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Abstract 

The environment development for deep sleep has been studied using analysis results of 

the big data about vital signs and parameters in the bedroom. The organic light emitting 

diode (OLED) illuminations of the bedroom are dimming using analysis results of the big 

data. Therefore, a low-power and compact design of dimming part is required for OLED 

illumination system. In this paper, the optimized control block of the clock cut-off circuit 

was designed using De Morgan’s laws with adiabatic dynamic CMOS logic (ADCL) 

digital 3-bit pulse width modulation (PWM). The designed clock cut-off circuit pauses the 

D-flipflops (D-ffs) after cutting off the clock at both 0 % and 100 % pulse width of PWM 

output for dimming. As a result, 10 transistors of the miniaturized control block were 

reduced and layout area of the optimized control block is 2,198.0µm2 using Rohm 0.18µm 

standard CMOS model .The operation of control block of clock cut-off circuit with ADCL 

3-bit digital PWM is confirmed by post-simulation of hspice. 

 

Keywords: clock cut-off circuit, optimization, adiabatic dynamic CMOS logic (ADCL), 

digital PWM, OLED illuminations system, internet of things (IoT) service 

 

1. Introduction 

Recently, personal health check and care have attracted significant attention and are 

increasing using wearable device, ubiquitous device and internet of things (IoT) service 

[1]. Moreover, environment development for deep sleep has been studied using analysis 

results of the big data about vital signs and parameters in the bedroom ; breath rate, heart 

rate, temperature, humidity, brightness of illumination etc. The organic light emitting 

diodes (OLEDs) which are the closest to natural light have been widely used for 

illumination of the bedroom and are dimming using analysis results of the big data as 

shown in Fig. 1[2]. An institution of Yamagata university, Smart MIRAI House, was built 

to demonstrate the research results for the living environment of the near future and to 

verify correlation between big data analysis and deep sleep as shown Fig 2.  

Presently, the OLED illumination system consists of a power part, dimming circuit part 

and OLED part, as shown in Fig. 1[3-4]. Although power consumption of the dimming 

circuit part is the lowest, size and power consumption of the digital circuit, including the 

dimming circuit part will increase for high-performance OLED illumination systems in 

the future. Therefore, a low-power and compact design of the dimming circuit part is  
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Figure 1. OLED Illumination System using Big Data Analysis 

required for low-power OLED illumination systems. The pulse width modulation (PWM) 

is normally used for the dimming circuit [5-7]. 

 

 

Figure 2. Experiment Environment at Smart MIRAI House 

The adiabatic dynamic CMOS logic (ADCL) was studied to reduce the power loss in a 

conventional CMOS logic for the low-power design of a logic circuit [8-16]. Power loss 

occurs by a sudden change in voltage from high to low and from low to high in CMOS 

logic with a direct current (DC) power supply. On the other hand, this power loss is 

reduced by slowly increasing and decreasing the power supply voltage in ADCL with the 

alternate current (AC) that is synchronized with for a change to high or low. 
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The OLED dimming circuit part was designed using the ADCL in Ref. [15]. On the 

other hand, the architecture has not been optimized. Furthermore, the power consumption 

is increased by the unnecessary operation of the ADCL D-flipflops (D-ffs) in ADCL 

digital 3-bit PWM at both dimming 0 % and 100 % of the PWM output. In this paper, the 

clock cut-off circuit, which controls the wake-up and sleep mode of the ADCL D-ffs, is 

proposed. The Optimized control block of the clock cut-off circuit is designed using De 

Morgan’s laws with adiabatic dynamic CMOS logic digital 3-bit PWM for OLED 

dimming system. 

The remainder of this paper is organized as follows. Section 2 describes the adiabatic 

charging, and standard operation of adiabatic logic. A low-power ADCL digital 3-bit 

PWM was designed and optimized for an OLED illumination system. And layout of the 

miniaturized control block was designed using Rohm 0.18µm standard CMOS model in 

section 3. Section 4 reports the post-simulation results of designed circuits using Rohm 

0.18µm standard CMOS model. Finally, section 5 concludes the paper. 

 

2. Adiabatic Logic 
 

2.1. Adiabatic Charging 

During a sudden transition between high and low levels of the input voltage, a load 

capacitor cannot be charged and discharged immediately. Power dissipation occurs by the 

resistive component of the logic circuit in the conventional CMOS logic because this 

logic circuit uses a constant voltage; DC power supply. To minimize the power 

dissipation, adiabatic charging is one of the promising candidates with AC power, which 

has a slower rising/falling time than charge/discharge time constant [8-11]. 

