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Abstract

Speech recognition rate drops significantly when interfered by noise in complex
environment. In order to improve the accuracy and the robustness of the gpeech,
recognition in adverse acoustical environments, this paper reviewed the main pr; &Af
noise robust speech recognition, proposed a multi-space compensation al '%Which
from signal-space, feature-space and model-space based on wiener fl|% ogram
equalization and vector Taylor series. Theory analyses perime how that
the proposed method can overcome the defect of the sh ent of recognition
rate of existing speech recognition algorithm inte y enV| tal noise and
improve the accuracy and the robustness in 6e aco w nvironments. The
algorithm provides the theoretical support for the ech rec n in airport, station,
wharf and other complex noise environment.

Keywords: Robust speech recogn@\Qmse ession, Feature compensation,

Model compensation s\\

1. Introduction A
There exist various kings,of noise s@)ort, station, wharf and other complex noise

environment, resultin e misma f training and application, and then causing
extreme decline ig t ébjgnitio formance of the system. Therefore, how to improve

the robustness syst come the key problem in practical application
of speech r ifion system

Researc a st speech recognition system’s performance will
greatly decr greatl ease when applied in practical noise environment, due to the
mismatch of trainin esting environment caused by the environmental noise [1]. The

reduce this mi ch, and to make the recognition system performance under noise
environ as close as possible to the performance in quiet environment.
We m%lyze the effect of mismatch of training and testing environment on the
perf of the speech recognition system from signal space, feature space and model
c e robust speech recognition algorithm from these 3 levelsis used to
@ate the mismatch impact through the method of speech compensation. At present,
space robust speech recognition algorithm has been very mature. In signal space, the
Wiener filtering method of (Wiener filter) is a traditional-classical one, and the European
Telecommunications Standards Institute released the noise robust algorithm for
distributed speech recognition based on it in October, 2002. Michael Tinston and
Yariv Ephraim proposed the multistage Wiener filter for speech enhancement in signal

research purpo@ noise robust speech recognition algorithm is to eliminate or to
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space to eliminate the effects of additive noise onthe speech, and achieved good
experimental results [2]. In feature space, in order to reduce the mismatch of training and
testing data, the feature warping algorithm is commonly used. Histogram equalization
(HEQ), proposed by De La Torre Angel and others (Reference[14]), is
a cumulative histogram normalization algorithm using feature parameters, has
transformed probability density distribution of the noisy speech into that of the clean
speech (generally mean is O and variance is 1), and has achieved a good effect. In model
space, Pedro J Moreno first proposed a vector Taylor series (VTS) algorithm. Then, the
application of VTS in the model space of the hidden Markov model (HMM) parameter
adaptive adjustment algorithm is improved by Alex Acero, Li Deng and other scientists,
achieving excellent results.

In order to further improve the accuracy and robustness of speech recognition under
noise environment,and to  solve the problemof the descent of speech
recognition rate under noise interference in complex environment, we put for a

speech recognition algorithm based on multi-space compensation. The
integrated speech enhancement, noisy speech regular and adaptl ameter
ce.

adjustment algorithm, optimizes from the signal space, featl&pace a
2. Ambient Noise Models Q

Research shows that, the actual enwronmenta O(on of mismatch
between training and testing. Among them, th tlve no d channel influence
are the two most common factors. ThereforQe pay, at ention to the additive

noise and convolution noise.
Assume: the clean speechis X[ Iutlo ise is h[m], additive noise is
@wodel of speech recognition can

y[m]

n[m], noisy speech is y[m]. Then, th
be established, as shown in Figure

x[m

n[m]

\%re %\mlse Environment Model

From F| t @mn model [5] of noise environment can be build:
[m]

y[m]= X[m (1)
And then get uency domain model from formula (1):
Y (w) = X (p)[Fw)]* + N (w) (2)

In la (2), X(w) and Y(w) respectively denote the power spectrum of clean
d noisy speech, H(w) is the the frequency response of channel distortion

, and N(w) is the power spectrum of additive noise.

