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Abstract 

With the continuous development of wireless communication and mobile positioning 

technologies, spatio-temporal queries of moving objects attract more and more attention. 

In practical application, affected by the sampling frequency of the devices, the position 

information of moving objects restricted to the road network is often with uncertainty. In 

this paper, on the basis of the distributed computing framework-Hadoop, it firstly 

constructs the UPBI index mixing certain and uncertain data. Secondly, it proposes the 

probabilistic range parallel queries algorithm and the probabilistic calculating method of 

moving objects on road network. Finally, it gives space constraint r-Restrict to reduce the 

query scope of the possible path, and simultaneously gives sample pair division to resolve 

the problem of repetitive calculation. The experiment proves that index and query 

algorithm proposed effectively solve the mass data problem about moving objects, and 

enhance query efficiency and precision. 

 

Keywords: Hadoop; moving objects on road network; probabilistic range queries; 

uncertain data; sampling frequency 

 

1. Introduction 

With the development of application, such as Geographic Information System, Mobile 

Communication System, Intelligent Transportation Systems and Location-Based Services, 

Moving Objects Databases (MOD) [1] has gradually become a hot research area in the 

field of spatio-temporal database. The space limited network like road network restricts 

moving objects can only move along the set direction and path. The location-based query 

of moving objects on road network, such as the range queries, can support ITS decision. 

Therefore, it has attracted more and more attention of researchers. Because the position 

information of moving objects on road network is collected by GPS or roadside sensor 

devices, the precision of related equipment, positioning technology and network delay 

could also cause the position information obtained with uncertainty. But there is another 

uncertainty widespread in moving objects on road network. The prerequisite is that all 

values of the moving object provided by the positioning devices are assumed to be 

available [2-7]. The positioning devices provide discrete time-based position value. 

The uncertainty of position between the values is caused by the low sampling 

frequency of positioning device. The sampling frequency is lower, and the 

uncertainty of position of the moving objects is greater. According to the analysis, 

we know that there are two kinds sampling. One kind is a uniform sampling 

frequency, and another is non-uniform sampling frequency because of the non-

uniformity of damaged devices. 

For the range queries of moving objects on road network about the two application 

examples, the traditional approach is clearly only for certain data, and loses uncertain data 

matching the query. The precision can’t be guaranteed. As time going by, the moving 

objects’ position continuous change. It causes sharp incensement of certain and uncertain 
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data, and ultimately leads to sharp decline in the performance of the index and query. 

Therefore, this paper introduces distributed computing framework-Hadoop to the 

probabilistic range queries of moving objects on road network. The key is to solve the 

massive and uncertainty of data about moving objects. 

The major contributions of this paper are summarized as follows: 

• An index structure UPBI is proposed to efficiently index the certain data and help to 

obtain the uncertain data by indexing road network and possible paths between boundary 

vertices.  

• A Hadoop-based probabilistic range parallel queries algorithm about uncertain data 

of moving object on road network is proposed. It effectively solves the mass data problem 

and position uncertainty problem of moving object. The query is also separated for the 

certain and uncertain data to ensure the precision of the query. 

• A space constraint r-Restrict and sample pair division are proposed to reduce the 

query scope of the possible path and resolve the repetitive calculation problem.  

• Simulation experiments are conducted to evaluate the performance of the UPBI 

index and the probabilistic range queries algorithm. 

 

2. Related Work 

In recent years, more and more researches about uncertain location of the moving 

objects have been developed [8-14]. Of course, there are researchers try to do road 

network direction, Kuijpers et al. [15] propose the space-time prism in the road networks 

with general maximal speeds of edges based on the model in Euclidean space. However, 

there is only an alibi query provided in the paper, which might be because the complexity 

of other query types is high. Considering the network edge weights uncertain on the road 

network, Ming et al. [16] proposed three novel types of probabilistic path queries using 

basic probability principles. The position uncertainty about moving objects above 

mentioned is caused by the precision of positioning equipment, positioning technology, 

network delay and network edge weights. But this paper is to study the position 

uncertainty between the two successive samples caused by sampling frequency of 

positioning equipment. Both have the difference in semantics, model and application 

background. Zheng et al. [17] proposed a History based Path Inference System (HRIS).  It 

made full use of historical track information of moving objects on road network, reduced 

the uncertainty, but not involved in related queries. 

