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Abstract
Expanding Ring Search (ERS) is an advanced flooding technique exploring f W’
progressively. It is widely used to locate destinations or information in wirgele sor

estimating the average energy cost of ERS strategies, paring the
energy cost of an ERS strategy with pure flooding. Te@w used to prove
that incremental ERS strategies are inefficient i cale, Wi sensor networks.
Furthermore, we propose an ERS strategy optimizatie algorith\ etOpt, which can be
applied to both dense wireless sensor netwo nd spa{;ges. The simulation results

show that the strategy obtained by SSetO, cost 59 energy than prior works
when the network is sparse, say, the avera& gree is@s than 30..

\d
Keywords: wireless sensor netv@q ;roadca&t}:osting; search problems

1. Introduction A ’\6

Wireless sensor netwi onsist ob@ess sensors with finite power, which makes it
important to design efiergy” efficient seafch method. Expanding Ring Search (ERS) is a
flooding method. xtengi %ications in target discoveries in wireless networks,
such as those W@‘ tiIizedrin%ro te discovery process of routing protocols™??, those
used in wifeleSs ‘senso rks for sensor discoveries™® or those used in Ad Hoc
networks fer_service ries®’l. ERS explores for the target progressively by
increasing the searchi ge after each search fails. Under ERS a request is broadcasted
and propagated i etwork. A preset TTL value is carried in the request and every
time the packe&layed, the TTL value is decremented. This continues until TTL
reaches z%ra and\he propagation stops. Therefore, the searching range is controlled by the

minimize energy cost in wireless sensor networks is address?ed.

TTL valuéNFhe preset TTL values compose an ERS strategy ™.

Ther been a number of works on ERS energy cost analysis. Most of them were
f u@ n the problem of how ERS strategies can affect the energy cost of route
% y in protocols, i.e. AODV, DSDV or FSR. Perkins selected AODV to compare
theouting loads in two cases: with and without ERS strategies®. The comparison based
on simulations was presented in [9]. A detailed framework consisting of modeling of
routing overhead generated by three widely used proactive routing protocols (DSDV, FSR
and OLSR) was presented in [2]. These works provided an understanding about
effectiveness of ERS strategies in routing protocols in terms of routing load reduction.
Different from their works, we try to obtain the best ERS strategy.

Only a few works were focusing on ERS strategy optimization. Hassan and Jha
studied the optimum threshold for the incremental ERS strategies™®. The authors
developed a theoretical model for analyzing the expected broadcast cost as a function of
threshold , and argued that there was an optimum value of , which minimizes the
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expected cost of broadcasts. Extensive numerical experiments validated their theoretical
model by considering a large number of random network topologies of different sizes and
path lengths. However, the theoretical model can only be used to obtain the optimum ERS
strategy under the condition that the searching range increases only by one hop after each
failed search. Chang and Liu revisited the TTL-based controlled flooding search
extensively, which was not confined to the incremental ERS strategies . They proposed
an analytical model by counting all the nodes involved in request receptions during the
searching process. A search strategy optimization method based on dynamic
programming was proposed. Because the energy consumed by receptions is much smaller
than transmissions, Cheng™? and Jing™ analyzed the cost of ERS as the number of nodes
involved in request transmissions respectively. Cheng investigated geography-based and
hop-based flooding control methods, and provided a general formula to determine good
parameters for two-tier and three-tier schemes™. While Jing proposed another analytical
model, and obtained a strategy close to the optimum based on the analytical madel ine
dense wireless sensor networks with the source node located at the origin!*.

We focus on a fundamental problem concerning the best ERS strateg Wize
energy cost for wireless sensor networks. It has been shown that different ER ategies
can cause different energy cost 1 **** ] Therefore, it is interesting i the best
ERS strategy for networks. In this work, we analyze the sming process S strategies
in wireless sensor networks, and propose an ERSNstrategy op%qjﬁtion algorithm
S. V

SSetOpt. Our contributions can be summarized as
® \We propose a model for estimating the ge energ ost 0f ERS strategies. This
model is briefer than the prior WM&?&\U% w %ﬂot have assumptions on

network density or successive seart es, 0 odel is more adaptive than the

prior works. % .\I
® \We prove that incremental ategie‘ﬁie inefficient in large-scale wireless
sensor networks. Existing ind thi%en menon by simulations, but the reason

is not fully discussed. d the red: that the successive search ranges are too

close. We propose a theorem ab u@ﬁason, and derive a lower bound of network
radius when pure flogdifng should ed instead of incremental ERS strategies.