Now, we analyze the problem of mismatch between training and testing environment
caused by noise from signal, feature, and model space.

Assume: the speech data in training environment is S; feature extraction from speech
data in training environment is X; and speech model obtained from training data is Ax;
T,Y and Ay respectively represent speech, characteristics and speech model in training
environment. When the training and testing environment mismatch, noise makes T,Y
and Ay distorted, and then Dy(:), D,(-) and Ds(-) respectively represent the distortion
function.

Thus, we can build the mismatch model of training and testing, as Figure 2 shows.
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signal-space feature-space model-space

Training
Dy(*)

Figure 2. The Training and Testing Mismatch Model

Now we will discuss how to eliminate the influence of different training and testing
environment according to Figure 2 from the three levels of signal space, feature space and
model space.

3. Speech Recognition Algorithm based on Multi Space Compensation

In ambient noise model shown in Figure 1, first, Wiener filtering is used to réstraj "
additive noise in signal space firstly, then, HEQ acts on each section of cepstru in
feature vector in feature space, and finally, VTS is used in model space t HMM
model’s parameters. * @
3.1. Signal space \

In formula (1), supposing that the effect of conn nowsd by the channel is

neglected and only additive noise is considered, we aline r h[m] for recovering
the clean speech from noisy speech mterfe@wy addlt@mlse to make the signal

operated by filter x[m] y[m]*h[m ls h the est expectation value of
(x[m]—x[m])*.

On the premise of that bo thé[@nd n[m !;sexelevant stationary signal, we can use

suppression filter to represe frequenc in:

H W) =—— ) __(2) ’\\.Q ©)

X (W) N@\
Formula (3) i \\Nlene 7,8]. When signal xim]and n[m] satisfy the
above assu e W| er filter can achieve suppression of noise, and will not cause
great targe atlon n and background remain noise [9-11]. The desired power

spectrum X(w) and n be respectively obtained from the time series of x[m]
and n[m]  throu h%« -frame  mean. However, in practice, the speech signal
and backgroun iSe are non-stationary, that is, the power spectrum changes with
time, which cam\beé represented by X(m, w) and N(m, w). Therefore, we focus on the

research FT (Short Time Fourier Transform, STFT) for each frame signal through
different\Wiener filters.
T -varying Wiener filter is:

g(pL W= X(PLW) @

X(pL w) + N(pL w)

In formula (4), x(pL,W)ls the estimation of the time-varying power spectrum X(m,w)

of x[m], and N (pL,w) is that of power spectrum N(m, w) of stationary noise.
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3.2. Feature Space

HEQ is usually applied to digital image processing [12,13], aiming to provide a
transformation  x=F(y) to transform original variable probability density
function(PDF) py(y) into the reference probability density function pes(x) [14]. Under
certain conditions, the relationship between the cumulative density function of x and
y (cumulative density functions, CDF) respectively is:

CY (y) = Cref (F(y)) (5)
F(y)=Ce (C/(¥) 6)

In practice, we can only obtain limited data. Therefore, we can use the cumulative
histogram to replace the CDF [15].

In this paper, we use HEQ incepstrum domain. Each cepstral coefficiegts ares
respectively independent equilibrium as a reference probability density fun Me
specific process is as follows: each coefficient was estimated a %%tlve
histogram; unify each sentence by considering 100 intervals between (u,- +40,);
uy and oy are the mean and standard deviation of the inal valde eference

cumulative histogram can be obtained from normal disgrioy Wi h ze ean and unit
variance. In formula (6), we can find each interval gente int whi be used as the
sate pW

two recent columns linear interpolation points toc

3.3. Model Space 6

In model space, we choose first-oft QTS ( onr Series). First of all, on
the premise of knowing the additive n noise, we use first-order VTS
to get the mean value and varlanc M in CC cestrum domain. Then, we can
re-estimate the mfluence noise and c nnel on the actual speech model by
using EM algorithm. An accuraté parameters in noisy speech model are
obtained. Q

