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Abstract

Considering production and marketing coordination between supply chain enterprises,,
this paper specifies a multi-agent supply chain concurrent negotiation mode %ﬁ

stage supply chain in the supply chain environment. Coordinator is us
optimal proposals based on particle swarm optimization (PSO) and send tlfes
to other threads. Proposal strategies based on retention valde and ti forward
by learning retention value of rivals through Parzen-wintiqw estinfefio. Simulation
experiment is conducted to test negotiation perfor evof the el ,Compared with
ordinary models, the model makes two improvem@s ollo %)( O is inserted into
coordinator to improve negotiation efficiency; roposa& gies are effectively
supported by Parzen-window estimation an able age to consider the retention

values of rivals. Further researches need one to s rust relationship between
agents and influence of external enviro su p@am negotiation solution.
Keywords: Particle swarm mlzatlon ); Estimation, supply chain;

Coordination; Negotiation .

1. Introduction Q 5{?
Intelligent mana of supply chains is an effective way for enterprises to

save costs and i co ness in the market environment of complicated
competition_a amic d . Multi-agent system has advantages such as
distributiv interactjvi nd intellectuality, so it is suitable for enterprise-

spanning emen
an environment o
negotiate with
meeting their
chains.

ply chains in the complicated market environment. In
ibutive supply chain, enterprises hope to concurrently
an one supplier to get better products, services and profits,
demands while improving collaborative efficiency of supply

We f hat most negotiation models require buyer agents to give counter-
propos ter receiving proposals from all seller agents. This pattern restricts
ipfo ion exchange and flexibility of negotiation strategies. In addition, most

pay little attention to efficiency of coordinators. In the actual operation of
supply chains, manufacturers look forward to consensus and win-win with sellers
through timely negotiation. For this reason, this paper establishes a multi-agent
concurrent model for two-stage supply chains. That means manufacturer agents can
use mixed proposal strategies based on retention values and time to negotiate with
seller agents through more than one concurrent threads. Meanwhile, PSO is used to
coordinate each concurrent negotiation threads to support negotiation agents to
reach agreements within limited time.
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2. Concurrent Negotiation Model

2.1. Model Framework

For accepting or refusing proposals and giving counter-proposals. This paper
takes sellers and manufacturers as research objectives and supply chain as a
production and marketing coordination network. In this model, manufacturers
provides products and sellers need to purchase. A model framework describing that
one manufacture agent concurrently negotiate with several seller agents is illustrated
in Figure 1. Manufacturers and sellers have their own negotiation information (such
as value range of negotiation issues and negotiation deadlines) and they do not know
the information of each other. Manufacturer agents are decomposed into several
sub-agents and one coordinator. The coordinator establishes negotiation threads at
the same number with current seller agents and formulates different nego iation0
strategies for each thread. Each sub-agent is controlled through correspongi

other sub-agents because each seller agent may have
Then sub-agents negotiate with seller agents based

Negotiation threads include sub-agents and corres
negotiation information of manufacturer agents@

Manufacturer Agent

Slib- ‘;'Seller

\@ | Agentri
sQ\

b- | Seller

i "1 Agentr2
‘ 1
@ Thr@'ﬁgenﬁub- Y i .| Seller
‘ Agent mn } Agentrn
Figur; o@ upply Chain Concurrent Negotiation Model
The negotiation s of single thread is shown in Figure 2. When negotiation

agents. Then j ches negotiation request and seller agents give response. All
threads are, cafsied out continuously. Check if there is the best proposal from
coordinat‘bﬁofore starting next round of proposing. If there is no best proposal,
send o nter-proposals according to negotiation strategies. If there is the best
pro ,_judge whether utility value of the best proposal is bigger than that of
proposal. If yes, negotiation belief of manufacture agents need to be
ted. If no, current negotiation strategy remains the base for giving proposal
(counter-proposal). When sub-agents and supplier agent success or fail in
negotiating, each thread will send negotiation results back to the coordinator.

starts, coordinatg ifiifializes negotiation thread according to the number of seller
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Thread initializes negotiation
strategy.

