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Abstract

With the continuous development of wireless communication and mobile posi |on|ng
technologies, spatio-temporal queries of moving objects attract more and more att
In practical application, affected by the sampling frequency of the devices, th
information of moving objects restricted to the road network is often with yncestainty. In
this paper, on the basis of the distributed computing framework-Had it firstly
constructs the UPBI index mixing certain and uncertain
probabilistic range parallel queries algorithm and the

moving objects on road network. Finally, it gives ’ nstrai r rict to reduce the
guery scope of the possible path, and simultaneo es san%Kk r division to resolve
the problem of repetitive calculation. The eriment ves ‘that index and query
algorithm proposed effectively solve the r@?ﬂa proB bout moving objects, and
enhance query efficiency and precision. ’\

Keywords: Hadoop; moving &s n roam ork; probabilistic range queries;

uncertain data; sampling frequ

1. Introduction

With the develop applicati (?\ﬁjch as Geographic Information System, Mobile
Communlcatlon Intelligeftsyansportation Systems and Location-Based Services,
Moving Object ases ( 15) [1] has gradually become a hot research area in the
field of sp oral ase. The space limited network like road network restricts
moving ob an onl& along the set direction and path. The location-based query
of moving objects o etwork, such as the range queries, can support ITS decision.
Therefore, it has d more and more attention of researchers. Because the position
information of@wg objects on road network is collected by GPS or roadside sensor
devices, the, presision of related equipment, positioning technology and network delay
could alsaﬁse the position information obtained with uncertainty. But there is another
uncertai idespread in moving objects on road network. The prerequisite is that all
valu he moving object provided by the positioning devices are assumed to be

Wable [2-7]. The positioning devices provide discrete time-based position value.
uncertainty of position between the values is caused by the low sampling
frequency of positioning device. The sampling frequency is lower, and the
uncertainty of position of the moving objects is greater. According to the analysis,
we know that there are two kinds sampling. One kind is a uniform sampling
frequency, and another is non-uniform sampling frequency because of the non-
uniformity of damaged devices.

For the range queries of moving objects on road network about the two application
examples, the traditional approach is clearly only for certain data, and loses uncertain data
matching the query. The precision can’t be guaranteed. As time going by, the moving
objects’ position continuous change. It causes sharp incensement of certain and uncertain
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data, and ultimately leads to sharp decline in the performance of the index and query.
Therefore, this paper introduces distributed computing framework-Hadoop to the
probabilistic range queries of moving objects on road network. The key is to solve the
massive and uncertainty of data about moving objects.

The major contributions of this paper are summarized as follows:

* An index structure UPBI is proposed to efficiently index the certain data and help to
obtain the uncertain data by indexing road network and possible paths between boundary
vertices.

* A Hadoop-based probabilistic range parallel queries algorithm about uncertain data
of moving object on road network is proposed. It effectively solves the mass data problem
and position uncertainty problem of moving object. The query is also separated for the
certain and uncertain data to ensure the precision of the query.

* A space constraint r-Restrict and sample pair division are proposed to reduce the
query scope of the possible path and resolve the repetitive calculation problem. ¢

» Simulation experiments are conducted to evaluate the performance of BI

index and the probabilistic range queries algorithm. 0

2
2. Related Work \%
In recent years, more and more researches a@rtairx IOW of the moving

objects have been developed [8-14]. Of course, are m\m rs try to do road
network direction, Kuijpers et al. [15] proposethe space-time priSm in the road networks
with general maximal speeds of edges based @e moo‘%uclidean space. However,
there is only an alibi query provided in r, which might be because the complexity
of other query types is high. Consideri& netwy e weights uncertain on the road
network, Ming et al. [16] proposedgrg novelﬁ&o probabilistic path queries using
basic probability principles. I‘% ition uncéwainty about moving objects above
mentioned is caused by thespregisign of p %\ing equipment, positioning technology,
network delay and network etige weightS\ But this paper is to study the position
uncertainty between th 0 successi amples caused by sampling frequency of
positioning equipment’ have ¢he difference in semantics, model and application