In recent years, researches about the probabilistic range queries with the same study 

background to us include Zheng et al. [18] and Chen et al. [19]. Both assumed availability 

of a maximal speed on each road segment. Zheng et al. [18] proposed making use of 

vertices’ earliest arrival time and latest departure time. It represented the uncertainty of 

the objects moving along road networks as time-dependent probability distribution 

functions. It proposed an indexing mechanism Uncertain Trajectories Hierarchy (UTH) 

and the spatio-temporal range query algorithm. The probability calculation is carried out 

in the query process, but the Trajectory List records both the actual sample location and 

all vertices’ earliest arrival time and latest departure time in all possible paths about all 

moving objects. It needs frequent disk read and write during index creation processing. It 

is not suitable for large-scale processing about mass of moving object.  Based on the 

literature [18], Chen et al. [19] constructed an uncertain trajectory model. It partitioned 

the road network according to network distance of moving object trajectories unit. It 

proposed a partition-based uncertain trajectory index PUTI to search for the moving 

objects at specific time and specific region. But the problem with this approach is also 

that frequent uncertain trajectory insertion causes a great system burden during index 

creation processing. 
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3. Problem Formulation 

DEFINITION 1 A road network is represented by a graph G=(V, E). Vertices’ set V is 

corresponding to the crossings of road network. Edges’ set E is corresponding to the 

segments of the road network. Each edge e ( e E ) is associated with an attribute vector 

<l(e), s(e)> , corresponding to the length and maximum allowed speed of e. tm(e) is the 

minimum time that moving objects to drive in e with the maximum limit speed, tm(e)= 

l(e)/s(e) . 

DEFINITION 2 Given graph G= (V, E), V and E are the set of vertices and edges, 

respectively. {g1,g2,…gk}  is a partition of Graph G, gi=(Vi, Ei), i=1,2,…,k, which satisfies:   

a) 
i

V V ; 

b) if  i j  ,  
i j

v v ; 

c) , 
i

u v V , if  , u v E , then  , 
i

u v E . 

DEFINITION 3 Given gi, which is the subgraph of graph G, vertice 
i

u V  , and there 

is at least one edge   , u v E , 
i

v V , then u is the boundary vertice of subgraph gi. All 

boundary vertices of subgraph gi  are represented as set B(gi). 

DEFINITION 4 Sample position of moving objects on road network at time ti 

received by positioning devices is represented as samplei, then the possible paths between 

two successive positions < samplei , samplei+1> is represented by the path set Ph(k), 

k=1,2,…,n, and meet t≤ ti+1-ti.  

DEFINITION 5 Given segment RID, query time t and probabilistic threshold α. The 

probabilistic value of OID possibly going through path RID at time t is represented as 

pt,RID(OID). Then the result of the probabilistic range query is a set of all moving objects 

meet pt,RID(OID)≥ α . 

 

4. Index Structure 

UPBI (UPA-tree and B
+
-tree Index) index [20] is structurally divided into two layers: 

the UPA-tree and the B
+
-tree (or the Region table). Region table records the Region’s ID 

which the paths between each boundary vertices of different subgraph in UPA-tree belong 

to. The leaf nodes of B
+
-tree point to certain position of moving object stored in HBase. 

UPBI index structure is shown in Figure 1.  

 

4.1 Spatial Index 

Firstly, the road network is partitioned into k subgraph using METIS 5.0[20]. Vertices 

of each subgraph keep in χ. UPA-tree is a full binary tree, and the keys that it can be used 

to quickly query the possible paths between two samples are the following two aspects: 

Firstly, each node of the tree records corresponding boundary vertices of subgraph. 

