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Abstract 

Expanding Ring Search (ERS) is an advanced flooding technique exploring for targets 

progressively. It is widely used to locate destinations or information in wireless sensor 

networks. In this paper, a fundamental problem concerning the best ERS strategy to 

minimize energy cost in wireless sensor networks is addressed. We propose a model for 

estimating the average energy cost of ERS strategies, and a model for comparing the 

energy cost of an ERS strategy with pure flooding. The second model is then used to prove 

that incremental ERS strategies are inefficient in large-scale wireless sensor networks. 

Furthermore, we propose an ERS strategy optimization algorithm SSetOpt, which can be 

applied to both dense wireless sensor networks and sparse ones. The simulation results 

show that the strategy obtained by SSetOpt can cost 5% less energy than prior works 

when the network is sparse, say, the average degree is less than 30.. 
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1. Introduction 

Wireless sensor networks consist of wireless sensors with finite power, which makes it 

important to design energy efficient search method. Expanding Ring Search (ERS) is a 

flooding method. It has extensive applications in target discoveries in wireless networks, 

such as those widely utilized in the route discovery process of routing protocols
[1,2,3]

, those 

used in wireless sensor networks for sensor discoveries
[4,5]

, or those used in Ad Hoc 

networks for service discoveries
[6,7]

. ERS explores for the target progressively by 

increasing the searching range after each search fails. Under ERS a request is broadcasted 

and propagated in the network. A preset TTL value is carried in the request and every 

time the packet is relayed, the TTL value is decremented. This continues until TTL 

reaches zero and the propagation stops. Therefore, the searching range is controlled by the 

TTL value. The preset TTL values compose an ERS strategy
 [1]

.  

There have been a number of works on ERS energy cost analysis. Most of them were 

focusing on the problem of how ERS strategies can affect the energy cost of route 

discovery in protocols, i.e. AODV, DSDV or FSR. Perkins selected AODV to compare 

the routing loads in two cases: with and without ERS strategies
[8]

. The comparison based 

on simulations was presented in [9]. A detailed framework consisting of modeling of 

routing overhead generated by three widely used proactive routing protocols (DSDV, FSR 

and OLSR) was presented in [2]. These works provided an understanding about 

effectiveness of ERS strategies in routing protocols in terms of routing load reduction. 

Different from their works, we try to obtain the best ERS strategy. 

Only a few works were focusing on ERS strategy optimization. Hassan and Jha  

studied the optimum threshold for the incremental ERS strategies
[10]

. The authors 

developed a theoretical model for analyzing the expected broadcast cost as a function of 

threshold  , and argued that there was an optimum value of  , which minimizes the 
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expected cost of broadcasts. Extensive numerical experiments validated their theoretical 

model by considering a large number of random network topologies of different sizes and 

path lengths. However, the theoretical model can only be used to obtain the optimum ERS 

strategy under the condition that the searching range increases only by one hop after each 

failed search. Chang and Liu revisited the TTL-based controlled flooding search 

extensively, which was not confined to the incremental ERS strategies
 [11]

. They proposed 

an analytical model by counting all the nodes involved in request receptions during the 

searching process. A search strategy optimization method based on dynamic 

programming was proposed. Because the energy consumed by receptions is much smaller 

than transmissions, Cheng
[12]

 and Jing
[1]

 analyzed the cost of ERS as the number of nodes 

involved in request transmissions respectively. Cheng investigated geography-based and 

hop-based flooding control methods, and provided a general formula to determine good 

parameters for two-tier and three-tier schemes
[12]

. While Jing proposed another analytical 

model, and obtained a strategy close to the optimum based on the analytical model in 

dense wireless sensor networks with the source node located at the origin
[1]

. 

We focus on a fundamental problem concerning the best ERS strategy to minimize 

energy cost for wireless sensor networks. It has been shown that different ERS strategies 

can cause different energy cost 
[9, 13, 14, 15]

. Therefore, it is interesting to identify the best 

ERS strategy for networks. In this work, we analyze the running process of ERS strategies 

in wireless sensor networks, and propose an ERS strategy optimization algorithm 

SSetOpt. Our contributions can be summarized as follows: 

 We propose a model for estimating the average energy cost of ERS strategies. This 

model is briefer than the prior works. Because we do not have assumptions on 

network density or successive search ranges, our model is more adaptive than the 

prior works. 