background. Zhe [17].pr d a History based Path Inference System (HRIS). It
made full use o ical trac orfnation of moving objects on road network, reduced

the uncertaj not invgtyed In related queries.
In recen S, rese about the probabilistic range queries with the same study

background to us inc eng et al. [18] and Chen et al. [19]. Both assumed availability
of a maximal sp each road segment. Zheng et al. [18] proposed making use of
vertices’ earlie al time and latest departure time. It represented the uncertainty of
the objects ,mowing along road networks as time-dependent probability distribution
functions%oposed an indexing mechanism Uncertain Trajectories Hierarchy (UTH)
and thel -temporal range query algorithm. The probability calculation is carried out
in t gry process, but the Trajectory List records both the actual sample location and
ces’ earliest arrival time and latest departure time in all possible paths about all
ng objects. It needs frequent disk read and write during index creation processing. It
is not suitable for large-scale processing about mass of moving object. Based on the
literature [18], Chen et al. [19] constructed an uncertain trajectory model. It partitioned
the road network according to network distance of moving object trajectories unit. It
proposed a partition-based uncertain trajectory index PUTI to search for the moving
objects at specific time and specific region. But the problem with this approach is also
that frequent uncertain trajectory insertion causes a great system burden during index
creation processing.
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3. Problem Formulation

DEFINITION 1 A road network is represented by a graph G=(V, E). Vertices’ set V is
corresponding to the crossings of road network. Edges’ set E is corresponding to the
segments of the road network. Each edge e (e € E) is associated with an attribute vector
<l(e), s(e)> , corresponding to the length and maximum allowed speed of e. t,(e) is the
minimum time that moving objects to drive in e with the maximum limit speed, t.(e)=

I(e)/s(e) .
DEFINITION 2 Given graph G= (V, E), V and E are the set of vertices and edges,
respectively. {01,0,,...0«} is a partition of Graph G, gi=(V;, Ei), i=1,2,...,k, which satisfies:

a) V:wi;
by if i;tj,viﬂvj:@;

c) VU,VeV.,if(u,v)eE,then (u,v)eE.. V

DEFINITION 3 Given g;, which is the subgraph of graph G, vertice u e %‘there

is at least one edge (u v) e E, v ¢ V,, then u is the bounda vgrtlce h gi. All
boundary vertices of subgraph g; are represented as set B %

DEFINITION 4 Sample position of moving_abjécts on” road\nepwork at time t;
received by positioning devices is represented as sa le paths between

two successive positions < sample; , samplej.;> presente the path set Ph(k),
k=1,2,...,n, and meet 1< f;41-1;. .
DEFINITION 5 Given segment RIQ ime ta abilistic threshold a. The

probabilistic value of OID possibly I at time t is represented as
Perio(OID). Then the result of the pr |st|c y is a set of all moving objects

meet pirin(OID)>a .

4. Index Structure

UPBI (UPA-tree and . ee Inde %( [20] is structurally divided into two layers:
the UPA-tree and the ee (or eglon table). Region table records the Region’s ID

which the paths be each vertlces of different subgraph in UPA-tree belong
to. The leaf -tree p to certain position of moving object stored in HBase.
reis

UPBI mde @m Figure 1.
4.1 Spatlal Index

Firstly, the r ork is partitioned into k subgraph using METIS 5.0[20]. Vertices
of each subgra ep in y. UPA-tree is a full binary tree, and the keys that it can be used
to quickl ry the possible paths between two samples are the following two aspects:
Firstly, node of the tree records corresponding boundary vertices of subgraph.
Sec ach node contains a minimum time matrix, and the rows and columns of leaf
atrix are all vertices of the subgraph. The rows and columns of intermediate

