed approximately as foIIo

Qrad (t) Qtran (t) nQrad (t) (2)
where # is the proportionality co WI @Iue between (0,1), dimension-
less.

The solar radiation powerE represéﬁﬁe in the form of illuminance, since

in the later experiment a | W|Il.b d to measure it. However, the conver-
sion coefficient varies with the light. A conversion coefficient of
555nm yellow-green li is adop |ch the human eye is most sensitive to.

Eq.(2) can be rewrit ollows;

Qus (- Quun (0 = \ S 3)
where Q coefficie of the conversion from illuminance to power
(W/(m Lu@ se area (m?) and I,(t) the external illuminance (Lux).
According™o relat%udles [6, 16, 17], the power losses due to heat exchange
between the intern external air through cladding material, natural ventilation
and mechanica |on are closely related to the internal and external air tem-
perature diffe of the greenhouse; the power produced by an air-fan heater is
ed to the temperature difference between the heated air and the internal
r loss caused by the fan-pad cooling is closely related to the tempera-
nce between the pad surface and the internal air; the power absorbed by
canopy is closely related to the temperature difference between the canopy

%ce and the internal air; the long-wave radiation follows Stefan-Boltzmann law.
Therefore, the terms described above can be expressed as follows:

Qoen () = A, (T, () =T, (1)) (4)
Qv =p.C.0, (T -T, (1) (5)
Qu (1) = £,C. 0, (T (1) =T, (1)) (6)
Qpea (1) = £,C,00,,, (T (1) T, (1)) (7)
Q1) = p.Ca, (T, (O -T (1)) (8)
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Qu®) = A0, (T.()-T, (1) (9)

Q) =eAc(T (-T,'(t)) (10)

where A; denotes the cover area of the greenhouse (mz); . the heat transfer coef-
ficient of the cladding material (W/m?°C); T,(t) the external air temperature (°C); ¢ny
the natural ventilation rate (m*/s); ¢, the mechanical ventilation rate (m®/s); @pv the
ventilation rate of fan-pad cooling (m%s); T o(t) the surface temperature of wet pad
(°C); ¢ny the ventilation rate of air-fan heater (m%/s); Ty(t) the heated air temperature
(°C); Ac. the crop canopy area (m?); we. the heat transfer coefficient of canopy sur-
face (W/(m*°C)); T.. the canopy surface temperature (°C); ¢ the total emittance of
the cover and crop, dimensionless; o the Stefan-Boltzmann constant.

Although the crop canopy affects the greenhouse air temperature very differently
at different stages of crop growth and the long-wave radiation considerably varies
over a complete day-night cycle, their impacts on the greenhouse air tempehgtuge”
change continuously, and they change much more slowly compared Wlth -
pling period of environmental factors during the real-time control pr T his is
also true for the energy losses due to the soil and gap green The re-
cursive identification of prediction models in real tim e&ffectl@ercome the

impact of the slow time-varying characteristics. T ong ave radiation

and the power losses due to the crop canopy, reenhouse etc,
can be treated as constant terms. The following |t|on |s
M = Q. (t) +Q,, (1) + Qqprer (1) (11)

Next we will deduce the new ARX’@tlon els of greenhouse air tempera-
ture based on the above known m IStic uitable for the five operating
sub-states. Substituting Eq. (3) into Eq we obtain the following dynam-
ic equation after a simple m |m|Iar ms:

dT, (t
p.CV %=ﬂnAglo(t Ao, +X, ﬁ@xzpacawmv+X3paCa¢pv+X4paCa¢hv]T 0]
P + X AC.0m [T, (1) +%:,0,C.0, T, (1) + X,0,C,0, T, () -M  (12)
S Q\\ j=1-

In the p sub- &I the decision variables x; (j=1,...,4) are 0. The dynam-
ic equation Eqg. (12)@ es much simpler:

an() _
dt

P.CY, O -T,O]+unA 1,0 —M (13)

In pr =~the environmental factors are measured at discrete time intervals, so
the di tial equation can be rewritten as a difference one. ATi(k+1) is used to
r #t the increment of greenhouse air temperature at the time instants k+1 and Kk,
% i(k+1)=Ti(k+1)-Ti(k). AT,i(k) is used to represent the difference value of the
ex¥€rnal and internal air temperature at the time instant k, i.e. ATq(K)=To(k)-Ti(k).
Therefore, EqQ.(13) can be rewritten as follows:

AT, (k+1) = a, AT, (K) + 71, (K) + N (14)

where ap=AcwAt/(paCaVy); y=unAdqAtl(paCaVy); N=-MAt/(p,C.Vy); and At denotes
the sampling period (s). Eq.(14) is the IARX prediction model of greenhouse air
temperature for the passive operating sub-state.