The specific algorit sy transfor mula (2) and make it into the log-filter-bank
domain, and  then equation ultlplled the non-square  discrete cosine
transform (DTC) * The Q@ non-linear dlstortlon model is obtained:

y=X+ h eC (f\@) 7)
In formula (7), C* @ inverse transformation of DCT matrix. y, X, n and h are the

ector value of the noisy speech, clean speech, additive noise, and

Hy &E+Clog(l+exp—ﬂ”_'té‘_ﬂh) -
% X+luh+g(lux’luh’lun)

9ty s 12,) =CIog(1+exp%) )

where g, . 4+, and g, are the mean vector of y, X, h and n respectively.

After differential processing of formula (8), we can get:

200 Copyright © 2016 SERSC



International Journal of Smart Home
Vol. 10, No. 9 (2016)

=C-diag —— —=G (10)
H 1+expM C
0
o6 (11)
Oty

In formula (10), diag(.) represents the diagonal matrix. On the premise of knowing
and M, , G(.) depends on the mean vector . In particular, for the k-th Gauss based on
state j, the corresponding element of matrix G(.) is:

*
G(j,k) =C-diag L -1
1+ expw
C
Hence, we can get the relation between noisy spee %Dtlve nd the k-th
Gauss mean vector in state j of clean speech by using t der

’uyyjkzlux,jk—i_/uh—i_g(/ux,jks,uh,,un é

z;Ux,jk"'/uh,o"‘g(/ux,jkuuh,ouun,o)"'G NO (14, .ﬂ%( _G(j’k))(/un_/un,o)

(13)
where Hno and p o respectively repr Q @sion point of W, and .
0

The formula (13) can only be a the S f the MFCC vector. We can get
%, i of the adaptive HMM from %, ;
G(

Z:y,jk zG(jik)zzx,jk G(J G(J k)) (14)
In formula (14), Z covaria atrix of HMM, X, is the covariance matrix of

noise. Here, we r channe as a fixed and known voice so that we do not consider
the channel dlffe &/

For the elta and delta of the MFCC vector, we can get the adaptive
formula of ean ve covarlance matrix:
zuAy jk ~ G(J k)/qu (15)
My * ~G(] @ i« (16)
Y AWK 20 1 GULK)T +(1-G(),K) X, (1 =G(], k)T (17)

@Qe(j,k)zm G(j. k)" +(1=G(j, k) X, (1 =G(j. k) (18)
onsidering we have already known the additive noise and

channel (convolution) noise in advance, we use a first-order VTS to get the approximation
of the mean and variance in the MFCC cepstrum domain. However, in practical
situations, the effect of additive noise and channel noise is complex and changeable. Thus
we propose that we should re-estimate the additive noise and channel (convolution)
noise by using EM algorithm [18,19]. The specific process is as follows:

Qs represents the state sets; Q. represents the Gauss set of each state, 6, and &
respectively represent the state value and Gauss value for the time frame at t time, 1 is the
mean parameter collection of new noise and channel, 1 is the mean parameter collection
of old noise and channel. The likelihood function of a speech can be expressed as:
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F(12)=2.2 2. 6 =& =kIY,2)-logp(y, 16 =& =k A) (19)

t jeQg ke,

In formula (19), p(yl@=j, &=k, 1) ~ N(Ys My Zyi) isthe Gauss distribution whose
mean vector is Jy jxand covariance is X, j.