 We prove that incremental ERS strategies are inefficient in large-scale wireless 

sensor networks. Existing works find this phenomenon by simulations, but the reason 

is not fully discussed. We find the reason is that the successive search ranges are too 

close. We propose a theorem about the reason, and derive a lower bound of network 

radius when pure flooding should be used instead of incremental ERS strategies. 

 We propose an ERS strategy optimization algorithm SSetOpt, which can be applied 

to both dense wireless sensor networks and sparse ones. The simulation results show 

that the strategy obtained by SSetOpt can reduce energy cost by 5% compared with 

prior works when the network is sparse, say, the average degree is less than 30. 

The rest of this paper is organized as follows. In Section 2, we present two analytical 

models, energy cost analytical model and relative cost ratio analytical model. We prove 

that incremental ERS strategies are ineffective in large-scale wireless sensor networks 

using relative cost ratio analytical model in Section 3. The ERS strategy optimization 

algorithm SSetOpt is proposed in Section 4. Section 5 presents results of simulations 

which verify our conclusions. We conclude our work and state future work directions in 

Section 6. 

 

2. ERS Energy Cost Analysis 
 

2.1. Assumptions and Notations 

The wireless sensor network is connected. We assume that a single destination exists in 

the network and is equally likely to be located in one of the non-source nodes. 

Throughout our paper, we use the following notations: 

 | |A : the radix of set A . 

 N : the total number of nodes in the network. 

 s : the source node that employs ERS. 
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 R : the minimum hops required to reach the farthest node from s . 

 
xA : the set of all nodes that can be reached within x  hops from s . 

 d : the distance (minimum hops) between s  and the target, also an integer-valued 

random variable taking value between 1 and R . 

 ( )F x : the percentage of nodes that can be reached within x  hops from s . 

 SSet : ERS strategy.
1 2 3{ , , , , }nSSet L L L L , where 

iL  is an integer representing the 

preset TTL value in the i th search, and
11i iL L   . 

 B : the energy cost of SSet , also a random variable. 

 

2.2. Energy Cost Analytical Model 

We propose an energy cost analytical model by counting all the nodes involved in 

request transmissions. 

When s  wants to discover a destination, the first search is started with TTL value 1L . A 

request with TTL value 1L  is broadcasted. The number of nodes involved in sending 

request will be
1

| |LA , and the number of nodes requested will be 
1 1| |LA  . Therefore, the 

incurred cost of the first search writes 

11( | 1) | |LE B d L A                                                                                              (1) 

Each node has equal probability to be the destination, so the probability that the 

destination is successfully located in the first search is approximately equal to the ratio of 

nodes requested in the first search over the network. 

11 1{ 1} | | /LP d L A N                                                                                                (2) 

The i th search is started with TTL value iL , if the 1i  th search fails. The number of 

nodes involved in sending request will be | |
iLA , and the number of nodes requested will 

be 1| |
iLA  . The expected cost when the destination is located in the i th search should be 

the sum of | |
iLA  and 

1

1

| |
j

i

L

j

A




 , which is the energy already cost before this search. Thus 

we can get: 

1

1

( | 1 1) | |
j

i

i i L

j

E B L d L A



                                                                          (3) 

The success probability of the i th search is 

11 1 1{ 1 1} (| | | |) /
i ii i L LP L d L A A N

                                                              (4) 

Thus, we arrive at the following formula of the average energy cost. 

1 1 1

1 1

1 1

2

1 1 1

2 1

( ) ( ( | ))

( | 1) { 1}

{ 1 1} ( | 1 1)

| | (| | / ) ( | | ((| | | |) / ))
j i i

n

i i i i

i

n i

L L L L L

i j

E B E E B d

E B d L P d L

P L d L E B L d L

A A N A A A N


 



  

 



      

        

    



 

 

( )F x is the percentage of nodes that can be reached within x  hops from s . 

Substituting ( ) | | /xF x A N  in the equation above, we obtain the energy cost analytical 

model as 
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1 1

2

( ) ( ( ) ( ) (1 ( 1)))
n

i i

i

E B N F L F L F L 



                          (5) 

 
2.3. Relative Cost Ratio Analytical Model 

We propose a relative cost ratio analytical model for comparing the energy cost of an 

ERS strategy with pure flooding in this section. The cost of the last search of SSet  is 

| |
nLA  as we have explained. To make sure the destination can be detected in probability 

1, the request in the last search should be received by all the nodes in the network, which 

makes the last search turn into pure flooding. Therefore, | |
nLA  is also the energy cost of 

pure flooding. Comparing the energy cost of ERS with pure flooding, we can get relative 

cost ratio analytical model as follow. 