 

 
(a) RC circuit 

 
(b) DC signal 

 
(c) Adiabatic Charging 

 
(d) Adiabatic Charging 
(Unsynchronization) 

Figure 3. Operation of the RC circuit 

Figure 3 shows the operations at a normal RC circuit with a DC signal, adiabatic 

charging, and unsynchronization. The input signal vI(t), voltage drop of the resistance 
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vR(t) and power dissipation PR(t) in Fig. 3(a) are expressed in equation (1), (2), and (3), 

respectively, where τ  is the rising time of input,   is unsynchronized period and  tu  is 

the unit step function [11-16].  
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In the case of the DC signal (   ) at the input signal, the energy dissipation occurred 

at the load R until the end of charging at the load C, as shown in Fig. 3(b). In this case, 

vI(t), vR(t), and PR(t) at Fig. 3(a) are 

 

    tuVtv II  ,                                                                                                                (4)
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On the other hand, in the case of the AC signal ( 0 ) as the input signal, adiabatic 

charging and little power dissipation are shown in Fig. 3(c). In this case, vI(t), vR(t), and 

PR(t) are 
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The region of adiabatic charging decreased with increasing  of the AC signal, as 

shown in Fig. 3(d). In this case, vI(t), vR(t), and PR(t) are expressed as equation (1), (2), 

and (3) respectively [15]. 

 

2.2. Adiabatic Dynamic CMOS Logic (ADCL) 

The ADCL gate consists of the CMOS logic, AC power and two diodes for the 

adiabatic charging as it is applied to the CMOS logic. Figure 4 shows an ADCL 

inverter gate. In this circuit, because the output voltage of the ADCL gate is 

synchronized with the power supply, Vphi, the operating speed of the ADCL circuits 

is determined by the frequency of Vphi. Figure 4(a) and (b) show the principle of the 

ADCL inverter [12-16]. 

 

 

(a) ADCL gate 
 

(b) Operation waveforms 

Figure 4. Principles of ADCL Inverter  

Principle (I) : Pull-up network  

In Figure 4(a), pMOS and nMOS are on and off, respectively. In this case, the supply 

current path is generated and the load capacitor C is charged adiabatically by Vphi. The 

high level is then kept with diode1. 

 

Principle (II) : Pull-down network  

Under this condition, pMOS and nMOS are off and on, respectively. In this case, the 

current path is generated, as shown in Fig. 4(a) and the charge in C is discharged 

adiabatically into Vphi. 

 

Consequently, the ADCL inverter works in the adiabatic mode, as shown in Fig 

4(b). On the other hand, if the difference between Vphi and the voltage across C is 

large, adiabatic operation will not be established and power will be largely 

dissipated. The ADCL operates the adiabatic charging whenever logic level of the 

output is changed from high level to low and vice versa. Furthermore, the charge 

can be reused because the charge reverts to the power source at the discharge of 

load C. 
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3. Optimization of Control Block of Clock Cut-off Circuit 

 

 

Figure 5. Miniaturized Control Block of the Clock Cut-off Circuit 

The PWM is normally used for the dimming circuit. The ADCL digital 3-bit PWM is 

designed using ADCL gates. When input bits (LD0, LD1, LD2) are LLH, LHH, the 

output pulse width of PWM is about 33.3 %, 66.6 % and characteristics of ADCL, the 

adiabatic charging/discharge are confirmed respectively. The power consumption of 

ADCL digital PWM is lower than it of CMOS digital PWM through adiabatic 

charging/discharging operation. However, unnecessary operation at both dimming 0 % 

and 100 % of ADCL digital PWM output results in power consumption. The 

designed clock cut-off circuit pauses the D-ffs after cutting off the clock at both 

input-bit LLL (0 %) and HHH (100 %), and performs normal operation of the D-ffs 

at other case.  

 

 

Figure 6. Timing Chart of the Digital 3-bit PWM 
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Figure 5 shows the optimized control block of the clock cut-off circuit using De 

Morgan’s laws with ADCL digital 3-bit PWM. Figure 6 shows the timing chart and table 

1 lists the truth table of the proposed clock cut-off circuit with ADCL digital 3-bit PWM. 