® \We propose an &trategy Oftimization algorithm SSetOpt, which can be applied

orks and sparse ones. The simulation results show

to both dense SS S
that the strate obtaine%ﬁSe Opt can reduce energy cost by 5% compared with
prior @ en the ork is sparse, say, the average degree is less than 30.

The rest of this p
models, energy cos
that increment
using relative

rganized as follows. In Section 2, we present two analytical
ytical model and relative cost ratio analytical model. We prove
strategies are ineffective in large-scale wireless sensor networks
ratio analytical model in Section 3. The ERS strategy optimization

algorith tOpt is proposed in Section 4. Section 5 presents results of simulations
which ur conclusions. We conclude our work and state future work directions in
Sectj

%QS Energy Cost Analysis

2.1. Assumptions and Notations

The wireless sensor network is connected. We assume that a single destination exists in
the network and is equally likely to be located in one of the non-source nodes.
Throughout our paper, we use the following notations:
® | AJ:theradix of setA.
® N : the total number of nodes in the network.
® s the source node that employs ERS.
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® R:the minimum hops required to reach the farthest node froms .
® A :the set of all nodes that can be reached within X hops froms .
® d: the distance (minimum hops) between s and the target, also an integer-valued

random variable taking value between 1 and R.
® F(x): the percentage of nodes that can be reached within X hops froms .

®  SSet: ERS strategy. SSet ={L,, L, L,,---,L,}, where L, is an integer representing the
preset TTL value in the i th search, and L, +1<L,,;.
® B: the energy cost of SSet, also a random variable.

2.2. Energy Cost Analytical Model
We propose an energy cost analytical model by counting all the nodes involved in

request transmissions. \/’

When s wants to discover a destination, the first search is started with TTL v
request with TTL value L, is broadcasted. The number of nodes mvol@ nding

request will be| A_|, and the number of nodes requeste%be |AL% fore, the

incurred cost of the first search writes

E(Bld<L+1)=A_| O \}/ (1)
Each node has equal probability to be t 3 destlnation so the probability that the

destination is successfully located in the f|r is amx ately equal to the ratio of
nodes requested in the first search over m\ ork

Pld<L +3<A_,|/N s\ )
The i th search is started%’ valye f the i—1th search fails. The number of
nodes involved in sendmg req w:x , and the number of nodes requested will

be | A,..|. The expect when t tination is located in the i th search should be

the sum of | Aﬂé | ALJ_ g@ is the energy already cost before this search. Thus
j=1

é%mj | ©)

=1
ity of the i th search is

B=0A.l-1A.D/N (4)

Thus rive at the following formula of the average energy cost.
E(B)=E(E(B|d))

@O =EB|d<L +)xP{d<L +1+

M PfL, +1<d <L +BxEB|L, +1<d <L +1)
i=2

we can get;
E(B|L,+1<d <L +

The success
P{L ,+1<d <

A0 AN+ S (I A X A~ A D/ N))

i=2  j=1

F(x) is the percentage of nodes that can be reached within X hops from S .

Substituting F(x) = A [/N in the equation above, we obtain the energy cost analytical
model as
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E(B)=N(F(L1)+iF(Li)><(1—F(Li1+1))) (5)

2.3. Relative Cost Ratio Analytical Model

We propose a relative cost ratio analytical model for comparing the energy cost of an
ERS strategy with pure flooding in this section. The cost of the last search of SSet is

| A_ | as we have explained. To make sure the destination can be detected in probability

1, the request in the last search should be received by all the nodes in the network, which
makes the last search turn into pure flooding. Therefore, | A_| is also the energy cost of

pure flooding. Comparing the energy cost of ERS with pure flooding, we can get relative
cost ratio analytical model as follow.