Secondly, each node contains a minimum time matrix, and the rows and columns of leaf 

nodes’ matrix are all vertices of the subgraph. The rows and columns of intermediate 

nodes’ matrix are the sum of boundary vertices of two child nodes. The value of matrix is 

the shortest time that the moving objects driving as the maximum speed on the road. It 

should be noted, if a cell of an intermediate node’ matrix records its children’s inner edge, 

then the cell is marked a maximum value, which means the shortest time value of the cell 

has been stored in the corresponding children’s node matrix. If the cell doesn’t exist then 

the shortest time is uniformly marked 0. For the certain sample position, UPA-tree 

directly indexes space by the subgraph represented using leaf node, while for uncertain 

position, it is resolved by nodes’ boundary vertices of every layers, the shortest time 

matrix and the time constraints of samples. 
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Figure 1. UPBI Index Structure 

 

4.2 Temporal Index 

In order to improve the utilization of the system and the query efficiency, initially the 

Region only stores certain sample data, and then stores the possible paths between the 

boundary vertices in the query processing step by step. The latter does not involve the 

temporal dimension, so it only need to index samples’ time. UPBI’s temporal index uses 

B
+
-tree index structure. As shown in Figure 1, each of the UPA-tree’s leaf nodes 

corresponds to a B
+
-tree index. According to the sampling interval on the actual road 

network, the paper has solved two cases: one case, sampling frequency is consistent under 

common intelligent transportation system. We parallel create B
+
-tree index based on time 

granularities. It can ensure a balance of B
+
-tree. Another case, sampling frequency is not 

consistent in war or saving energy situation. We directly take traditional B
+
-tree index 

based on the sampling time point which can ensure a balance of  B
+
-tree as well.  

 

5. Probabilistic Range Queries 

There are two cases in the result sets obtained from the probabilistic range queries. 

First, the moving object OID just has a certain samplei which meet at the moment t on the 

road RID, that is ti=t, and it can be regarded as pt,RID(OID)=1. In this case, the result can 

be obtained by combining the UPA-tree and the B
+
-tree in UPBI index structure. Second, 

two adjacent samples < samplei , samplei+1>  of the moving object meet ti<t>ti+1, so that 

the probability value pt,RID(OID) of moving object OID passing by road RID at the 

moment t meets 0<pt,RID(OID)<1 . In this case, samples and given road RID may belong 

to the same leaf node of UPA-tree, or may be one sample and given road RID belong to 

the same leaf node of UPA-tree and another sample belong to different leaf node. The 

worst case, the three belong to three different leaf nodes of UPA-tree. We use space 

constraints r-Restrict method, which pre-selects samples that meet the time condition and 

then specifically calculates to obtain the final results. 
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5.1 Query Algorithm 

The parallel probabilistic range queries for uncertain data based on MapReduce is 

shown in Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Process of the Parallel Probabilistic Range Queries for                   
Uncertain Data 

1) Map stage: The input samples data <ID, samples> are divided into M segments, 

which is corresponding to the same number of Map tasks. Input of each Map operation is 

corresponding to key-value pairs <ID, samples> in the segment. Map operation calls a 

user-defined space constraint function, determine whether the input OID of samples at the 

query moment t may be on the query road RID. If the conditions met, then the function 

judges UPA-tree sub-division according to the spatial location of  samplei. Output of Map 

operation is intermediate state key-value pairs <sub-division ID, samples>. Then, 

according to the sub-division ID the output data sets will be sorted and a new <sub-

division ID, list> tuple has been generated. The purpose is to make the queries of samples 

which have the same beginning samplei be concentrated in the list of the same sub-

division and effectively takes advantage of the calculated results to improve query 

efficiency. Then those tuples will be split into R fragments according to the scope of the 

sub-division ID which are corresponding to the number of Reduce tasks.  