The PWM is reset, if the load is at a high level. The LD0, LD1, and LD2 can control the 

output pulse width. For example the output pulse width will be 33.3 % if LD0 = L, LD1 = 

L and LD2 = H (LLH), and the output pulse width will be 66.6% if LD0 = L, LD1 = H 

and LD2 = H (LHH). This output pulse width of the PWM can control the dimming of 

OLED. The up-level D-latch was used to output the logic level of the SW and PO by the 

input-bit if the load is reset but to remain at the logic level of the pre-state if the load is 

set.  

Table 1. Truth Table of Proposed Clock Cut-off Circuit 

load LD0 LD1 LD2 SW PO clk_P Output 

H L L L L L L L (PO) 

H L L H H L clk Out_P 

H L H H H L clk Out_P 

H H H H L H L H (PO) 

L Don’t care Don’t care Don’t care Xn-1 Xn-1 Xn-1 Xn-1 

 

In reference [15], Boolean algebras, SW and PO of control block are  

 

212010 LDLDLDLDLDLDSW  ,                                                             (10) 

210 LDLDLDPO  .                                                                                                 (11) 

 

In this paper, SW, PO of control block are optimized using De Morgan’s laws as 

follows ;  

 

212010 LDLDLDLDLDLDSW  ,                                                                (12) 

210 LDLDLDPO  .                                                                                              (13) 

 

Table 2 lists the elements. Compared to the control block of Ref. [15], 10 transistors 

were reduced.  
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Table 2. Comparison of the Elements 

Ref. [15] This paper 

Logic gate Tr.(ea) Logic gate Tr.(ea) 

D-latch 3ea 54 D-latch  3ea 54 

Inv. 3ea 6 Inv.  3ea 6 

AND3 1ea 8 NOR3  1ea 6 

AND 3ea 18 NAND  3ea 12 

OR3 1ea 8 NAND3  1ea 6 

Total 94 Total 84 

 

Figure 7 shows layout of the optimized control block using Rohm 0.18µm standard 

CMOS model. Layout area of the optimized control block is 2,198.0um2, which decreased 

by 9.0 % compared to that of the control block of Ref. [15]. 

 
 

 

Figure 7. Layout of Optimized Control Block 
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4. Simulation Results 

The optimized clock cut-off circuit was simulated using hspice with Rohm 0.18µm 

standard CMOS model. Figure 8 shows the simulation results. The post-simulation 

confirmed that the clk_P is low level at both input-bits LLL and HHH because the SW is 

low level, and cutting off the clock. Moreover, the Output is a low level at input-bit LLL 

and a high level at input-bit HHH. Simulation results match the truth table of the 

proposed clock cut-off circuit.  

 

 

Figure 8. Post-simulation Results of the Clock Cut-off Circuit 

In order to confirm operation of total ADCL PWM with the proposed clock cut-off 

circuit, it and the ADCL 3-bit PWM are simulated using a Rohm 0.18µm standard CMOS 

model and hspice post-simulation. The DC power, AC power and clock were 1.8 V, 33 

kHz sine wave, 3 kHz square wave respectively. Figure 9 shows the simulation results. 

The simulation confirmed that the input clock of the ADCL D-ffs is cut off because the 

SW is high at both input-bits LLL and HHH. And the pulse width of the PWM output 

becomes 100 % because the PO is a high level at input-bit HHH. Moreover, adiabatic 

charge/discharge are confirmed other case, as shown Fig. 9①②.  

 

5. Conclusion  

In this paper, the optimized control block of the clock cut-off circuit was designed 

using De Morgan’s laws with ADCL digital 3-bit PWM. Layout area of miniaturized 

control block was 9.0 % lower than that of the control block of Ref. [15], because 10 

transistors were reduced using a Rohm 0.18µm standard CMOS model. The operation of 

control block is confirmed by computer post-simulation. The designed clock cut-off 
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circuit pauses the D-ffs after cutting off the clock at both 0 % and 100 % pulse width of 

PWM output.  

This shows the potential of the optimized ADCL digital PWM in future low-power 

OLED dimming systems. Moreover, at the Smart MIRAI House, the research results for 

the living environment of the near future are demonstrated and correlation between big 

data analysis and deep sleep are verified.  

 

 

Figure 9. Post-simulation Results of ADCL 3-bit PWM with the Clock Cut-off 
Circuit 
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