@ matrix are the sum of boundary vertices of two child nodes. The value of matrix is
the shortest time that the moving objects driving as the maximum speed on the road. It
should be noted, if a cell of an intermediate node’ matrix records its children’s inner edge,
then the cell is marked a maximum value, which means the shortest time value of the cell
has been stored in the corresponding children’s node matrix. If the cell doesn’t exist then
the shortest time is uniformly marked 0. For the certain sample position, UPA-tree
directly indexes space by the subgraph represented using leaf node, while for uncertain
position, it is resolved by nodes’ boundary vertices of every layers, the shortest time
matrix and the time constraints of samples.
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Figure 1. UPBI Inde cture\\/

4.2 Temporal Index \O \

In order to improve the U'[I|I2atlox e sys ¥ the query efficiency, initially the
Region only stores certain sa gg and then‘stores the possible paths between the
boundary vertices in the g smg s@by step. The latter does not involve the
temporal dimension, so it only fréed t mples’ time. UPBI’s temporal index uses

B*-tree index structure. shown re 1, each of the UPA-tree’s leaf nodes
corresponds to a Ii dex Accordifg to the sampling interval on the actual road
network, the pape {%es one case, sampling frequency is consistent under
common |nteII| nsport m. We parallel create B*-tree index based on time
granulariti nsure alance of B*-tree. Another case, sampling frequency is not
consistent rors ergy situation. We directly take traditional B*-tree index
based on the sampli oint which can ensure a balance of B-tree as well.
5. Probabili nge Queries

There atd_two cases in the result sets obtained from the probabilistic range queries.

ao0ving object OID just has a certain sample; which meet at the moment t on the

at is ti=t, and it can be regarded as p;rip(OID)=1. In this case, the result can
he o ed by combining the UPA-tree and the B*-tree in UPBI index structure. Second,
djacent samples < sample; , sample;+;> of the moving object meet ti<t>t;.,, so that
the probability value pirip(OID) of moving object OID passing by road RID at the
moment t meets 0<p,rp(OID)<1 . In this case, samples and given road RID may belong
to the same leaf node of UPA-tree, or may be one sample and given road RID belong to
the same leaf node of UPA-tree and another sample belong to different leaf node. The
worst case, the three belong to three different leaf nodes of UPA-tree. We use space
constraints r-Restrict method, which pre-selects samples that meet the time condition and
then specifically calculates to obtain the final results.
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51 Query Algorithm

The parallel probabilistic range queries for uncertain data based on MapReduce is
shown in Figure 2.

Input Map tasks intermediate state Reduce tasks Output
(RIDt,@) Space Sort:<sub-division ID, samples> | |Possible paths + meree brogram
<Ib,samples> constraint | [<sub-division ID, list> Probability g€ prog

segment0 '{ Map() t”
segmentl -  Map()

segment2 }»*’{ Map()

¥
¥
L4

»[ Reduce() }

*{ Reduce() }i-{ query query
resultsl results

‘ query
resultso

<py,list(r)> +

query

It
<Prlr1> H<pa.1,list(r)>t* Reduce() |- re;i *

Figure 2. Process of the Parallel Probablllﬂmge

Uncertain Data
1) Map stage: The input samples data <ID, s&? are into M segments,

which is corresponding to the same number of Ma Input ach Map operation is
corresponding to key-value pairs <ID, sampls3\in the.s nt. Map operation calls a
user-defined space constraint function, d.et whether put OID of samples at the

guery moment t may be on the query @ndmons met, then the function

segment }>
M-1

¥

o map)

¥

judges UPA-tree sub-division accor the S tion of sample;. Output of Map
operation is intermediate state alue pa ub-division ID, samples>. Then,
according to the sub-division outpu ta sets will be sorted and a new <sub-
division ID, list> tuple has b nerate urpose is to make the queries of samples
which have the same b ing sa \bﬁ concentrated in the list of the same sub-
division and effectiv es ad of the calculated results to improve query
efficiency. Then o@tes wﬂl%pht into R fragments according to the scope of the
sub-division ID re corME?w g to the number of Reduce tasks.