The IARX prediction models for the other four sub-states of natural ventilation,
mechanical ventilation, fan-pad cooling and air-fan heating can be deduced in the
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same way. For the natural ventilation sub-state, only the decision variable x; is 1
while the others are 0. The IARX prediction model of greenhouse air temperature
can be deduced as follows:

AT (k+1) =, AT (k) + 71, (k) + N (15)
Where al:(Acwc+paCa¢nv)At/(paCan) .

For the mechanical ventilation sub-state, only the decision variable x, is 1. The
IARX prediction model of greenhouse air temperature can be deduced as follows:

AT.(k+1) = 2, AT, (K)+ 71, (K)+ N (16)
where a,=(AcwctpaCapm)At/(paCaVy).

For the fan-pad cooling sub-state, only the decision variable x3 is 1. The IARX
prediction model of greenhouse air temperature can be deduced as follows:

AT (kK +1) = o, AT (K) + BAT (k) + 71, (K) + N &17)

where asz=ao; f3=ppAt/Vg; ATpi(K)=Ty(K)-Ti(K).

For the air-fan heating sub-state, only the decisi x4 . The 1ARX
prediction model of greenhouse air temperature duced lows:
AT.(k+1D) =, AT, (K) + BAT, (K)+ 71, (K)+ N 6 (18)
where aa=ao; fs=pmAtIVg; AThi(K); ATni(k :Qx) Ti(k). 9

Therefore, the IARX prediction moc gree |r temperature for the five

operating sub-states can be compil the smgle equation:

AT (k+1) = Zx (T, (k)ﬂ )+}/I
(19)
ZX =1, x_01(® & j—01,2)
where ATphi(K) d&? .@ATh.(k) The subscript j = 0 corresponds to the

passive sub-

It can o@ ily se @ the IARX prediction models have fewer coefficients
than the previously models. Only two external variables are involved for the
three sub-states: state, natural ventilation and mechanical ventilation; while
-states, just three external variables are involved. The number
ts and the selection of external variables are both optimized the-
oreticall Iso can be seen that «;, fj and y are relevant with these factors, such as
the W period, the volume and cover area of greenhouse, the heat transfer co-

effic cladding material and the different ventilation rates, etc. In addition, the
epends on the factors including the greenhouse volume and the energy ex-

e between the internal air and the crop, soil, etc. Therefore, the greenhouse
parameters and the actuators only affect the values of the model coefficients, but not
the model structure. Before these new IARX prediction models are used in practice,
the environmental factors in each operating sub-state should firstly be measured and
then used to identify the model coefficients. Therefore, it is not necessary to meas-
ure the greenhouse parameters, the natural ventilation rate and the mechanical venti-
lation rate, etc. During the future control process of greenhouse air temperature, the
model coefficients can be recursively identified in real time as the environmental
factors are measured periodically, which can effectively overcome the impact of the
slow time-varying characteristics mentioned above. The deduction process has de-
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termined the first order structure of the IARX models, so the tedious identification
of model structure can be avoided.