n .
p(SSet) = (| A_ |-E(B))/ N =) (F(L, +)F(L)-F(L.)) \/
i=2
Our goal is to find the best ERS strategy SSet that can maximum ¢ . W Z

several inefficient ERS strategies in next section, and pro ug optimiZati gorithm
in Section IV \

3. Inefficient ERS Strategies

Incremental ERS strategies have been w used ed in these years®'.
Researchers have proved that they can h educe @/ cost in route dlscovery
procedure of route protocols. However, d som phenomenon through our
experiments, so it is important to fig Why n to decide when pure flooding
should be used instead of ERS s rive a necessary condition under
which an ERS strategy |s and ve a lower bound for the radius of

network where pure floodln I be usé
Theorem 1: SSet ={L,, o, L} strategy. For any £ <1/12, if F(L))<e,
F(L,)=1, and F(L,) _1)<<9 themwp(SSet) <0,

Proof of Theor : %‘
L,+1<L,, ) isan asing function, then we can get F(L_, +D<F(L).

Q(SSet@HLi_ﬁl)F(Li)— F(L.)

@r@ZF(Li)F(mF(Li1)<1+zF(Li)ZZF(Li)

i=2 i=1 i=1

e<1/12 e ere must be a K satisfying 2<K <1/6¢ . F(L;) can be seen as
monotopisSeguence f; in the range of (0,1],so f?—f <0. We focus on f; in the range
of [ e].

@ (/)(SSet)<1+Z(f2—f)<1+ Z (f2-1)

f,<e,0<f —f <&, ,and f, =1, then the number of elements of sequence f; in the
range of [Kel-Ks] is |(1-2Ke)/e)+1]| at least, and f°—f <K’s*—Ke .
Assuming that f, is the smallest element greater than Ke, we get
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m-1+| (1-2Ke)/£)+1]

@(SSet) <1+ > (f7—1)

<1+ ((1-2Ke)/ &) x (K?e* —Ke)
=1+ (1-2Ke)(K2e —K) =1+ K (3eK —1) — 2K ¢?
<1+ K(3eK -1)

2<K <1/6¢, therefore 3Ke<1/2.¢(SSet) <1+ K(@/2-1) =1-K/2<0

The intuition behind this result is that an ERS strategy is inefficient if the successive
search ranges are too close. It also implies that the search strategy with intensive search
ranges, incremental ERS strategies for instance, should be carefully used in the network
with large radius, where the condition of Theorem 1 can be satisfied easily. Incremental
ERS strategies (TTL_# in short) increase the TTL value by a constant integer a aft r each

failed search, i.e. Ly =ixa. Using Theorem 1, we can deduce the theorem belo
Theorem 2: If F(x)=(x/R)", SSet={L,L,,L;,---,L,} is an incr \Av}

strategy TTL_a, where @ is a small integer, n= L(R 1) a +1 L,
and L, =R, then 12a(2" —1) is a lower bond for R m SSE'[)
Proof of Theorem 2:

F(L)-F(L)=(@x@i+1)/R)" —((a ) <(a V mz

=0

Because axi<L,=R,wecanget i<R/
F(L.)-F(L)<(@"/ é% \g —(@/R)x(2"-1)

If R>12a(2" -1), then FL (L,) /12 and F(L)=(a/R)" <1/12, which
satisfies the condition of The 1, thus <O.

Theorem 2 implies thatyT TL_a | lent in large uniformly distributed wireless
sensor networks, whe atio o n reached within X hops can refer to the type
F(xX)=(x/R)". @ corr d to a linear wireless sensor network, a wireless
sensor netvvor d on I a wireless sensor network placed underwater

respectlveIO

4. ERS Strategy |zation

4.1 SSetOpt @

To geN&.best strategy, let opt be the maximum ¢@(SSet) under the condition
| SSet | d the strategy corresponding to Opt is the best strategy which is donated by
@Ohus we have the ERS strategy optimization problem as follow.