Receive proposal from
coordinator
No

The proposal is better than
current proposal

No
Current negotiation strategy is
retained

Receive feedback

Negotiation ends or not
Send negotiation results to
coordinator

Figure 2. Negotiation Proces 9

Send out proposal
(counter-proposal)

Update belief of sub-
agents

2.2. Setup of Major Parameters . OQ \%

Ag ={m,r,,---,r.} denotes a set \e mat f@rer agent and several seller
agents. For aeAg 3 %%sents % deadline of agent a .
X e{VA7% min® , max® ,w* Lde (jz’negoti topics, where V*7% represents the
proposal values the age a, sends t a; at the time of t, and [min®, max*]

agent a for represents actions of negotiation. In
A e{accept, re pt means accepting proposal; “reject” means
refusing p nd “p se means giving other proposals. U is utility function.
Quantltatl pic v, i atlon function

erence d|m|n|sh|ng for topic i

represents value ra agent a’& topic i. W denotes the weight vector of
Eropos

u (V)

; —m|n
max m|n

Preference ascending for topic i
Overall utility function of topics

a zgvviaua(vi) (2)

Final united utility function is the utility sum of manufacturer and seller when a
thread negotiate results. It can be expressed as:

UAL = U™+ (1-A)U" (3)
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If Sis used to denote proposal strategy, multi-agent supply chain concurrent
negotiation model is a six-tuple '={Ag, X,T,AU,S}.

2.3. Proposal Strategies

2.3.1. Time-based Proposal Strategy: Time-based concession strategy was proposed
by Faratin who believed that time is one of the decisive factors to concession range.

Time-based proposal strategy of manufacturer for the topic Viat the time of U can be
expressed as:

min+ (t /T, )® (max["—min"),

Preference diminishing for topic i

Vm"r(t)f = m m B m am
max;' - (t/ Tz, )" (max;"—min"),

Preference ascending for topic i \/
Time-based proposal strategy of seller for the topic v, at the time@kﬁ be

expressed as
min'+ (t/T7, )° (max: - min’), @
Preference diminishing for topic i \/

Vram t — Q 5

o (= (t/Ty,)° (max] - min), O ©
Preference ascending for topic i 9

2.3.2. Proposal Strategy based on Esti n of etention Value for Topics:

Parzen window estimation is usuall robablllty density function of

unknown distribution. The bas |s to te the overall density function

int in a certain range. Taking

according to the averag of e
manufacturer agents for e e, calcuP ler agents’ retention values for topics.

Assume (%, %, % sample mnown distribution and %iis the proposed
value of seller agent pic. The rlbutlon can be estimated as follows:

fL00=> X Q ©

Qmple size, h is window width and ¢(-) is window

function. For the
function and ga

P(X) = Zexp{( Ba)'y (7)
-h4 2h

e d represents characteristic space dimension and p, denotes the proposed

s of seller agent in the negotiation roundi .
Based on this probability density function, manufacturer agent may give counter-
proposal to seller while retaining estimation values on the premise of safeguarding
own benefits.

miny,  min]" < [ P(x)xdx
Vm%r(t) —
UT % J' P(x)xdx, otherwise

(8)
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2.3.3. Lineary Weighted Proposal Strategy: Above two proposals are complementary
to each other to some extent. Time-based proposal strategy fails to take into account
the rival retention values for topics though it considers the satisfaction degree of
negotiation deadline; while the proposal strategy based on estimation of rival
retention value for topics ignores the constraint of negotiation deadline. Thus these
two proposal strategies are combined by dynamic linear weight:

V() =5, xV T (t) +5, xV ™ (1), (9)
s;,S, €[0,1], H.s +s,=1,
Where s,. s, denote integration coefficient under the condition of s;,s, €[0,1]
and s, +5s, =1.

3. PSO-based Coordination Strategy -

In order to manage concurrent negotiation threads, PSO algorithm is ins \4)
the coordinator. Search the best proposal and send it to other threa iy under
negotiation until all threads are finished or reach the negotiation deadline” During
concurrent negotiation, one thread is over when it reaﬁreeme@

PSO is a population search algorithm based on a On% ation of bird
flock. Unlike genetic algorithm, it has no c@ and n operators. It
searches according to rate. In this algorithm nd|V|d rches the optimal

solution for itself or for the near |nd|V|duaI his popu ehavior also searches
the globally optimal solution for the w ce As: X, represents location of
the individual k at the time of tand es a te of u;™. It can be expressed
as: s\

X=X Autt (10)
Rate is an important param?fAnd e@@as
Ut =U +C 1 (Vg 2802 €1y ( (11)
*
Where Uf(j de \he rat indjvidual k at the time of tin dimension J; denotes
location idual k b the time of tin dimension J; c and ¢, are used to
accelerate Iarger&; rjand I represent random numbers in the internal

solution. The I solution for the individual t+1can be expressed in formula
().

t+1

Yy

[0,1]; ykJ is the ﬁ I solution for individual and ykJ is the globally optimal

(X‘”) < (%)
if f (x> f(y;)
re f(-)is fitness function, thus the optimal solution for the whole space is:

f(9i) =max{f (y,), F(y2),-+ T (yy)} (13)

According to features of PSO algorithm and supply chain concurrent negotiation
model, taking manufacturer agent as an example, negotiation threads can be taken as
particles in PSO algorithm. Proposals between threads represent current location of
particles, and proposal successfully negotiated through a thread is the optimal
solution for particle. The optimal solution with highest utility value is the globally
optimal solution among all successfully negotiated threads. Increment or decrement
of proposal values is rate and the fitness function is utility functionu™.