2) Reduce stage: Input of each Reduce operation is <sub-division ID, list>. Reduce 

operation calls functions of the possible paths queries and the probability calculation, and 

finally calls the merge program of sub-query results to combine all queries results into a 

complete result. 

The space constraint r-Restrict and the probability calculation using vertices’ earliest 

arrival time tea(vk) and latest departure time tld(vk) is the same to the continues 

probabilistic range query of moving objects on road network[20], possible paths 

calculation will be introduced as follow: 

 

5.2 Possible Paths Calculation  

For the possible paths queries we learn from the thought of processing shortest path 

query in paper [21]. We divide possible paths query respectively into two cases: samples 

belonging to the same leaf node and the different leaf nodes. For the former we directly 

using Breadth-First-Search strategy, and for the later we separately calculate possible 

paths from samplei to the boundary node of the leaf node which samplei belongs to, and 

possible paths between the boundary node of the leaf node which samplei+1 belongs to and 

samplei+1, and possible paths from above two kinds boundary nodes. Finally, possible 

paths of < samplei , samplei+1>  can be obtained by using combination according to the 

time constraint. Possible paths of boundary nodes of the two leaf nodes can be acquired 

by using the following method: in accordance with the hierarchical relationship of UPA-
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tree, it starts from the leaf node which samplei belongs to until the first public parent node 

layer by layer, and then from the first public parent node  to the leaf node witch samplei+1 

belongs to layer by layer, respectively. It should separately calculate the possible paths of 

boundary vertices of adjacent layers nodes, and finally acquiring the result by using 

combination. 

There are two types of repetitive computation in the processing of possible paths query. 

One is possible paths calculation of boundary vertices B(gi) of each adjacent layer node. 

Our solution is storing increased possible paths between B(gi) in each query. And possible 

paths stored in Hbase are divided into between boundary vertices of each node and their 

brothers or parents nodes. Obviously Region table scale is gradually expanded, but when 

possible paths of all boundary vertices in the space are recorded Region table does not 

change again. While in every query processing, as long as we find possible paths meeting 

the conditions among B(gi) in the region, and then on this basis we increase possible paths 

of new vertices obtained by using p-region [22].  

Another repetitive computation is that the starting vertice of the two kind paths is the 

same, as well as the end and the starting vertices are not in the same UPA-tree leaf node, 

so we repetitively calculate the path from the starting vertice to the boundary vertices of 

the subgraph which the starting vertice belongs to. This occurs in a high probability in 

actual road network. The repetitive calculation also will appear on the road which takes 

the same vertice as the end point and each pair samplei and samplei+1 is not in the same 

leaf node.  

For this repetitive calculation, we divide samples according to samplei belonging to 

different UPA-tree leaf nodes, and then judge whether samplei and samplei+1 of each 

samples are in the same UPA-tree leaf node. If the samples are not in the same leaf node, 

we continually divide them according to samplei position (the end vertice of the road 

which samplei is on), and then for each division we only need to calculate possible paths 

once from samplei to boundary vertices of the leaf node which samplei belongs to. 

 

6. Experimental Evaluation 

All experiments are implemented in JAVA language based on Hbase-0.90.4 and 

Hadoop-1.0.4. There are four Datanodes and one Namenode, and the configuration is: 

CPU: Intel Core i5-2450M, 2.5 GHz dual-core, memory: 4GB, disk: 500G, os: Ubuntu 

Linux. 

The road network data is the traffic network of Colorado [23] which has 435666 

vertices, 1057066 edges. We use the generator proposed in paper [24] to synthetic 10000 

vehicles on the Colorado road network, and then continuously record the location of these 

vehicles with the same sampling interval. We respectively get 0.1, 1, 3, 5 and 10 million 

records. 