1 1

2

( ) (| | ( )) / ( ( 1) ( ) ( ))
n

n

L i i i

i

SSet A E B N F L F L F L  



      

Our goal is to find the best ERS strategy SSet  that can maximum  . We analyze 

several inefficient ERS strategies in next section, and propose our optimization algorithm 

in Section Ⅳ 
 

3. Inefficient ERS Strategies 

Incremental ERS strategies have been widely used and studied in these years
[9,14]

. 

Researchers have proved that they can help to reduce energy cost in route discovery 

procedure of route protocols. However, we find some contrary phenomenon through our 

experiments, so it is important to figure out why, and then to decide when pure flooding 

should be used instead of ERS strategies. We first derive a necessary condition under 

which an ERS strategy is inefficient, and then give a lower bound for the radius of 

network where pure flooding should be used. 

Theorem 1: 1 2 3{ , , , , }nSSet L L L L is an ERS strategy. For any 1/12  , if 1( )F L  , 

( ) 1nF L  , and 1( ) ( )i iF L F L   , then ( ) 0SSet  . 

Proof of Theorem 1: 

1 1i iL L   , and ( )F x  is an increasing function, then we can get 1( 1) ( )i iF L F L   . 

1 1

2

2

1

2 1 1

( ) ( ( 1) ( ) ( ))

( ) ( ) ( ) 1 ( ) ( )

n

i i i

i

n n n

i i i i i

i i i

SSet F L F L F L

F L F L F L F L F L

  





  

  

    



  
 

1/12  , then there must be a K  satisfying 2 1/ 6K   . ( )iF L  can be seen as 

monotonic sequence if  in the range of (0,1] , so 
2 0i if f  . We focus on if  in the range 

of [ ,1 ]K K  . 

1

2 2

1

( ) 1 ( ) 1 ( )
K f Ki

n

i i i i

i

SSet f f f f
 


  

        

1f  , 10 i if f    , and 1nf  , then the number of elements of sequence if  in the 

range of [ ,1 ]K K   is ((1 2 ) / ) 1K      at least, and 
2 2 2

i if f K K    . 

Assuming that mf  is the smallest element greater than K , we get 
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1 ((1 2 )/ ) 1

2

2 2

2 3 2

( ) 1 ( )

1 ((1 2 ) / ) ( )

1 (1 2 )( ) 1 (3 1) 2

1 (3 1)

m K

i i

i m

SSet f f

K K K

K K K K K K

K K

 



   

   



     



  

    

       

  



 

2 1/ 6K   , therefore 3 1/ 2K  . ( ) 1 (1/ 2 1) 1 / 2 0SSet K K        

The intuition behind this result is that an ERS strategy is inefficient if the successive 

search ranges are too close. It also implies that the search strategy with intensive search 

ranges, incremental ERS strategies for instance, should be carefully used in the network 

with large radius, where the condition of Theorem 1 can be satisfied easily. Incremental 

ERS strategies (TTL_ a  in short) increase the TTL value by a constant integer a  after each 

failed search, i.e. iL i a  . Using Theorem 1, we can deduce the theorem below. 

Theorem 2: If ( ) ( / )mF x x R , 1 2 3{ , , , , }nSSet L L L L  is an incremental ERS 

strategy TTL_ a , where a  is a small integer, ( 1) / 1n R a     , iL i a   for 1 i n  , 

and nL R , then 12 (2 1)ma   is a lower bond for R  making ( ) 0SSet  . 

Proof of Theorem 2: 
1

1

1

0

( ) ( ) (( ( 1)) / ) (( ) / ) ( / ) ( )
m

m m m m m k

i i m

k

F L F L a i R a i R a R i C








          

Because na i L R   , we can get /i R a . 

1
1

1

0

( ) ( ) ( / ) ( / ) ( / ) (2 1)
m

m m m k m

i i m

k

F L F L a R R a C a R








 
      

 
  

If 12 (2 1)mR a  , then 1( ) ( ) 1/12i iF L F L   , and 1( ) ( / ) 1/12mF L a R  , which 

satisfies the condition of Theorem 1, thus ( ) 0SSet  . 

Theorem 2 implies that TTL_ a  is inefficient in large uniformly distributed wireless 

sensor networks, where the ratio of nodes reached within x  hops can refer to the type 

( ) ( / )mF x x R . 1,2,3m   correspond to a linear wireless sensor network, a wireless 

sensor network placed on land, and a wireless sensor network placed underwater 

respectively. 