(12)
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4. Description of Negotiation Procedures

Based on methods above, negotiation procedures can be described as below:

Step 1: Coordinator establishes negotiation threads according to the number of
sellers and initializes proposal strategies and PSO parameters of each thread. PSO is
used to coordinate concurrent negotiation threads. Calculate the best proposal and
send it to other sub-agents.

Step 2: When initializing, manufacturer agents and seller agents use time-based
proposal strategy to negotiate with sellers according to the formula (4) and (5).

Step 3: When the two parties accumulate some history data of negotiation after a
certain period, the formula (6) and (7) are used to calculate retention values.
Linearly weighted proposal strategy can be used to conduct one-to-one negotiation
according to the formula (9).

Step 4: After sub-agents receive the best proposal from coordinator, urrent,
proposal strategy can be retained if the utility value of the proposal is la W
that of their own proposal. Otherwise, is appointed as new rate to calc% e

concession parameter of time-based proposal strateg%’
through the formula (3) and (9). If negotiation is s@ﬁ ,

5; otherwise, return to Step 3.
Step 5: When one thread’s negotiation is s ful sWotiation results to

coordinator and wait until other threads co te negotiation
Step 6: Coordinator chooses the optl 6 r acco to the formula (3) when

all threads complete negotiation.

5. Experiment &6 Q\\

In order to verify the ra! ity 'gm ientificity of the model, simulation
tti

experiment is conducted n onding parameters. For comparative
purpose, experiment papageters ar%nh the reference [4] as shown in Table
1. The experiment sh repeate 3 times under same condition with average
esults% experimental evaluation criteria include final

r

values as experi
united utlllty f , suc ate of negotiation and average negotiation time
ual ti ccessful negotiation to negotiation deadline)

,{@e 1. Experiment Parameter Setting
Pareys(ef) Description Value

(Q\ - Number of seller agents [1,30]
Number of topics [1,8]
O T Negotiation deadline [150,600]
O min? Minimum value of agent a to topic i [0,20]
@ max;’ Maximum value of agent @ to topic i  [30,50]
w? Weight of agent a to topic i 1/N

According to results of simulation experiment (as shown in Figure 3,4,5), the
model achieves a total utility value of 0.452, an average negotiation time of 0.72
and a success rate of 78.5% when the number of sellers is 5. Ordinary models have
total utility value of 0.395, average negotiation time of 0.79 and success rate of
70.9%. When the number of sellers is 10, the model achieves a total utility value of
0.516, an average negotiation time of 0.76 and a success rate of 84.6% while
ordinary models have total utility value of 0.427, average negotiation time of 0.83
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and success rate of 73.5%. The model also achieves better negotiation results than
ordinary models when the number of sellers is 15, 20, 25 and 30. In addition, the
proposal strategy used in this model provides the best proposal for other threads. As
the negotiation goes on, the rest threads refuse to accept proposals that are beyond
their own preference ranges. Therefore, average negotiation time reduces and
growth of success rate decelerates with increasing number of sellers.

Analysis above gets following conclusions: (1) the model can achieve negotiation
results with larger utility values compared with ordinary models, and utility value
increases with rising number of sellers. This indicates that negotiation result will be
better when negotiating with more sellers if costs are not considered. (2) The model
takes less time to reach negotiation results than ordinary models. When negotiating
with same number of sellers, the model achieves results more quickly. PSO
algorithm is used to accelerate concession rate, shorten negotiation time and
improve negotiation efficiency. (3) The model has a higher success rate ofo
negotiation than ordinary models. Parzen window estimation is used
retention values of rivals for topics, to gain more negotiation inform %elp
own parties to choose more suitable negotiation strategies and to i uccess

rate. \
.| ””\
A

1

09 r

Average negotiation time

0.6 -

0.5
20 25 30

\Iumb er of vendor:
ﬂ - Genera del =—i=— This model
Figure 3. Final Total Ilty or Different Number of Sellers

.
5 10 15 20 25 30
Number of vendors
—@— General model =—i=— This model
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%
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Figure 5. Negotiation Success Rate for Different Number of Sellers

6. Conclusion

Considering production and marketing coordination between supp in’
enterprises, this paper specifies a concurrent negotiation model under con of
poor information and applies multi-agent technology to two-stage chain.
PSO-based negotiation strategy can update belief walues of/a during
negotiation so that negotiation can be carried ntinuo Simulation
experiment results indicates that the model is % eff ent and has

t

advantages in utility values of negotiation resu@e iatj o\/ nd success rate

compared with other concurrent negotiation mo \
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