(D

opt = max {p(SSet)} = maxZn:(F(Lif1 +DF(L)-F(L_)),n<S

We donate the maximum @(SSet) under the condition that | SSet|<r and the TTL
value of the first search is M by Q(m,r), where 1<m<R-11<r<S. The value of M

is R—1 at most, since the request with a preset TTL value of R—1 can reach all the
nodes. When the request reaches the node at the distance of R, the TTL is just decreased
to 0, and the node receives the request without making any transmissions. This is
reasonable since it is already the farthest node from S .
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Q(m.r)= max {3 F(L, +DF(L)-F(L.)} (6)
1T =2
Thus, the value of 0pt can be obtained by solving R —1 related sub-problems:
opt= max {Q(m,S)} @)

Q(m,r) can be rewrite as
Q(m,r)=_max {F(m+1)F(k)—-F(m)+Q(k,r -1} (8)

Q(m,r) can be obtained recursively as shown in Eq. (8). We should note Q(R-1,r)=0,
since an ERS strategy costs the same amount of energy as pure flooding when the TTL
value of the first search is R—1. If r=1 and 1<m<R-2, Q(m,r) corresponds to the
strategy that there is only one search, and the searching range is not big enough to cover
the whole network. This strategy makes no sense, and we assign —1 to Q(m,r). Thus, we
have

-1 ,1<m<R-2,r=1 ?y
Q(m’r)_{o m=R-1r>1 ®)
It requires R-m comparisons to té :
F(m+1)F (k) —F(m)+Q(k,r —1) is the maximum o Ram itefs in Eq. (8),
then k is the optimal TTL value of the next sea@ n th swe/ search with TTL
value M fails. Let pre(m,r) be the k correspondi Q(m,r)\

When we solve Eq. (7) and (8), it is ob@at some gUh-problems are solved over

and over, thus dynamic method can be ap here is & e-nested loop structure in

the optimization algorithm, the runnmg@g \

4.2. Searching based on SSet
The source node knows t atlons of’ odes. It first obtains the F(X)according
to the locations, and getsaf ERS stra‘@ et *, according to the SSetOpt. (The input,
mi

S ,of Algorithm 1 can the opti on level of the strategy obtained. )
SSets=fL*, L*,L*,...,L,*},n<S

When the so de wan discover a destination by flooding, the first search is

started wit ue L
receives th est, it whether it is the target. If so, it sends a reply to the source
node; if not, it chec er the TTL of the request is larger than 0. If the answer is yes,

it decreases the T, ue by one and broadcasts the request; if no, it does nothing.The
i th search is s ith TTL value L; *, if the i —1th search fails.This process continues

until the tmtis ound or the number of searches reaches N

5. S@ion
%mulaﬁon Setup

We compare SSetOpt with the strategies in [1], California Split™ and TTL_2 in this
Section. The network is distributed in a circle terrain with radius denoted by Rmax . Each
node transmits a received request exactly once, and the request reaches every other node
within transmission radius, Tr=50 m. Nodes disregard multiple copies of the same
request. We subsequently assume all transmissions are correctly received. The strategy of
Jing (n=2) is {(R-1)/2|,R-1} , and the strategy of Jing ( n=3) is
{R/3,(R-1)%/(2R-25/9),R—1}, where R is estimated by Rmax/Tr . The strategy of
California Splitis {1,2,4,8,...}, and TTL_2 uses the strategy {2,4,6,8,...}. The simulation

request with TTL value L, * is broadcasted. When a node
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scenarios: (i) Density: We consider a network with Rmax =300 m and the source node
fixed at the origin, and N is varied from 400 to 4000 in increments of 160. (ii) Source
node locations: We consider a network with Rmax =300 m and N =1000. The distance
between the terrain center and the source node location, X, is varied from 0 to 150 m in
increments of 25 m. (iii) Terrain radius: We consider a network with the source node
fixed at the center and 0.00127 nodes per square meter, and Rmax is varied from 300 m
to 1300 m in increments of 100 m.

5.2. Density

The energy cost presented in Figure 1 shows that pure flooding is the most energy
consuming strategy. Jing (n=2) and SSetOpt (S =4) can reduce the energy cost by 25%
compared with pure flooding when N >1500 as we can see from Figure 2. It also shows
that SSetOpt (S =4) costs 5% less energy than Jing (n=2) and 13% less energh\tr?p‘
Jing (n=3) when N >1500 and the average degree is less than 30 accordi ur
statistics. Comparing with TTL_2, SSetOpt has an energy saving of 5% w,

1500.