 

4. ERS Strategy Optimization 
 

4.1 SSetOpt 

To get the best strategy, let opt  be the maximum ( )SSet  under the condition 

| |SSet S , and the strategy corresponding to opt  is the best strategy which is donated by 
*SSet . Thus we have the ERS strategy optimization problem as follow. 

  1 1

2

max ( ) max ( ( 1) ( ) ( )),
n

i i i

i

opt SSet F L F L F L n S  



      

We donate the maximum ( )SSet  under the condition that | |SSet r  and the TTL 

value of the first search is m  by ( , )Q m r , where 1 1,1m R r S     . The value of m  

is 1R   at most, since the request with a preset TTL value of 1R   can reach all the 

nodes. When the request reaches the node at the distance of R , the TTL is just decreased 

to 0 , and the node receives the request without making any transmissions. This is 

reasonable since it is already the farthest node from s . 
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1

1 1
;

2

( , ) max { ( 1) ( ) ( )}
n

i i i
L m n r

i

Q m r F L F L F L 
 



                                                              (6) 

Thus, the value of opt  can be obtained by solving 1R   related sub-problems: 

1 1
max { ( , )}
m R

opt Q m S
  

                                                     (7) 

( , )Q m r can be rewrite as 

1 1
( , ) max { ( 1) ( ) ( ) ( , 1)}

m k R
Q m r F m F k F m Q k r

   
                                                          (8) 

( , )Q m r  can be obtained recursively as shown in Eq. (8). We should note ( 1, ) 0Q R r  , 

since an ERS strategy costs the same amount of energy as pure flooding when the TTL 

value of the first search is 1R  . If 1r   and 1 2m R   , ( , )Q m r  corresponds to the 

strategy that there is only one search, and the searching range is not big enough to cover 

the whole network. This strategy makes no sense, and we assign 1  to ( , )Q m r . Thus, we 

have 

1 ,1 2, 1
( , )

0 1, 1

m R r
Q m r

m R r

    
 

  
                                                                                   (9) 

It requires R m  comparisons to calculate ( , )Q m r . If 

( 1) ( ) ( ) ( , 1)F m F k F m Q k r     is the maximum one of the R m  items in Eq. (8), 

then k  is the optimal TTL value of the next search when the current search with TTL 

value m  fails. Let ( , )pre m r  be the k  corresponding to ( , )Q m r . 

When we solve Eq. (7) and (8), it is obvious that some sub-problems are solved over 

and over, thus dynamic method can be applied. There is a triple-nested loop structure in 

the optimization algorithm, the running time is 
2( / 2)O S R . 

 

4.2. Searching based on SSetOpt 

The source node knows the locations of other nodes. It first obtains the ( )F x according 

to the locations, and gets an ERS strategy, *SSet , according to the SSetOpt. (The input, 

S ,of Algorithm 1 can decide the optimization level of the strategy obtained. ) 

1 2 3* { *, *, *,..., *},nSSet L L L L n S   

When the source node wants to discover a destination by flooding, the first search is 

started with TTL value 1 *L . A request with TTL value 1 *L  is broadcasted. When a node 

receives the request, it checks whether it is the target. If so, it sends a reply to the source 

node; if not, it checks whether the TTL of the request is larger than 0. If the answer is yes, 

it decreases the TTL value by one and broadcasts the request; if no, it does nothing.The 

i th search is started with TTL value *iL , if the 1i  th search fails.This process continues 

until the target is found or the number of searches reaches n  

 

5. Simulation 
 

5.1 Simulation Setup 

We compare SSetOpt with the strategies in [1], California Split
[9]

 and TTL_2  in this 

Section. The network is distributed in a circle terrain with radius denoted by Rmax . Each 

node transmits a received request exactly once, and the request reaches every other node 

within transmission radius, 50Tr   m. Nodes disregard multiple copies of the same 

request. We subsequently assume all transmissions are correctly received. The strategy of 

Jing ( 2n  ) is { ( 1) / 2 , 1}R R    , and the strategy of Jing ( 3n  ) is 
2{ / 3,( 1) / (2 25 / 9), 1}R R R R   , where R  is estimated by /Rmax Tr . The strategy of 

California Split is {1,2,4,8,...}, and TTL_2 uses the strategy {2,4,6,8,...}. The simulation 
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scenarios: (i) Density: We consider a network with 300Rmax   m and the source node 

fixed at the origin, and N  is varied from 400 to 4000 in increments of 160. (ii) Source 

node locations: We consider a network with 300Rmax   m and 1000N  . The distance 

between the terrain center and the source node location, X , is varied from 0 to 150 m in 

increments of 25 m. (iii) Terrain radius: We consider a network with the source node 

fixed at the center and 0.00127 nodes per square meter, and Rmax  is varied from 300 m 

to 1300 m in increments of 100 m. 