In order to simplify the formula, we use y(j,k) to represent the posterior probability of
the k-th Gauss under state j of HMM:

7.(1.K)=p(, = j.& =Kk|Y,2) (20)

In order to get the maximum value of the likelihood function, we need to obtain the
differential F under p, and py, let this differential expression equal to zero, as follows:

2.2 2 n( 0 =G k) =Ly, = 44,5 1=0 @*

t jeQq ke, v
X

t jeQg keQy, XQ
We can get the mean vector for posterior probabild ditiw:éﬁ Mn by taking

the VTS

approximation formula (13) into (21): O X\/
>33 nGRA-GGk] > rlidad -G k)

My = /“n,o +{ 7;695 keQ, \@

t jeQg ke,

) L
'2;,1jk(| -G(J,k)) y,jk‘K@jk —HMpo— g(/ux,jk!/uh,()’/un,o):l

\ 5\\ (23)

Similarly, take the equau@@nto (22\@d make HUn=Hno, then the channel mean

vector can be estimated as:

@ ,\Q S DIDIPIFACHI G
,uh=yh,0+{zzw)6(j,kl§ﬁ(j,k)} TR
' Jegé Q '2;,1jk ':yt ~Hy ik T Hno g(ﬂx,jk’ﬂh,o:ﬂn,o)]

(24)
Formul nd (2 @litute the iteration process of EM algorithm. We can getthe
accurate value of ?2 hich shown in Figure 3 by using EM algorithm.

<
Ol

Q)O

PIDIDIRACHY IGHIIDmN (7N B¢
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[ Initialize channel mean vector; Initialize noise mean and variance |

|
<

[ Use formula (17)~(20) to update CHMM parameter |

[ Use formula (22) to calculate posterior probability |

! \ 2
| Find the Optimal iy, and the mean and covariance of adaptive CHMM | 0

Figure 3. The Model Reference Adap'&%lbw C@
4. Experimental Results and Analysis O \\)/
S

The algorithm is based on AURORAII d e, whichdS,a subset database based on
TI-DIGITS and is continuous digital spge recorde lean environment. 8 kinds
of additive noise  (including the , gurgli ound automobile,  Exhibition
halls, restaurants, streets, airports 1@ stations) and a channel
interference (convolutional noise {\be adde he database according to the
different SNR (such as 20dB, 1 dB,5 -5 dB).

The test has provided tw nmg set clean training set containing only clean
speech data; (2) the noisy tkgining set not only the clean speech data but also the
noise from subway, g ound, au bile and Exhibition hall whose signal-to-noise
ratio is from 2 dB. 3 groups (A, Band C): group A contains the same
noise and signal; ¥se rati noisy training; group B contains the noisy data
whose sign3 !@e ratio is same with group A, but the current noise is from restaurants,
streets, ai and tations; group C contains two kinds of noise of group
A (subways ard cars), so includes a distortion of channel (convolutional noise). Two
types of experimen efined: clean training experiment (Clean)--use a clean training
set to train aco dels; noisy training experiment (Multi)--use noisy training set to
train acoustic r@? The test result is the mean value of each test group (A, B and C) on
the cond%o the five signal-to-noise ratios of 20dB~0dB. Both clean training
experirrb d noisy training experiment use HTK toolkit to train the HMM model
[19,

e level 23 MEL triangular filter bank, obtaining the voice signal between 64Hz~4
by using convolution calculation of 100Hz to extract the basic parameter. Use DCT
to “transform these parameters until into cepstrum domain, and retain the cepstrum
coefficient C1~C12 only. Finally, we obtain delta and delta/delta part of MFCC based on
these coefficients are differential and two differential treatments.

Acoustic model assumes: each digital training of 0~9 represents a HMM maode, and
"oh™ is also trained as a HMM model. For the 11 digital HMM model, we suppose N=6 of
each model, the structure is from left to right, and there is no jump between states. Each
state corresponds to a 3 order mixture Gauss mixture density function. The covariance
matrix of HMM is a diagonal matrix.

The recognition accuracy rate contrast of this algorithm and related algorithms is
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shown in table 1.