2) Red Input eath Reduce operation is <sub-division ID, list>. Reduce
operation t@mctlon possible paths queries and the probability calculation, and
finally call am of sub-query results to combine all queries results into a
complete result.

The space const r-Restrict and the probability calculation using vertices’ earliest
arrival time t(vy and latest departure time tg(vk) is the same to the continues
probabilistic_range query of moving objects on road network[20], possible paths
calculatj ill be introduced as follow:

ible Paths Calculation

r the possible paths queries we learn from the thought of processing shortest path
query in paper [21]. We divide possible paths query respectively into two cases: samples
belonging to the same leaf node and the different leaf nodes. For the former we directly
using Breadth-First-Search strategy, and for the later we separately calculate possible
paths from sample; to the boundary node of the leaf node which sample; belongs to, and
possible paths between the boundary node of the leaf node which sample;., belongs to and
sample;.;, and possible paths from above two kinds boundary nodes. Finally, possible
paths of < sample; , samplei.;> can be obtained by using combination according to the
time constraint. Possible paths of boundary nodes of the two leaf nodes can be acquired
by using the following method: in accordance with the hierarchical relationship of UPA-

Copyright © 2016 SERSC 117



International Journal of Smart Home
Vol. 10, No. 9 (2016)

tree, it starts from the leaf node which sample; belongs to until the first public parent node
layer by layer, and then from the first public parent node to the leaf node witch sample;.s
belongs to layer by layer, respectively. It should separately calculate the possible paths of
boundary vertices of adjacent layers nodes, and finally acquiring the result by using
combination.

There are two types of repetitive computation in the processing of possible paths query.
One is possible paths calculation of boundary vertices B(g;) of each adjacent layer node.
Our solution is storing increased possible paths between B(g;) in each query. And possible
paths stored in Hbase are divided into between boundary vertices of each node and their
brothers or parents nodes. Obviously Region table scale is gradually expanded, but when
possible paths of all boundary vertices in the space are recorded Region table does not
change again. While in every query processing, as long as we find possible paths meeting
the conditions among B(g;) in the region, and then on this basis we increase possible paths

of new vertices obtained by using p-region [22]. .
Another repetitive computation is that the starting vertice of the two kind p e
same, as well as the end and the starting vertices are not in the same UPA- I ode
so we repetitively calculate the path from the starting vertice to the boundary®vertices of
the subgraph which the starting vertice belongs to. Th| rsﬂn a ability in
actual road network. The repetitive calculation also wi e 0 th which takes
the same vertice as the end point and each pair s sa% not in the same

different UPA-tree leaf nodes, and then ju hethep s le; and sample;+; of each
samples are in the same UPA-tree leaf nod e sample@a not in the same leaf node,
we continually divide them accordm%/ ple; n (the end vertice of the road
which sample; is on), and then for e% isio need to calculate possible paths
once from sample; to boundzx of the lea e which sample; belongs to.
*
6. Experimental Evaluati \G‘)
%emented’sq, AVA language based on Hbase-0.90.4 and

eMour D des and one Namenode, and the configuration is:
dual-core, memory: 4GB, disk: 500G, os: Ubuntu

leaf node
For this repetitive calculation, we divide SES) accordirm sample; belonging to

All experiments ar
Hadoop-1.0.4. T
CPU: Intel Core

Linux

The roa the traffic network of Colorado [23] which has 435666
vertices, 1057066 edge use the generator proposed in paper [24] to synthetic 10000
vehicles on the Col ad network, and then continuously record the location of these
vehicles with th sampling interval. We respectively get 0.1, 1, 3, 5 and 10 million
records.