 

5.2. Density 

The energy cost presented in Figure 1 shows that pure flooding is the most energy 

consuming strategy. Jing ( 2n  ) and SSetOpt ( 4S  ) can reduce the energy cost by 25% 

compared with pure flooding when 1500N   as we can see from Figure 2. It also shows 

that SSetOpt ( 4S  ) costs 5% less energy than Jing ( 2n  ) and 13% less energy than 

Jing ( 3n  ) when 1500N   and the average degree is less than 30 according to our 

statistics. Comparing with TTL_2, SSetOpt has an energy saving of 5% when 1500N  . 

Through our experiment, we find that some nodes cannot be located using Jing ( 2,3n  ), 

because these nodes cannot be reached in R Rmax / tr  hops though they are within 

Rmax  meters from the source, thus we have to add another search with a large TTL value 

to make sure that the destination can be detected in the probability of 1. The sparser the 

network is, the more these nodes exist. Jing ( 2n  ), the strategy for dense networks, does 

not consider these nodes. This is the reason why its performance decreases fast with 

network density. By adding another search, Jing ( 2n  ) becomes a three-tire strategy. If 

2S  , the number of searches in the strategy obtained by SSetOpt is 2, which is less than 

that of Jing ( 2n  ). This is the reason why SSetOpt is better than Jing ( 2n  ) when 

3S  . 

 

Figure 1. The Energy Cost of SSetopt at Different Density 

 

Figure 2. The Comparison of Energy Cost at Different Density 
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Since California Split, pure flooding and TTL_2 do not need the knowledge of network 

topology, while the others do, so in small networks with the source node located at the 

origin, if the knowledge is unknown, the best strategy is TTL_2 as we can see from 

Figure 2, but if the knowledge is known, the best one is our method. 

 

5.3. Source Node Locations 

The previous test considers the ideal scenario, where the source node is located at the 

origin. We conduct another test to see the effect of source node locations on energy cost. 

The results are presented in Figure 3 and Figure 4. With the increase of X , the energy 

cost of TTL_2 increases fast, exceeding California Split and Jing ( 3n  ), and becomes 

the most energy consuming strategy as we can see from Figure 4. The performance of 

Jing( 3n  ) is worse than Jing( 2n  ). Comparing with Jing ( 2n  ), SSetOpt has an 

energy saving of 5%. Therefore, if the source node is not located at the origin and the 

knowledge of topology is unknown, TTL_2 is not a good strategy since its energy cost is 

hard to predict as we can see from Figure 4. Thus the knowledge is necessary. If the 

knowledge is known, SSetOpt is better than other strategies. 

 

 

Figure 3. The Energy Cost of SSetopt at Different Source Node Locations 

 

Figure 4. The Comparison of Energy Cost at Different Source Node 
Locations

 

6. Conclusions 

ERS is a widely used flooding technique for locating destinations or information in 

wireless sensor networks. We focus on the problem concerning the best ERS strategy in 

the networks with various density, not confining to the dense ones. We analyze the 

running process of ERS strategies, and propose two analytical models, energy cost 

analytical model and relative cost ratio analytical model. We prove that the incremental 
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ERS strategies are inefficient in large-scale wireless sensor networks, and give a lower 

bound 12 (2 1)ma   of the network radius when pure flooding should be used instead of 

TTL_ a , which increases the TTL value of next search by a constant integer a  after each 

search fails. We also propose an optimization algorithm, SSetOpt, for obtaining the best 

ERS strategy with searching attempts less than S . The simulation results show that the 

strategy obtained by SSetOpt can reduce the energy cost by 25% compared with pure 

flooding in dense networks with small radius. Comparing with the strategies in [1], 

SSetOpt has a less amount of energy cost over 5%, when the network is sparse, say, the 

average degree is less than 30. 

We assume that the percentage of nodes reached with x  hops from the source node is 

known as a prior. In some applications, ( )F x is unknown. How can the source node 

obtain ( )F x  automatically, and generate an optimal ERS strategy? Moreover, the 

performance of SSetOpt decreases with the increase of network radius. How to combine 

ERS with other techniques to solve this problem? Our future work will focus on these 

questions. 
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