Table 1. The Contrast between Different Algorithms for the Accuracy

Group A GroupB Group C average

Base-Clean 61.34 55.73 66.16 61.08
WF 73.71 71.35 70.62 71.89
WF+HEQ 82.08 81.61 81.73 81.81
WF+HEQ+VTS 90.98 89.79 90.15 90.31
Base Multi 91.06 90.47 90.78 90.77

Table 1 has listed out the result of each recognition test; the value in the table is the
mean of AURORA Il test array A, B and C in different signal-t n0|se»
ratios(20dB~0dB). Among them, Base Clean represents a clean training experi
does not use anyspeech compensation algorithm; WF represents a

experiment, which uses only the Wiener filter in the S|gnal space, WF+

clean training experiment, which firstly uses Wiener f|I the sig hen uses
the SNR higher cepstrum domain histogra atlon (HEQ)
treatment; WF+HEQ+VTS is the S e gnltlor\/algorlthm based
on spatial compensation combining the lener iltering, histogram

equalization, adaptive feature space, VTS model sp compenéfw under clean training
experiment; Base Multi does not use anQpeech@o sation algorithm under
is

the noisy training experiment. Conclusio table: e recognition results are
improved in this order: Base Clean HEQ+VTS, Base Multi; (2) the
performance of WF+HEQ+ very to that of the noisy
training test (Base Multi); (3) é\HEQ w Q+VTS have slightly
different influence on the ftest A, Bal --WF has little compensation effect on
group C; WF+HEQ and W Q+V |mprove the accurate identification of

group C; all the recog n accu ate of groupA in WF WF+HEQ, and
WF+HEQ+VTS is h| n that

ur\ <

80

Oé x@ T

(%)
6)
:Z?fﬂi

rac ;/
L 4
3

7z

-7/
Ot |
Ny —%—— Base clean
v~ — A
20 g WF

B
<] | /
; U
;/ - WF+HEQ
% - WF+HEQ#VTS
ot —H—Basemuti |
-5dB 0dB 5dB 10dB 15dB  20dB  25dB

SNR

Figure 4. Different Signal to Noise Ratio of each Algorithm
Recognition Results
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The recognition accuracy rate of each algorithm in different SNR is shown in
Figure 4. From Figure 4, we know that: (1) the recognition accuracy rate of the speech
recognition algorithm based on multi-space compensation is very close to that of Base
Multi in different SNR, and especially in the low SNR, the recognition performance of
WF, and WF+HEQ is improved greatly. (2) The recognition accuracy rate of each noise
robust recognition algorithm is low in the very low SNR (-5dB); while it is high in the
high signal-to-noise ratio (above 15 dB).

The experimental results show that: the recognition accuracy rate of group A and B has
been greatly improved after using the Wiener filter in the signal space, verifying that this
algorithm can restrain on part of the additive noise, while the performance of group C
hasn’t been improved so much,the reason isthat it includes channel
interference (convolution noise), and Wiener filtering has little or no effect on
the channel interference; the recognition accurate rate of each group becomes higher after
using cepstrum domain histogram (HEQ) in high SNR cepstrum domain of featur aces
because HED has suppressed the addictive noise, channel noise and nonlinear
comprehensively; the recognition correct rate of this algorithm in different si aI —n0|se

ratios is very close to that of the noisy training experiment, al d especiall i SNR,
the recognition performance of WF and WF+HEQ WI|| innproved ioUsly. But the
accuracy rate of recognition is very low in the Iow ess tha B) by using

the noise robust recognition algorithm.

5. Conclusions

In view of the defect of the speech reco algorif %ed on the hidden Markov
model (HMM), whose speech reco rate deegeases significantly in the noisy
environment, we put forward the spe gnl i0 mthm based on the compensation
of space from the signal sp ature and model space, combining
the environmental noise cause y th matches between the training and
testing source.

The test results in AURQRA 11 shg\@‘ he algorithm is effectively integrated with
the advantages of Wi iltering, histegtam equalization, and vector Taylor series, and
this algorithm ha$ ved t efect of speech recognition rate of the speech
recognition algogit ased M dropping sharply in noisy environment, has
achieved highyJecognition rate,arid has significantly improved the accurate rate of the
robustness @ recognition algorithm. This algorithm has very good application
effects in th dofs arphome and network appliances.

O
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