6.1 Pe@%nce of the Query Time

Effect of the Data Set Size: As shown in Figure 3, the query time for the four
structures presents increasing trend with the increase of data set size. While the data
se ize bellowing 2 million, the query time of the parallel query based on UPBI is higher
than the single query, and while the data set size exceeding 2 million query time is
significantly lower than the single query. And the main reason is the same to the index
construction. It must cost time in starting MapReduce task. And when data set is more
than 2 million, the parallel query can dynamically adjust the number of Map and Reduce
tasks to suppress query time. As shown in Figure 3, the query time of query technology
based on UTH and PUTI has been superior to query technology based on UPBI. The main
reason is that the latter two needs to deal with uncertain path queries and probability
calculation.
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*

6.1.2  Effect of the Number of Vertices in each Leaf Node: In this expe \ﬂe
take the sampling interval as 180 seconds and take the probability thresh w&

shown in Figure 4, with the increase of the number of vertlce in each le r@ne guery
time is decreasing first and then increasing. The rea Hat wi crease of
vertices’ number, the possible path queries have gradu fer df different leaf
nodes to the same leaf node. When the number o . f Iea s is bigger, the
query cost is also greater. As shown in Figure 8, v’w W rtices in each leaf
he Same le

node is 128, the query of different leaf nodes a % f notle achieves the optimal.

g the sam % interval as 10, 20, 30, 40,
d as 0.7, the number of vertices

e 5 %t ncrease of sampling interval, the

6.1.3  Effect of the Sampling Interval
50, 60, 120, 180 and 240 seconds, the
in each leaf node as 128, as shown i

guery time presents increasin »and the h of query time is flat before 50
seconds and rapid after 50%. . Theyr is that when the sampling interval is
bigger, the possible path betwegmtwo ad] N mpling points of the same moving object

intreases. Considering practical application and
al as 180 seconds in the follower.

is more, and eventually
data storage factors’w
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»
s

s
3

the average query time(ms})
o o
s 8

the average query time(ms)

\/
5. Average Query Time Figure 6. Average Query Time

6.1.4  Effect of the Probability Threshold: As shown in Figure 6, with the
probability threshold increasing, the query time has showed a trend of decline. The reason
is that the bigger the probability threshold is, the less the query candidate sets is. We can
further observe through Figure 6 that with the increasing of data size, query time also
increases. This is mainly because large amount of data causes large query candidate set,
and the time used in time constraint and space pruning also will increase. Considering the
decline trend greater when probability threshold is 0.7 in Figure 6, we take probability
threshold as 0.7 in the follower.
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6.2 Performance of the Query Precision

Query precision is expressed as #(Ql.in N ryy) | # Qluyain) * 100%, QL. Presents the
probabilistic range queries results while sampling interval is i which respectively takes 20,
40, 60, 120, 180 and 240 seconds, g*° presents the sampling results of the actual segment
in every 10 seconds. We design false negative ratio
(M) — #( Qi N O2)) 1 #(QL) * 100% to  resolve the missed real value in query
processing problem.

100

95 ¥ -
o0 -
85

80
75
70 +
65

BN N W
n S v o

the query precision(%)
=
o

A\
4
60
55 +
50
20 40 60 120 180 240 180 240
the sampling interval(s) sampling interval(s)

—+—a=0.1 —8—a=0.5 a=0.9 a=0.1 +c|

the false negative ratio(%)

Figure 7. Query Precision I!' ure se Negatlve Ratio

precision of the query reduces, and t en |o rises. Query precision of all
sampling interval is over 85%, and the mterval is 180 seconds and the

probability threshold is 0.5 th [@ of th y can achieve 90% above, and the
overall value is between 6@ is that when the sampling interval is
bigger, the possible path betwe a@ ampling points is more.

7. Conclusion .

In recent ye ncertm n of the moving objects affected by the sampling
frequency ore a ttention in the field of MOD. In this paper, the UPBI
index and robabl i nge parallel queries of moving objects on road network
based on Hadoop has{ bgen proposed. The experiment prove that index and query
algorithm proposed £ ctively enhance query efficiency and precision. It will be
considered to uge™Mhe queries results to improve the precision of the probabilistic

As shown in Figure 7 and Flgure0§ che of sampling interval, the

—
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