Through our experiment, we find that some nodes cannot b cated usi =2,3),
because these nodes cannot be reached in R =Rmax/ S thou are within
Rmax meters from the source, thus we have to add an ge TTL value

to make sure that the destination can be detected @ obab The sparser the
network is, the more these nodes exist. Jing (n= strateg ense networks, does
not consider these nodes. This is the reasonswhy its pe ance decreases fast with
network density. By adding another search i n= 2) es a three-tire strategy. If

S =2, the number of searches in the stra btaine tOpt is 2, which is less than
y S better than Jing (n=2) when

that of Jing (n=2). This is the rei
—o-SSetOpt (S = 2)
\ -7 SSetOpt (S =3)H
Q —+—SSetOpt (S_ =4) |

S=>3.

@ %00 800 1200 1600 20‘0(;l DB R T
Fligﬁ The Energy Cost of SSetopt at Different Density

e~ California Split

O 0.95 -7-Jing (n=3)
-&-Jing (n=2)
X —+—SSetOpt (S = 4)
A\ —TTL,
I\, S= "
Y g R ¢

500 1000 1500 2000 2500 3000 3500
N

Figure 2. The Comparison of Energy Cost at Different Density
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Since California Split, pure flooding and TTL_2 do not need the knowledge of network
topology, while the others do, so in small networks with the source node located at the
origin, if the knowledge is unknown, the best strategy is TTL_2 as we can see from
Figure 2, but if the knowledge is known, the best one is our method.

5.3. Source Node Locations

The previous test considers the ideal scenario, where the source node is located at the
origin. We conduct another test to see the effect of source node locations on energy cost.
The results are presented in Figure 3 and Figure 4. With the increase of X , the energy
cost of TTL_2 increases fast, exceeding California Split and Jing (n=3), and becomes
the most energy consuming strategy as we can see from Figure 4. The performance of
Jing(n=3) is worse than Jing(n=2). Comparing with Jing (n=2), SSetOpt has an
energy saving of 5%. Therefore, if the source node is not located at the origin and the,
knowledge of topology is unknown, TTL_2 is not a good strategy since its ener, i
hard to predict as we can see from Figure 4. Thus the knowledge is nece sa% the
knowledge is known, SSetOpt is better than other strategies.

o &
RO

t(S=2)
Opl (S=3)
SetOpt (S =4)
Q Pure flooding |
.65
25 50% % 125 150

Figure 3. The Energ@ast of Qt at Different Source Node Locations

1 g

~o-California Split

@ ——lJing (n = 3)
0.6 (—=-Jing(n=2)
—+—SSetOpt (S = 4)
O —+TTL,

0 25 50 75 100 125 150

E(B)/Q

X (m)
@Figure 4. The Comparison of Energy Cost at Different Source Node
Locations

6. Conclusions

ERS is a widely used flooding technique for locating destinations or information in
wireless sensor networks. We focus on the problem concerning the best ERS strategy in
the networks with various density, not confining to the dense ones. We analyze the
running process of ERS strategies, and propose two analytical models, energy cost
analytical model and relative cost ratio analytical model. We prove that the incremental
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ERS strategies are inefficient in large-scale wireless sensor networks, and give a lower
bound 12a(2™ —1) of the network radius when pure flooding should be used instead of
TTL_a, which increases the TTL value of next search by a constant integer @ after each
search fails. We also propose an optimization algorithm, SSetOpt, for obtaining the best
ERS strategy with searching attempts less thanS. The simulation results show that the
strategy obtained by SSetOpt can reduce the energy cost by 25% compared with pure
flooding in dense networks with small radius. Comparing with the strategies in [1],
SSetOpt has a less amount of energy cost over 5%, when the network is sparse, say, the
average degree is less than 30.

We assume that the percentage of nodes reached with X hops from the source node is
known as a prior. In some applications, F(X)is unknown. How can the source node

obtain F(X) automatically, and generate an optimal ERS strategy? Moreover, the

performance of SSetOpt decreases with the increase of network radius. How to combing®
ERS with other techniques to solve this problem? Our future work will focus se

guestions. 0
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