3. Measurement of Greenhouse Environmental Data

In order to validate the new IARX prediction models, the relevant environmental
factors of a glass greenhouse were measured. The greenhouse is near Nanjing city
and is 60 meters long and 30 meters wide. An ornamental butterfly orchid plant was
planted inside. Three ventilation fans have been installed on one side wall and a wet
pad has been installed on the opposite. Therefore, the relevant environmental factors
can be measured for the three operating sub-states: passive state, mechanical venti-
lation and fan-pad cooling. Two temperature-humidity recorders (RC-4HA type)
were adopted to measure the air temperature and relative humidity both inside and
outside the greenhouse. The measurement accuracy of temperature is £0.4°C, and,
that of relative humidity is £3%. A luxometer (HS1010A type) was a%

0 00

measure the external solar radiation, which had a measurement ran
kLux, and a measurement accuracy of 4% (<10 kLux) and +5% (>10 kEu

As both mechanical ventilation and fan-pad cooling reduire very,
sumption, the once operating time of the both op@ ub-sta
i u

usually no more than ten minutes. In order to obta h data of environmental
factors, the once operating time was set to f inute$, Far¥consistency, the

measuring time in the passive sub-state was al t to fift inutes. The meas-
urement interval for the three sub-states w set to,0 inute.
The measurement experiment was do April 1 4. In the early morning,

the internal and external air tempera
greenhouse was in the passive su
measured from 8:00 am to 8:1
temperature and relative humigi

\ thg@ radiation were all lower. The
. Thg* t environmental factors were

nd wer% ed in Figure 1, including the air
oth ins' and outside, and the solar radiation.

\S

|
Internal relative humiditv(%)

66

O~ ¢
64
gg Solar radiaton(kLux)
60
57

541 T T T T 1.
08:00 08:03 08:06 08:09 08:12 08:15
Time

Figure 1. Relevant Environmental Factors from 8:00 am to 8:15 am

The external air temperature rose and the solar radiation also became stronger
gradually with time. The internal air temperature rose accordingly and reached 34°C
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at 10:15 am. At this time, the three ventilation fans were started for mechanical ven-
tilation. After fifteen minutes, they were turned off and the internal air temperature
had reduced to 25.6°C. The relevant environmental factor data measured during this
time period have been plotted in Figure 2.

361

Internal temperature(°C)
321
» -Mﬂw

24 T T T T 1

60 Internal relative humidity(%)
54
i W‘\“‘_.,‘_“‘g‘_‘_‘
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T T T e ’
_ 0?\/

19 T T T T 1
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s Solar radiaton(kLux)
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fos 1018 1021 Y1024 _ 1097 1030
e ‘ 2’
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Figure 2. Relevant Enviro%%l Fa&%ﬂom 10:15 am to 10:30 am
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% 51
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96

11:06 11:09 11:12 11115 11:18 11:21
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Figure 3. Relevant Environmental Factors from 11:06 am to 11:21 am

After the ventilation fans were turned off, the greenhouse returned to the passive
operating sub-state again and the internal air temperature also rose accordingly. At
11:06 am, the internal air temperature exceeded 34°C. The three ventilation fans and
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the wet pad were then started simultaneously, and the greenhouse entered the fan-
pad cooling sub-state. After fifteen minutes, they were all turned off and the internal
air temperature had reduced to 21.7°C. During the cooling process, the temperature
of the water poured on the pad was about 12°C without obvious variation. The rele-
vant environmental factor data measured during this time period has been plotted in
Figure 3.

4. Model Validation and Result Analysis

4.1. Two Compared Models

In this section, two typical ARX prediction models of greenhouse air temperature
have been selected to compare their prediction accuracy with the new IARX models.
Although ARX models have been studied in details in [8, 13], the impact of differ-,
ent actuators was not considered, because their greenhouses were always i -
erating state of natural ventilation. In fact, actuators have rarely been czs in

many ARX prediction models, so it’s difficult to take these models to £o e with
the new IARX models. In earlier research [18], the on-off\characteiSti ctuators
was taken into account and all the possible operating\ mbinati@ng/of actuators
were regarded as the operating sub-states of green 3."For eash sub-state, a first-

order ARX prediction model of internal air tef @w ure a@ﬂs humidity was

established as follows:

Tk+D) 7 _[a, a, |[T(K) bu blg RH (k (20)
RH,(k+1) | |a, a, ||RH, (k) b
e

where RH;(k) and RHO( the int nd external relative humidity of
the air, respectively, at the ti tant,k@ Ao, A1, 82, D11, D12, D13, D1, Doy, bog
the identification coeff|C|en