 

6.1 Performance of the Query Time  

 

6.1.1 Effect of the Data Set Size: As shown in Figure 3, the query time for the four 

index structures presents increasing trend with the increase of data set size. While the data 

set size bellowing 2 million, the query time of the parallel query based on UPBI is higher 

than the single query, and while the data set size exceeding 2 million query time is 

significantly lower than the single query. And the main reason is the same to the index 

construction. It must cost time in starting MapReduce task. And when data set is more 

than 2 million, the parallel query can dynamically adjust the number of Map and Reduce 

tasks to suppress query time. As shown in Figure 3, the query time of query technology 

based on UTH and PUTI has been superior to query technology based on UPBI. The main 

reason is that the latter two needs to deal with uncertain path queries and probability 

calculation.  
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Figure 3. Average Query Time                         Figure 4. Average Query Time 

 

6.1.2 Effect of the Number of Vertices in each Leaf Node: In this experiment we 

take the sampling interval as 180 seconds and take the probability threshold as 0.7. As 

shown in Figure 4, with the increase of the number of vertices in each leaf node, the query 

time is decreasing first and then increasing. The reason is that with the increase of 

vertices’ number, the possible path queries have gradually transferred from different leaf 

nodes to the same leaf node. When the number of vertices of leaf nodes is bigger, the 

query cost is also greater. As shown in Figure 8, when the number of vertices in each leaf 

node is 128, the query of different leaf nodes and the same leaf node achieves the optimal. 
 

6.1.3 Effect of the Sampling Interval: Taking the sampling interval as 10, 20, 30, 40, 

50, 60, 120, 180 and 240 seconds, the probability threshold as 0.7, the number of vertices 

in each leaf node as 128, as shown in Figure 5, with the increase of sampling interval, the 

query time presents increasing trend, and the growth of query time is flat before 50 

seconds and rapid after 50 seconds. The reason is that when the sampling interval is 

bigger, the possible path between two adjacent sampling points of the same moving object 

is more, and eventually makes query time increases. Considering practical application and 

data storage factors we take sampling interval as 180 seconds in the follower. 

Figure 5. Average Query Time                        Figure 6.  Average Query Time 

 
6.1.4 Effect of the Probability Threshold: As shown in Figure 6, with the 

probability threshold increasing, the query time has showed a trend of decline. The reason 

is that the bigger the probability threshold is, the less the query candidate sets is. We can 

further observe through Figure 6 that with the increasing of data size, query time also 

increases. This is mainly because large amount of data causes large query candidate set, 

and the time used in time constraint and space pruning also will increase. Considering the 

decline trend greater when probability threshold is 0.7 in Figure 6, we take probability 

threshold as 0.7 in the follower.  
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6.2 Performance of the Query Precision 

Query precision is expressed as 10 100#( ) / #( ) * %i i

obtain real obtain
Q g Q , i

obtain
Q presents the 

probabilistic range queries results while sampling interval is i which respectively takes 20, 

40, 60, 120, 180 and 240 seconds, 10

real
g presents the sampling results of the actual segment 

in every 10 seconds. We design false negative ratio 
10 10 100( #( ) #( ) ) / #( ) * % i i

real obtain real obtain
g Q g Q to resolve the missed real value in query 

processing  problem.  

   

 

 

 

 

 

 

 

 

 

 

Figure 7. Query Precision                          Figure 8. False Negative Ratio 

As shown in Figure 7 and Figure 8, with the increase of sampling interval, the 

precision of the query reduces, and the false negative ratio rises. Query precision of all 

sampling interval is over 85%, and when the sampling interval is 180 seconds and the 

probability threshold is 0.5 the precision of the query can achieve 90% above, and the 

overall value is between 6%~11%. The reason is that when the sampling interval is 

bigger, the possible path between two adjacent sampling points is more.  

 

7. Conclusion 

In recent years, the uncertain location of the moving objects affected by the sampling 

frequency attracted more and more attention in the field of MOD. In this paper, the UPBI 

index and the probabilistic range parallel queries of moving objects on road network 

based on Hadoop has been proposed. The experiment prove that index and query 

algorithm proposed effectively enhance query efficiency and precision. It will be 

considered to use the queries results to improve the precision of the probabilistic 

aggregation queries considering location uncertain on road network. 
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