The establishment of se ARX |s easy to understand, because it is easy

relative humldlt solar ra n from experience and intuition. This was the
reason why the

to know that the mte rtempSrat is affected by the external air temperature,

~ was n ¥or comparison. Since in this paper only the in-
atlre prediction was studied, the relative humidity prediction com-
20) was rewritten as follows:

ponent wa oved a&
Ti(k+1)=[a, a,][T (O] +[by by B [T, (k) RH(K) Quy (K] (21)
The second@ﬁred model was given directly in the literature [19] and was sim-
R

ilar to the Ew X models:
“bg'bqgth, i
T2 “@ A4 28 29 A 11,00 Qu 4T, 00-H19 AT,(0V() 1 (22)
@ e a denoted the transfer function denominator parameter; b; (j=1,...,4) the
cients of the delay operator in the numerator; bs the coeffl(:lent of the offset

component; g the backward shift operator; H(k) and V(k) the heating and ventila-
tion control input signals, respectively.

As described in section 3, there is no air-fan heater in the greenhouse, but there is
a wet pad. The heating control input signal H(k) was regarded as that of the fan-pad
cooling, and ATyi(k) was replaced by ATyi(k) accordingly. As the actuators are all
on-off types, the values of H(k) and V(k) are just O or 1. Eq.(22) was rewritten in the
following forms, corresponding to the three sub-states: passive state, mechanical
ventilation and fan-pad cooling, respectively:
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T(K) = —[blql_ P4 Bt ) Q) 1T (23)
+a
T(K)= [‘bﬁbl)q_ R0 B It 1 Q) 1T (24)
+aq
700 = 2228 Blar 19 0,00 AT, 1] (25)
+aq

The reason why we chose this model for comparison was that Eq.(23)~Eq.(25)
had the same structure as the new IARX models, with only one additional coeffi-
cient a. Therefore, the new IARX models for the three sub-states: passive state, me-
chanical ventilation and fan-pad cooling, are the particular cases of Eq.(23)~Eq.(25)
when coefficient a is -1. The effect on the prediction of greenhouse air temperature,
by this specific value -1 and other different values of the coefficient a can§~

naturally
4.2. Model Identification and Validation % %fg

For the three models, the numbers of coefficients \ ste e 1 for each
of the three sub-states: passive state, mechanigdi®ptilation an n-pad cooling.
It’s easy to see that the maximum number of ICIGHI%VE Based on the

structure of the models, at least six sets of asured d equired to identify
five coefficients. In section 3.1, 5|xteen nV|r al factors were acquired

in each operating sub-state. In order e the | act of measurement noise, we

would use the first seven sets of rr%ced da iglentify the coefficients of the

three models for each sub-state. T e ide models would be used to predict
%Img instants.

the greenhouse air temperat& e future sa
Table 1. The N rs o?@mnts of the Three Models

Models \ Sub- stateg,\‘(B&sswe sta?&,‘lvlechamcal ventilation  fan-pad cooling

New IARX mq%%‘\‘ “ 3 4
5 5
Q ;

5
enote the current time instant. In order to predict the
greenhouse air tem e at a future time instant k+i (i>1), the relevant external

environmental f t the future time instant k+i-1 (i>1) are required. The lazy
man weather @ion method was adopted here to predict these external environ-
mental f the future sampling instants [20], i.e. the external environmental
factors v&sumed the same as the latest measured data. Good prediction result
could ained when the prediction horizon was not too long. In order to reduce
the i on the identification accuracy caused by the large numerical differences

ifferent environmental factors, the measured data was normalized. The normali-

zatyon processing rules were shown in Table 2.

Table 2. Normalization Processing Rules

Environmental factors Measurement ranges Normalization ranges
Internal and external air temp (°C) -10~50 0~100
Internal and external air RH (%) 0~100 0~100
External solar radiation (kLux) 0~200 0~100
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4.2.1 Passive Sub-State: The seven sets of measured data from 8:00 am to 8:06 am
were used to identify the coefficients of the three models, and then the models were
used to predict the greenhouse air temperature at the next time instants from 8:07
am to 8:15 am. The measurement and prediction results of the three models were
shown in Figure 4. The maximum prediction errors of the IARX model and the two
compared models are 0.1°C, 0.4°C, and 0.1°C, and the mean square errors are 0°C,
0.2°C, and 0°C respectively.

25.0-
—=— Measurement
_ | —— Prediction
24 .5+
—=»— Compared 1
| —— Compared 2 gy e o— 1

Temperature(°C)
(S}
-+
(=}

2 VQ
23.0 T T T T 1
08:00 08:03 08:06 08:09 08:12 08:150

Time
Figure 4. Prediction of Greenhouse Air Ten&%u’re in
Sub-State Q \/

4.2.2 Mechanical Ventilation Sub-State: The ven n fans tarted for mechan-

ical ventilation at 10:15 am. The fans require about tepe=secohds to reach the full-
speed operation, so in order to guara@h ide’n@tion accuracy, the data
measured at 10:15 am was not used” identification of model coefficients,
while the seven sets of measured : % to 10:22 am were taken. The
models were then used to predi reenﬁ?ﬁ ir temperature at the next time
instants from 10:23 am to 10 . The measurement and prediction results of the
three models were shown ﬁg& ure 5. ?\0 ximum prediction errors of the IARX
model and the two comézjred A4°C, 5.2°C, and 0.4°C, and the mean

odeﬁ@
square errors are 0.3@. °C, and @‘{' , respectively.

\ Q —s=— Measurement
—— Prediction

—e— Compared 1
—v— Compared 2

~a._
.
-

20 T T T T —
10:15 10:18 1021 10:24 10:27 10:30
Q Time
ii@ . Prediction of Greenhouse Air Temperature in the Mechanical

e Passive

D %0
1 ' 4

o

[
(=)

mperal
=

/%

i S
.
—._

Ventilation Sub-State

4.2.3 Fan-pad Cooling Sub-state

The ventilation fans and the wet pad were started for fan-pad cooling at 11:06 am.
The data measured at 11:06 am was not used to identify the model coefficients for
the same reason of mechanical ventilation sub-state. The seven sets of measured da-
ta from 11:07 am to 11:13 am were taken for the identification of the model coeffi-
cients. The models were then used to predict the greenhouse air temperature at the
next time instants from 11:14 am to 11:21 am. The measurement and prediction re-
sults of the three models were shown in Figure 6. The maximum prediction errors of
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the IARX model and the two compared models are 0.7°C, 1.8°C, and 0.5°C, and the
mean square errors are 0.4°C, 1.0°C, and 0.3°C, respectively.

361
—s=— Measurement
& 37 ——Prediction
5 —— Compared 1
Ei 28 —v— Compared 2
_g 24-

20 T T T T 1
11:06 11:09 11:12 11:15 11:18 11:21
Time

Figure 6. Prediction of Greenhouse Air Temperature in the Fan-F%/0

Cooling Sub-State
4.3. Analysis of Results QE

It can be seen that the IARX models obviously ha b%ar’pred%hf esults than
the first compared model for all the three operatln VXS tesqwh emonstrates
that the IARX models deduced from the mech deI more suitable
for predicting greenhouse air temperature than e esta y other methods,
such as based on experience. The predictiop,curves oft e IARX models and those
of the second compared model almost ov er completely in Figure
4~6, which demonstrates than the 1A er coefficients can predict
as well as the second compared mo% results demonstrate that the
IARX models are more suitable esea aXmodel based switching control

strategies of different operat&@ ates.

5. Conclusion

The impact of act n greEn?\&air temperature has been considered when

the new predicti dels are bujlt. Based on the on-off characteristic of actuators,

greem divided into five sub-states and the new IARX
uilefor each sub-state based on the mechanistic model-
actuators in different greenhouses have much differ-
es not necessarily have all the five operating sub-states,

erimental greenhouse, the IARX prediction models for three operating
ave been validated with very good results, as the greenhouse just has the
-states. We will validate the IARX models for the other two sub-states in
greenhouses in future. The IARX prediction models have very few identifica-
tion coefficients and a simple structure. In future real-time control processes, the
model coefficients will be recursively identified to predict the greenhouse air tem-
perature with a very small calculation, which can be easily realized. With the suffi-
cient consideration of ON-OFF actuators in greenhouses, we will next research the
switching control strategies of different operating sub-states based on the new IARX
prediction models.
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